Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2405-5204
  • E-ISSN: 2405-5212

Abstract

This review article explores the integration of artificial intelligence (AI) and nanotechnology, focusing on their combined potential to drive advancements in nanomaterial discovery, drug delivery systems, and nano-electronic component design. It also examines the transformative effects of AI-enhanced nanotechnology in medicine, diagnostics, bioengineering, and other scientific domains, emphasizing its future implications across various sectors. This article examines the synergy between AI and nanotechnology, focusing on recent innovations in nanomaterial discovery, AI-driven material design, and precision medicine. It reviews case studies and research highlighting AI's role in accelerating nanomaterial development and its applications in medicine, electronics, diagnostics, and robotics, using a multidisciplinary approach. AI-enhanced nanotechnology has enabled the development of novel nanomaterials with unprecedented properties tailored for specific applications, such as highly efficient drug delivery systems and next-generation nano-electronic components. In medicine, AI-driven nanotechnology offers promising solutions for highly personalized treatments, improving therapeutic efficacy and reducing side effects. Additionally, AI is driving innovation in diagnostics and robotics, leading to more sensitive diagnostic tools and the development of nanoscale-precision robotic systems. The integration of AI and nanotechnology presents vast opportunities for scientific and technological advancements. As AI algorithms continue to evolve, their impact on nanotechnology will lead to breakthroughs in diverse fields, such as medicine, electronics, diagnostics, and robotics. This interdisciplinary synergy will open new frontiers in research, driving transformative changes in bioengineering, neuroscience, and beyond.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204359215250127071256
2025-02-04
2025-10-09
Loading full text...

Full text loading...

References

  1. NasrollahzadehM. SajadiS.M. SajjadiM. IssaabadiZ. An introduction to nanotechnology Interface science and technology 28.New YorkElsevier201912710.1016/B978‑0‑12‑813586‑0.00001‑8
    [Google Scholar]
  2. SachaG.M. VaronaP. Artificial intelligence in nanotechnology.Nanotechnology2013244545200210.1088/0957‑4484/24/45/452002 24121558
    [Google Scholar]
  3. AgbokluM. The impact of artificial intelligence on innovative nanotechnologies for advanced medical diagnosis.J Nanotech Res2024611510.26502/jnr.2688‑85210040
    [Google Scholar]
  4. HaickH. TangN. Artificial intelligence in medical sensors for clinical decisions.ACS Nano20211533557356710.1021/acsnano.1c00085 33620208
    [Google Scholar]
  5. KalininS.V. ZiatdinovM. HinkleJ. Automated and autonomous experiments in electron and scanning probe microscopy.ACS Nano2021158126041262710.1021/acsnano.1c02104 34269558
    [Google Scholar]
  6. AzuriI. Rosenhek-GoldianI. Regev-RudzkiN. FantnerG. CohenS.R. The role of convolutional neural networks in scanning probe microscopy: A review.Beilstein J. Nanotechnol.202112187890110.3762/bjnano.12.66 34476169
    [Google Scholar]
  7. ChughV. BasuA. KaushikA. BasuA.K. Progression in quantum sensing/bio-sensing technologies for healthcare.ECS Sens Plus20232101500110.1149/2754‑2726/acc190
    [Google Scholar]
  8. ShwethaK AmoghP VaidyaSS HariprasadN KrishnaS ManjunathaC Nanorobotics for Advancing biomedicine: Progresses in Materials, Design, Fabrication, Opportunities and Applications: IEEE Access2024101056225310.1109/ACCESS.2024.10562253
  9. VasoyaN. Revolutionizing nano materials processing through IoT-AI integration: Opportunities and challenges.J Mater Sci Res Rev202363294328
    [Google Scholar]
  10. KrullA. HirschP. RotherC. SchiffrinA. KrullC. Artificial-intelligence-driven scanning probe microscopy.Commun. Phys.2020315410.1038/s42005‑020‑0317‑3
    [Google Scholar]
  11. Rahman LaskarMA CelanoU Scanning probe microscopy in the age of machine learning. APL Mach Learn20231410.1063/5.0160568
    [Google Scholar]
  12. VijayaraghavanV. GargA. WongC.H. A molecular dynamics based artificial intelligence approach for characterizing thermal transport in nanoscale material.Thermochim. Acta2014594394910.1016/j.tca.2014.08.029
    [Google Scholar]
  13. AthanasopoulouK. DanevaG.N. AdamopoulosP.G. ScorilasA. Artificial intelligence: The milestone in modern biomedical research.BioMedInformatics20222472774410.3390/biomedinformatics2040049
    [Google Scholar]
  14. Diaz-FloresE. MeyerT. GiorkallosA. Evolution of artificial intelligence-powered technologies in biomedical research and healthcare.Smart Biol Futur2022182236010.1007/10_2021_189
    [Google Scholar]
  15. MolasG. NowakE. Advances in emerging memory technologies: From data storage to artificial intelligence.Appl. Sci.202111231125410.3390/app112311254
    [Google Scholar]
  16. LiuC. ChenH. WangS. Two-dimensional materials for next-generation computing technologies.Nat. Nanotechnol.202015754555710.1038/s41565‑020‑0724‑3 32647168
    [Google Scholar]
  17. PengJ. MuhammadR. WangS.L. ZhongH.Z. How machine learning accelerates the development of quantum dots?Chin. J. Chem.202139118118810.1002/cjoc.202000393
    [Google Scholar]
  18. AliM.K. JavaidS. AfzalH. Exploring the multifunctional roles of quantum dots for unlocking the future of biology and medicine.Environ. Res.202323211629010.1016/j.envres.2023.116290 37295589
    [Google Scholar]
  19. HamediS. KordrostamiZ. YadollahiA. Artificial neural network approaches for modeling absorption spectrum of nanowire solar cells.Neural Comput. Appl.201931128985899510.1007/s00521‑019‑04406‑3
    [Google Scholar]
  20. ZhangZ. LiuX. ZhouH. XuS. LeeC. Advances in machine‐learning enhanced nanosensors: From cloud artificial intelligence toward future edge computing at chip level.Small Struct.202454230032510.1002/sstr.202300325
    [Google Scholar]
  21. HuJ. WangW. YuH. Endowing soft photo‐actuators with intelligence.Adv. Intell. Syst.201918190005010.1002/aisy.201900050
    [Google Scholar]
  22. JavaidM. HaleemA. SinghR.P. RabS. SumanR. Exploring the potential of nanosensors: A brief overview.Sens Inter2021210013010.1016/j.sintl.2021.100130
    [Google Scholar]
  23. ZengH. WasylczykP. WiersmaD.S. PriimagiA. Light robots: Bridging the gap between microrobotics and photomechanics in soft materials.Adv. Mater.20183024170355410.1002/adma.201703554 29067734
    [Google Scholar]
  24. ChenH. ZhengY. LiJ. LiL. WangX. AI for nanomaterials development in clean energy and carbon capture, utilization and storage (CCUS).ACS Nano202317119763979210.1021/acsnano.3c01062 37267448
    [Google Scholar]
  25. TaborD.P. RochL.M. SaikinS.K. Accelerating the discovery of materials for clean energy in the era of smart automation.Nat. Rev. Mater.20183552010.1038/s41578‑018‑0005‑z
    [Google Scholar]
  26. JiaY. HouX. WangZ. HuX. Machine learning boosts the design and discovery of nanomaterials.ACS Sustain. Chem.& Eng.20219186130614710.1021/acssuschemeng.1c00483
    [Google Scholar]
  27. HongY. HouB. JiangH. ZhangJ. Machine learning and artificial neural network accelerated computational discoveries in materials science.Wiley Interdiscip. Rev. Comput. Mol. Sci.2020103e145010.1002/wcms.1450
    [Google Scholar]
  28. AfrozeS. RezaM.S. AminM.R. TaweekunJ. AzadA.K. Progress in nanomaterials fabrication and their prospects in artificial intelligence towards solid oxide fuel cells: A review.Int J Hydr Ener20245221624710.1016/j.ijhydene.2022.11.335
    [Google Scholar]
  29. ButlerK.T. DaviesD.W. CartwrightH. IsayevO. WalshA. Machine learning for molecular and materials science.Nature2018559771554755510.1038/s41586‑018‑0337‑2 30046072
    [Google Scholar]
  30. ZhuX. LiY. GuN. Application of artificial intelligence in the exploration and optimization of biomedical nanomaterials.Nano Biomed. Eng.202315334235310.26599/NBE.2023.9290035
    [Google Scholar]
  31. KaurS SinglaJ NkenyereyeL Medical diagnostic systems using artificial intelligence (AI) algorithms: Principles and perspectives. IEEE Access202082280496910.1109/ACCESS.2020.3042273
    [Google Scholar]
  32. HassanzadehP. AtyabiF. DinarvandR. The significance of artificial intelligence in drug delivery system design.Adv. Drug Deliv. Rev.2019151-15216919010.1016/j.addr.2019.05.001 31071378
    [Google Scholar]
  33. AlshawwaS.Z. KassemA.A. FaridR.M. MostafaS.K. LabibG.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence.Pharmaceutics202214488310.3390/pharmaceutics14040883 35456717
    [Google Scholar]
  34. VetrovaN.A. FilyaevA.A. Evaluation criterion of the neural network model of heterostructural nanoelectronic devices for predicting their electrical parameters.RUDN J Eng Res2022231714
    [Google Scholar]
  35. KošmerlV. ŠtajduharI. ČanađijaM. Predicting stress–strain behavior of carbon nanotubes using neural networks.Neural Comput. Appl.20223420178211783610.1007/s00521‑022‑07430‑y
    [Google Scholar]
  36. VijayaraghavanV. GargA. WongC.H. TaiK. Estimation of mechanical properties of nanomaterials using artificial intelligence methods.Appl. Phys., A Mater. Sci. Process.201411631099110710.1007/s00339‑013‑8192‑3
    [Google Scholar]
  37. HuangG. GuoY. ChenY. NieZ. Application of machine learning in material synthesis and property prediction.Materials20231617597710.3390/ma16175977 37687675
    [Google Scholar]
  38. RajuR.K. Exploring nanocluster potential energy surfaces via deep reinforcement learning: Strategies for global minimum search.J. Phys. Chem. A2024128429122913410.1021/acs.jpca.4c04416 39397328
    [Google Scholar]
  39. Vivanco-BenavidesL.E. Martínez-GonzálezC.L. Mercado-ZúñigaC. Torres-TorresC. Machine learning and materials informatics approaches in the analysis of physical properties of carbon nanotubes: A review.Comput. Mater. Sci.202220111093910.1016/j.commatsci.2021.110939
    [Google Scholar]
  40. LanT. WangH. AnQ. Enabling high throughput deep reinforcement learning with first principles to investigate catalytic reaction mechanisms.Nat. Commun.2024151628110.1038/s41467‑024‑50531‑6 39060277
    [Google Scholar]
  41. ZhouZ. LiX. ZareR.N. Optimizing chemical reactions with deep reinforcement learning.ACS Cent. Sci.20173121337134410.1021/acscentsci.7b00492 29296675
    [Google Scholar]
  42. BrownK.A. BrittmanS. MaccaferriN. JariwalaD. CelanoU. Machine learning in nanoscience: Big data at small scales.Nano Lett.202020121010.1021/acs.nanolett.9b04090 31804080
    [Google Scholar]
  43. BadiniS. RegondiS. PuglieseR. Unleashing the power of artificial intelligence in materials design.Materials20231617592710.3390/ma16175927 37687620
    [Google Scholar]
  44. Pyzer-KnappE.O. PiteraJ.W. StaarP.W. Accelerating materials discovery using artificial intelligence, high performance computing and robotics.NPJ Comput Mater20228184
    [Google Scholar]
  45. WangK. DowlingA.W. Bayesian optimization for chemical products and functional materials.Curr. Opin. Chem. Eng.20223610072810.1016/j.coche.2021.100728
    [Google Scholar]
  46. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.108 27834398
    [Google Scholar]
  47. ManoharanH. TeekaramanY. KuppusamyR. RadhakrishnanA. VenkatachalamH.K. Acclimatization of nanorobots in medical applications using the artificial intelligence system with the data transfer approach.Wirel. Commun. Mob. Comput.2022202211810.1155/2022/5877042
    [Google Scholar]
  48. IzankerS.V. DholeA. KumarP. Navigating the nexus: Exploring the fusion of AI and nanotechnology for cutting-edge advances. In: Proceedings of the 2023 1st DMIHER International Conference on Artificial Intelligence in Education and Industry 4.0 (IDICAIEI); 2023 Nov 27–28; Wardha, India.10.1109/IDICAIEI58380.2023.10406387
    [Google Scholar]
  49. NandipatiM. FatokiO. DesaiS. Bridging nanomanufacturing and artificial intelligence—a comprehensive review.Materials2024177162110.3390/ma17071621 38612135
    [Google Scholar]
  50. ManF. LammersT.T.M. de RosalesR. Imaging nanomedicine-based drug delivery: A review of clinical studies.Mol. Imaging Biol.201820568369510.1007/s11307‑018‑1255‑2 30084044
    [Google Scholar]
  51. SharmaV. SinghA. ChauhanS. Role of artificial intelligence in drug discovery and target identification in cancer.Curr. Drug Deliv.202421687088610.2174/1567201821666230905090621 37670704
    [Google Scholar]
  52. Blanco-GonzálezA. CabezónA. Seco-GonzálezA. The role of AI in drug discovery: Challenges, opportunities, and strategies.Pharmaceuticals202316689110.3390/ph16060891 37375838
    [Google Scholar]
  53. PawarV. PatilA. TamboliF. GaikwadD. MaliD. ShindeA. Harnessing the power of AI in pharmacokinetics and pharmacodynamics: A comprehensive review.AAPS PharmSciTech2021142426439
    [Google Scholar]
  54. TiwariP.C. PalR. ChaudharyM.J. NathR. Artificial intelligence revolutionizing drug development: Exploring opportunities and challenges.Drug Dev. Res.20238481652166310.1002/ddr.22115 37712494
    [Google Scholar]
  55. MassaroA. Intelligent materials and nanomaterials improving physical properties and control oriented on electronic implementations.Electronics20231218377210.3390/electronics12183772
    [Google Scholar]
  56. PomerantsevaE. BonaccorsoF. FengX. CuiY. GogotsiY. Energy storage: The future enabled by nanomaterials.Science20193666468eaan828510.1126/science.aan8285 31753970
    [Google Scholar]
  57. ChenY.P. BashirS. LiuJ.L. Nanostructured materials for next-generation energy storage and conversion.ChamSpringer201754610.1007/978‑3‑662‑53514‑1
    [Google Scholar]
  58. ZhangQ. UchakerE. CandelariaS.L. CaoG. Nanomaterials for energy conversion and storage.Chem. Soc. Rev.20134273127317110.1039/c3cs00009e 23455759
    [Google Scholar]
  59. YipM. SalcudeanS. GoldbergK. Artificial intelligence meets medical robotics.Science2023381665414114610.1126/science.adj3312 37440630
    [Google Scholar]
  60. AdirO. PoleyM. ChenG. Integrating artificial intelligence and nanotechnology for precision cancer medicine.Adv. Mater.20203213190198910.1002/adma.201901989 31286573
    [Google Scholar]
  61. HayatH. NukalaA. NyamiraA. FanJ. WangP. A concise review: The synergy between artificial intelligence and biomedical nanomaterials that empowers nanomedicine.Biomed. Mater.202116505200110.1088/1748‑605X/ac15b2 34280907
    [Google Scholar]
  62. AhmadS. KhanF.N. RamlalA. BegumS. QaziS. RazaK. Nanoinformatics and nanomodeling: Recent developments in computational nanodrug design and delivery systems.Emerg Nanotechnol Med Appl2023297332
    [Google Scholar]
  63. HassabisD. KumaranD. SummerfieldC. BotvinickM. Neuroscience-inspired artificial intelligence.Neuron201795224525810.1016/j.neuron.2017.06.011 28728020
    [Google Scholar]
  64. DzoboK. AdoteyS. ThomfordN.E. DzoboW. Integrating artificial and human intelligence: A partnership for responsible innovation in biomedical engineering and medicine.OMICS202024524726310.1089/omi.2019.0038 31313972
    [Google Scholar]
  65. WinklerD.A. Role of artificial intelligence and machine learning in nanosafety.Small20201636200188310.1002/smll.202001883 32537842
    [Google Scholar]
  66. SriramT. ChakrabortyT. PrasannaP.M. Artificial intelligence powered insights into nanotoxicology.Inter J Adv Life Sci Res202472688010.31632/ijalsr.2024.v07i02.005
    [Google Scholar]
  67. SinghA.V. RosenkranzD. AnsariM.H.D. Artificial intelligence and machine learning empower advanced biomedical material design to toxicity prediction.Adv. Intell. Syst.2020212200008410.1002/aisy.202000084
    [Google Scholar]
  68. ZafarS. RanaN. Artificial intelligence in material science.In: Artificial intelligence and data science for advanced materials.CRC Press202311810.1201/9781003437369‑1
    [Google Scholar]
  69. RanaN. LatiffM.S.A. AbdulhamidS.M. ChiromaH. Whale optimization algorithm: A systematic review of contemporary applications, modifications and developments.Neural Comput. Appl.20203220162451627710.1007/s00521‑020‑04849‑z
    [Google Scholar]
  70. ChiromaH AbdullahiUA AbdulhamidSM Progress on artificial neural networks for big data analytics: A survey.IEEE Access20197705355110.1109/ACCESS.2018.2880694
    [Google Scholar]
  71. MalikS. MuhammadK. WaheedY. Nanotechnology: A revolution in modern industry.Molecules202328266110.3390/molecules28020661 36677717
    [Google Scholar]
  72. HulsenT. Literature analysis of artificial intelligence in biomedicine.Ann. Transl. Med.20221023128410.21037/atm‑2022‑50 36618779
    [Google Scholar]
  73. ShastriB.J. TaitA.N. Ferreira de LimaT. Photonics for artificial intelligence and neuromorphic computing.Nat. Photonics202115210211410.1038/s41566‑020‑00754‑y
    [Google Scholar]
  74. JakšićZ. DeviS. JakšićO. GuhaK. A comprehensive review of bio-inspired optimization algorithms including applications in microelectronics and nanophotonics.Biomimetics20238327810.3390/biomimetics8030278 37504166
    [Google Scholar]
  75. BotifollM. Pinto-HuguetI. ArbiolJ. Machine learning in electron microscopy for advanced nanocharacterization: Current developments, available tools and future outlook.Nanoscale Horiz.20227121427147710.1039/D2NH00377E 36239693
    [Google Scholar]
  76. NaikG.G. JagtapV.A. Two heads are better than One: unravelling the potential impact of artificial intelligence in nanotechnology.Nano TransMed2024100041
    [Google Scholar]
  77. RegliW. RossignacJ. ShapiroV. SrinivasanV. The new frontiers in computational modeling of material structures.Comput. Aided Des.201677738510.1016/j.cad.2016.03.002
    [Google Scholar]
  78. MalacaP. RochaL.F. GomesD. SilvaJ. VeigaG. Online inspection system based on machine learning techniques: Real case study of fabric textures classification for the automotive industry.J. Intell. Manuf.201930135136110.1007/s10845‑016‑1254‑6
    [Google Scholar]
/content/journals/rice/10.2174/0124055204359215250127071256
Loading
/content/journals/rice/10.2174/0124055204359215250127071256
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test