Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2405-5204
  • E-ISSN: 2405-5212

Abstract

Background

Centrifugal pumps are key equipment used for fluid transfer in the chemical industry. During the start-up process of high-speed centrifugal pumps, the hydraulic characteristics such as flow rate and head will change significantly, and the optimization of the pump start-up process can improve its stability and service life, which will make centrifugal pumps more efficient in chemical production.

Objective

Achieving a fast and stable startup process has always been a goal in the engineering application of high-speed centrifugal pumps.

Methods

First, the mathematical relationship between the torque and speed of the centrifugal pump is established. Then, based on the physical characteristics of the DC motor and considering the centrifugal pump torque as the load, a mathematical model of the high-speed DC centrifugal pump is developed. A fuzzy PI controller for the high-speed DC centrifugal pump is designed by integrating traditional PI control methods with fuzzy control theory to manage the startup process. Optimization algorithms are employed to optimize the parameters of the fuzzy PI controller.

Results

Before optimization, the settling time was 0.33 s, the motor speed overshoot was 7.69%, the head overshoot was 3.77%, and the flow rate overshoot was 7.69%. After optimization, the settling time improved to 0.25 s, the motor speed overshoot was reduced to 6.3%, the head overshoot to 3.1%, and the flow rate overshoot to 6.3%.

Conclusion

A comparison of simulation results before and after parameter optimization demonstrates that the optimized fuzzy PI control yields better dynamic performance during the startup process of the high-speed DC centrifugal pump.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204374433250310084724
2025-03-21
2025-09-28
Loading full text...

Full text loading...

References

  1. LobanoffV.S. RossR.R. Centrifugal pumps: Design and application.2nd edOxford: Elsevier1992
    [Google Scholar]
  2. KellyJ.H. Understand the fundamentals of centrifugal pumps.Chem. Eng. Prog.2010106102228
    [Google Scholar]
  3. WangJ. ChenJ. SuS.J.M.P.L.B. Chemical heat pumps beyond the carnot limit.Modern Phys. Lett. B2024387235024910.1142/S0217984923502494
    [Google Scholar]
  4. YükselO. Modelling and performance prediction of a centrifugal cargo pump on a chemical tanker.J. Mar. Sci. Technolz.202019427810.1080/20464177.2019.1665330
    [Google Scholar]
  5. ShahS. JainS. PatelR. LakheraV.J.P.E. CFD for centrifugal pumps: A review of the state-of-the-art.Procedia Eng.20135171572010.1016/j.proeng.2013.01.102
    [Google Scholar]
  6. AyadA.F. AbdallaH.M. AlyA.A.E-A.J.A.S. Effect of semi-open impeller side clearance on the centrifugal pump performance using CFD.Aerosp. Sci. Technol.20154724710.1007/s12206‑014‑1228‑6
    [Google Scholar]
  7. KimJ-H. LeeH-C. KimJ-H. KimS. YoonJ-Y. Design techniques to improve the performance of a centrifugal pump using CFD.J. Mech. Sci. Technol.20152921510.1007/s12206‑014‑1228‑6
    [Google Scholar]
  8. ShojaeefardM.H. HosseiniS.E. ZareJ.J.S. OptimizationM. CFD simulation and pareto-based multi-objective shape optimization of the centrifugal pump inducer applying GMDH neural network, modified NSGA-II, and TOPSIS.Struct. Multidisc. Optim.201960150910.1007/s00158‑019‑02280‑0
    [Google Scholar]
  9. BashiriM. DerakhshanS. Design optimization of a centrifugal pump using particle swarm optimization algorithm.Int J Fluid Mach Syst201912432210.5293/IJFMS.2019.12.4.322
    [Google Scholar]
  10. De DonnoR. GhidoniA. NoventaG. RebayS.J.O. Shape optimization of the ERCOFTAC centrifugal pump impeller using open-source software.Optim. Eng.20192092995310.1007/s11081‑019‑09428‑3
    [Google Scholar]
  11. TaoR. XiaoR. ZhuD. Multi-objective optimization of double suction centrifugal pump.J. Mech. Eng. Sci.2018232611081117
    [Google Scholar]
  12. HanX. KangY. ShengJ. HuY. ZhaoW.J.S. OptimizationM. Centrifugal pump impeller and volute shape optimization via combined NUMECA, genetic algorithm, and back propagation neural network.Struct. Multidiscipl. Optim.202061381110.1007/s00158‑019‑02367‑8
    [Google Scholar]
  13. HanB. TanL. LuY. DaiZ.J.O.E. Multiple parameters and multiple conditions optimization based on two steps strategy for an axial flow pump.Ocean Eng.202328111473210.1016/j.oceaneng.2023.114732
    [Google Scholar]
  14. YanX. ZhangF. ZhengY. KanK. Numerical investigation of hydraulic instability of pump-turbines in fast pump-to-turbine transition.J. Energ. Storage20249611273110.1016/j.est.2024.112731
    [Google Scholar]
  15. GuY. FanL. LanQ. WeiY.J.E. Experimental study on the transient supply consistency for a common rail pump based on impedance theory.Energy202328312906210.1016/j.energy.2023.129062
    [Google Scholar]
  16. KanK. ChenH. ZhengY. ZhouD. BinamaM. DaiJ.J.R.E. Transient characteristics during power-off process in a shaft extension tubular pump by using a suitable numerical model.Renewable Energ.202116410912110.1016/j.renene.2020.09.001
    [Google Scholar]
  17. WangC. ZhangY.X. ZhuJ.J. YuanZ.Y. LuB.H. Effect of cavitation and free-gas entrainment on the hydraulic performance of a centrifugal pump.Proc. Inst. Mech. Eng.202123544045310.1177/0957650920939343
    [Google Scholar]
  18. ZhangY.L. JiY.Y. ZhaoY.J. Deep analysis of the transient behavior of centrifugal pumps during startup and shutdown.Meas. Control2022553-415516310.1177/00202940211064234
    [Google Scholar]
  19. AhmedF. EamesI. AzarbadeganA. Acoustics and vibrations in a complex piping network with pump startup–shutdown transients.Int. J. Mech. Sci.202222710735710.1016/j.ijmecsci.2022.107357
    [Google Scholar]
  20. LiY. GuoD. LiX. The effect of startup modes on a vacuum cam pump.Vacuum201916617017710.1016/j.vacuum.2019.05.009
    [Google Scholar]
  21. TsukamotoH. OhashiH. Transient characteristics of a centrifugal pump during starting period.J. Fluids Eng.1982104161310.1115/1.3240859
    [Google Scholar]
  22. ThanapandiP. Centrifugal pump transient characteristics and analysis using the method of characteristics.Int. J. Mech. Sci.19953717789
    [Google Scholar]
  23. ChalghoumI. ElaoudS. AkroutM. TaiebE.H.J.A.A. Transient behavior of a centrifugal pump during starting period.Appl. Acoustics2016109828910.1016/j.apacoust.2016.02.007
    [Google Scholar]
  24. DazinA. CaignaertG. BoisG. Transient behavior of turbomachineries: Applications to radial flow pump startups.J. Fluids Eng.2007129143610.1115/1.2776963
    [Google Scholar]
  25. WuD. WangL. HaoZ. LiZ. Experimental study on hydrodynamic performance of a cavitating centrifugal pump during transient operation.J. Mech. Sci. Technol.20102457510.1007/s12206‑009‑1217‑3
    [Google Scholar]
  26. GevorkovL. RassõlkinA. KallasteA. VaimannT.J.E. Simulation study of mixed pressure and flow control systems for optimal operation of centrifugal pumping plants.Electr Control Commu2018141899410.1007/s12206‑009‑1217‑3
    [Google Scholar]
  27. DiazC. RuizF. PatinoD.J.A.E. Modeling and control of water booster pressure systems as flexible loads for demand response.Appl. Ener.201729410611610.1016/j.apenergy.2017.06.094
    [Google Scholar]
  28. PyrhonenJ. HrabovcovaV. SemkenR.S. Electrical machine drives control: an introduction.Chichester: John Wiley & Sons Ltd201610.1002/9781119260479
    [Google Scholar]
  29. XuW. WeiD. LeiC. Control for the centrifugal pump in the simulation platform of power plants.2016 International Conference on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII)Wuhan, China03-04 December 201626326710.1109/ICIICII.2016.0070
    [Google Scholar]
  30. GhafouriJ. KhayatzadehH. Dynamic modeling of variable speed centrifugal pump utilizing Matlab/SIMULINK.IJSEI20121517
    [Google Scholar]
  31. BrezinaT. KovarJ. HejcT. Modeling and control of system with pump and pipeline by pole placement method.14th International Conference Mechatronika2011Trencianske Teplice, Slovakia, 01-03 June6910.1109/MECHATRON.2011.5961082
    [Google Scholar]
  32. ArunS.V. SubramaniamU. PadmanabanS. BhaskarM.S. AlmakhlesD. Investigation for performances comparison PI, adaptive PI, fuzzy speed control induction motor for centrifugal pumping application.IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPEPOWERENG). Sonderborg, Denmark, 23-25 April201916
    [Google Scholar]
  33. WangY. ZhangH. HanZ. NiX.J.P. Optimization design of centrifugal pump flow control system based on adaptive control.Processes202199153810.3390/pr9091538
    [Google Scholar]
  34. BordeasuD. ProsteanO. FilipI. VasarC.J.M. Adaptive control strategy for a pumping system using a variable frequency drive.Machines202311768810.3390/machines11070688
    [Google Scholar]
  35. GevorkovL. RassõlkinA. KallasteA. VaimannT. Simulink based model for flow control of a centrifugal pumping system.25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED)2018Moscow, Russia, 31 January - 02 February1410.1109/IWED.2018.8321399
    [Google Scholar]
  36. CabaS. LepperM. LiuS. Nonlinear controller and observer design for centrifugal pumps.2016 IEEE Conference on Control Applications (CCA)Buenos Aires, Argentina, 19-22 September201656957410.1109/CCA.2016.7587890
    [Google Scholar]
  37. Jaimes SaavedraC.F. Roa PradaS. Maradey LázaroJ.G. Modeling and optimal control of a variable-speed centrifugal pump with a pipeline.ASME International Mechanical Engineering Congress and ExpositionPhoenix, Arizona, USANovember 11–17, 201610.1115/IMECE2016‑67992
    [Google Scholar]
  38. ShiJ. LiZ. GaoJ. ChenD. LiX. LiY. Thermal-hydraulic modeling of oil-immersed motor pump.Appl. Sci.20231316945210.3390/app13169452
    [Google Scholar]
  39. YinL TaoJ XiaoL XuechongQ YuejiangHJM Research on pump speed control system based on fuzzy PID.Design optim Mech Syst202329322534
    [Google Scholar]
  40. JanevskaG. Mathematical modeling of pump system. Electronic International Interdisciplinary Conference. Zilina, Slovak Republic, September, 2-6.2013455589
    [Google Scholar]
  41. GeX. ZhangJ. ZhangJ. LiuD. ZhengY. ChenH.J.E. Review of research on the three-dimensional transition process of large-scale low-lift pump.Energies20221522833810.3390/en15228338
    [Google Scholar]
  42. LiZ. WuP. WuD. WangL. Experimental and numerical study of transient flow in a centrifugal pump during startup.J. Mech. Sci. Technol.201125374975710.1007/s12206‑011‑0107‑7
    [Google Scholar]
  43. LiQ. MaX. WuP. YangS. HuangB. WuD.J.P. Study on the transient characteristics of the centrifugal pump during the startup period with assisted valve.Processes2020810124110.3390/pr8101241
    [Google Scholar]
  44. DingH. GeF. WangK. LinF.J.P. Influence of blade trailing-edge filing on the transient characteristics of the centrifugal pump during startup.Processes2023118242010.3390/pr11082420
    [Google Scholar]
  45. KuczmannM.J.E. ReviewofD.C. Review of DC motor modeling and linear control: Theory with laboratory tests.Electronics20241311222510.3390/electronics13112225
    [Google Scholar]
  46. García-RodríguezV.H. Silva-OrtigozaR. Hernández-MárquezE. García-SánchezJ.R. TaudH.J.E. DC/DC Boost converter–inverter as driver for a DC motor: Modeling and experimental verification.Energies2018118204410.3390/en11082044
    [Google Scholar]
  47. LeeD. LeeS.J. YimS.C.J.O.E. Reinforcement learning-based adaptive PID controller for DPS.Ocean Eng.202021610805310.1016/j.oceaneng.2020.108053
    [Google Scholar]
  48. CarneiroJ.F. Friction characteristics and servo control of a linear peristaltic actuator.Int. J. Adv. Manuf. Technol.201896211710.1007/s00170‑018‑1678‑6
    [Google Scholar]
  49. ValdezF. VazquezJ.C. MelinP. CastilloO.J.A.S.C. Comparative study of the use of fuzzy logic in improving particle swarm optimization variants for mathematical functions using co-evolution.Appl. Soft Comput.2017521070108310.1016/j.asoc.2016.09.024
    [Google Scholar]
  50. WangT. Song JJJoR. Harmonic detection method based on particle swarm optimization and simulated annealing algorithm of electrohydraulic servo system.J. Robotics202220221748342710.1155/2022/7483427
    [Google Scholar]
  51. WangX-H. LiJ-J. Hybrid particle swarm optimization with simulated annealing.Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat No04EX826). Shanghai, China, 26-29 August20042402240510.1109/ICMLC.2004.1382205
    [Google Scholar]
  52. SahuR.K. PandaS. DE optimized parallel 2-DOF PID controller for load frequency control of power system with governor dead-band nonlinearity.Int. J. Electr. Power Energy Syst.2013491933
    [Google Scholar]
/content/journals/rice/10.2174/0124055204374433250310084724
Loading
/content/journals/rice/10.2174/0124055204374433250310084724
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test