Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2405-5204
  • E-ISSN: 2405-5212

Abstract

Background

Refractory linings of cement rotary kilns are subjected to severe thermomechanical stresses of cranking, ovality, tyre hooping/migration, and uneven thermal distribution. An insistent demand is to discover the significance of spinel, hercynite, galaxite, and chromite in magnesia refractories, as well as their flexibilizing mechanisms.

Objectives

The objectives are to compare the fracture behavior of magnesia–spinel, –hercynite, –galaxite, and –chromite refractories and to unveil the flexibilizing mechanisms of different spinels.

Methods

The wedge splitting test is carried out to produce various fracture parameters. Their flexibilizing mechanisms are studied by performing microstructural observations and analyses.

Results

Various fracture parameters are obtained, including specific fracture energy, brittleness number, characteristic crack length, and thermal-shock resistance parameter. Generally, magnesia–hercynite bricks and magnesia–galaxite bricks have demonstrated the prominent advantages of fracture resistance, which are more flexible than magnesia–spinel bricks and magnesia–chromite bricks.

Conclusion

The flexibility of magnesia–spinel bricks is attributed to microcracks generated from different thermal behavior between spinel grains and surrounding periclase, which is recognized as the thermal-expansion mismatch mechanism. In magnesia–hercynite and magnesia–galaxite refractories, the active-ion-diffusion mechanism is predominant beyond similar microcracks, to drive the flexibility by the continuous diffusion of Fe2+, Mn2+, and Mg2+ during high-temperature burning and using processes. In magnesia–chromite bricks, the pore rims contribute to the flexibility as a silicate-migration mechanism, after silicate envelopes first arise around chromite grains and then vanish into the surrounding magnesia by the suction of capillary force during the burning process.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204343614241015071422
2024-10-29
2025-09-27
Loading full text...

Full text loading...

References

  1. HewlettP.C. Lea’s Chemistry of Cement and Concrete.LondonEdward Arnold Publishers1998
    [Google Scholar]
  2. SenguptaP. Refractories for the Cement Industry.ChamSpringer202025310.1007/978‑3‑030‑21340‑4
    [Google Scholar]
  3. SlovikovskiiV.V. Rotary kiln corrosion-erosion-resistant linings.Refract. Ind. Ceram.20084929910210.1007/s11148‑008‑9034‑2
    [Google Scholar]
  4. WajdowiczA.A. GonçalvesG.E. PachecoG.R.C. PinillaJ. OliveiraMGd BritoMAM. Magnesia–spinel brick: A thermal overload case. Proceedings of the 54th International Colloquium on Refractories. Aachen, Germany.20111920Oct, 2011; 116-9.
    [Google Scholar]
  5. GonçalvesG.E. PachecoG.R.C. BritoM.A.M. Silva SLCd, Lins VFC. Influence of magnesia in the infiltration of magnesia–spinel refractory bricks by different clinkers. Metallurgy and Materials.Rev Esc Minas201568440941510.1590/0370‑44672014680117
    [Google Scholar]
  6. GonçalvesG.E. BittencourtL.R.M. The mechanisms of formation of mayenite (C12A7) the quaternary phase Q (Ca20Al26Mg3Si3O68) of the system CaO–MgO–Al2O3–SiO2 in magnesia–spinel bricks used in the burning and transition zones of rotary cement kilns.Proceedings of the 8th UNITECR 20032003 Oct 19–22Osaka, Japan13841
    [Google Scholar]
  7. SzczerbaJ. Chemical corrosion of basic refractories by cement kiln materials.Ceram. Int.20103661877188510.1016/j.ceramint.2010.03.019
    [Google Scholar]
  8. ChenJ. LiuD. YanM. JiangP. LiB. SunJ. Influence of microstructure on formation of deterioration layer in periclase-hercynite bricks.Refract. Ind. Ceram.201657326727210.1007/s11148‑016‑9966‑x
    [Google Scholar]
  9. SułkowskiM. ObszyńskaL. GoławskiC. Magnesia-spinel refractories for rotary kiln burning 60% alternative fuel. SułkowskiM ObszyńskaL GoławskiC Proceedings of the Unified International Technical Conference on Refractories (UNITECR 2013) 2013 Sep 10–13; Victoria, Canada. Hoboken (NJ): John Wiley & Sons, Inc.201421522010.1002/9781118837009.ch38
    [Google Scholar]
  10. OhnoM. TodaH. TokunagaK. TsuchiyaY. MizunoY. Development of magnesia–spinel brick for transition zone in cement rotary kilns under the vastly increasing use of waste. In: Proceedings of the Unified International Technical Conference on Refractories (UNITECR 2013)2013 Sep 10–13; Victoria, Canada. Hoboken (NJ): John Wiley & Sons, Inc2014205910.1002/9781118837009.ch36
    [Google Scholar]
  11. SzczerbaJ. Changes in basic bricks from preheater cement kilns using secondary fuels.Ind. Ceram.20092911930
    [Google Scholar]
  12. CherifK. PalcoS. GuoZ. RigaudM. Alkalies and cement clinker reactions on basic refractories.Key Eng. Mater.200120621316471650
    [Google Scholar]
  13. OhyamaT. ImaiK. KanaiN. TakadaT. KenmochiI. KusunoseH. Influence of alkali salts on magnesia–spinel bricks for rotary cement kilns.Refractories Overseas2000203184188
    [Google Scholar]
  14. ShubinV.I. Mechanical effects on the lining of rotary cement kilns.Refract. Ind. Ceram.2001425/624525010.1023/A:1012354919912
    [Google Scholar]
  15. KrishnanS. Achieving mechanical stability of rotary kiln by FEM.Int J Adv Technol Eng Sci2014212568580
    [Google Scholar]
  16. ShubinV.I. The effect of temperature on the lining of rotary cement kilns.Refract. Ind. Ceram.2001423/417117710.1023/A:1011348516788
    [Google Scholar]
  17. SödjeJ. KlischatH.J. Magnesia, an essential raw material for cement kiln refractories.Refractories Worldforum2012427784
    [Google Scholar]
  18. YoshiharuK. FumihitoO. ToruH. The present and future of chrome-free linings for rotary kilns.Refractories Overseas2000204266270
    [Google Scholar]
  19. GuoZ. Technical progress in basic refractories for cement rotary kilns.Refractories Overseas2003234218225
    [Google Scholar]
  20. BarthaP. The properties of periclase spinel brick and its service stresses in rotary cement kilns.Interceram1984331517
    [Google Scholar]
  21. BarthaP. Magnesia–spinel bricks—properties, production and use.In: Proceedings of the International Symposium on RefractoriesHangzhou, China198866174
    [Google Scholar]
  22. BuchebnerG. HarmuthH. MolinariT.H. Magnesia–hercynite bricks—an innovative burnt basic refractory.In: Proceedings of the 6th Unified International Technical Conference on Refractories (UNITECR 1999); 1999 Sep; Berlin, Germany.201203
    [Google Scholar]
  23. GeithM. MajcenovicC. WiryA. Hercynite & galaxite — “active spinels”, additives for excellent cement rotary kiln bricks.RHI Bull J Refract Innov200312528
    [Google Scholar]
  24. EwaisE.M.M. BayoumiI.M.I. Effect of hercynite spinel on the technological properties of MCZ products used for lining cement rotary kilns.Refract. Ind. Ceram.201960219220010.1007/s11148‑019‑00334‑w
    [Google Scholar]
  25. PachecoG.R.C. GonçalvesG.E. LinsV.F.C. Design of magnesia–spinel bricks for improved coating adherence in cement rotary kilns.Ceramics20214465266610.3390/ceramics4040046
    [Google Scholar]
  26. GuoZ. PalcoS. RigaudM. Bonding of cement clinker onto doloma-based refractories.J. Am. Ceram. Soc.20058861481148710.1111/j.1551‑2916.2005.00255.x
    [Google Scholar]
  27. GuoZ. PalcoS. RigaudM. Reaction characteristics of magnesia–spinel refractories with cement clinker.Int. J. Appl. Ceram. Technol.20052432733510.1111/j.1744‑7402.2005.02027.x
    [Google Scholar]
  28. HarmuthH. TscheggE.K. A fracture mechanics approach for the development of refractory materials with reduced brittleness.Fatigue Fract. Eng. Mater. Struct.199720111585160310.1111/j.1460‑2695.1997.tb01513.x
    [Google Scholar]
  29. Grasset-BourdelR. AlzinaA. HugerM. Tensile behaviour of magnesia-spinel refractories: Comparison of tensile and wedge splitting tests.J. Eur. Ceram. Soc.201333591392310.1016/j.jeurceramsoc.2012.10.031
    [Google Scholar]
  30. DaiY. HarmuthH. JinS. GruberD. LiY. R-curves determination of ordinary refractory ceramics assisted by digital image correlation method.J. Eur. Ceram. Soc.202040134655466310.1016/j.jeurceramsoc.2020.05.047
    [Google Scholar]
  31. DaiY. LiY. XuX. Characterization of tensile failure behaviour of magnesia refractory materials by a modified dog-bone shape direct tensile method and splitting tests.Ceram. Int.20204656517652510.1016/j.ceramint.2019.11.133
    [Google Scholar]
  32. DaiY. LiY. JinS. HarmuthH. XuX. Fracture behavior of magnesia refractory materials under combined cyclic thermal shock and mechanical loading conditions.J. Am. Ceram. Soc.202010331956196910.1111/jace.16856
    [Google Scholar]
  33. DaiY. LiY. JinS. HarmuthH. WenY. XuX. Mechanical and fracture investigation of magnesia refractories with acoustic emission-based method.J. Eur. Ceram. Soc.202040118119110.1016/j.jeurceramsoc.2019.09.010
    [Google Scholar]
  34. DaiY. LiY. XuX. Fracture behaviour of magnesia refractory materials in tension with the Brazilian test.J. Eur. Ceram. Soc.201939165433544110.1016/j.jeurceramsoc.2019.07.026
    [Google Scholar]
  35. DaiY. YinY. XuX. JinS. LiY. HarmuthH. Effect of the phase transformation on fracture behaviour of fused silica refractories.J. Eur. Ceram. Soc.201838165601560910.1016/j.jeurceramsoc.2018.08.040
    [Google Scholar]
  36. BelgacemS. GalaiH. TissH. Qualitative and quantitative investigation of post–mortem cement refractory: The case of magnesia–spinel bricks.Ceram. Int.20164216191471915510.1016/j.ceramint.2016.09.077
    [Google Scholar]
  37. TscheggE. New equipment for fracture tests on concrete.Mater. Test.19913311-1233834310.1515/mt‑1991‑3311‑1204
    [Google Scholar]
  38. AuerT. ManhartC. HarmuthH. Contributions to refractory fracture mechanical and fractographic investigations.RHI Bull: J Refract Innov200613842
    [Google Scholar]
  39. DaiY. GruberD. HarmuthH. Observation and quantification of the fracture process zone for two magnesia refractories with different brittleness.J Eur Ceram20173762521252910.1016/j.jeurceramsoc.2017.02.005
    [Google Scholar]
  40. HarmuthH. RiederK. KrobathM. TscheggE. Investigation of the nonlinear fracture behaviour of ordinary ceramic refractory materials.Mater. Sci. Eng. A19962141-2536110.1016/0921‑5093(96)10221‑5
    [Google Scholar]
  41. HasselmanD.P.H. Elastic energy at fracture and surface energy as design criteria for thermal shock.J. Am. Ceram. Soc.1963461153554010.1111/j.1151‑2916.1963.tb14605.x
    [Google Scholar]
  42. HasselmanD.P.H. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics.J. Am. Ceram. Soc.1969521160060410.1111/j.1151‑2916.1969.tb15848.x
    [Google Scholar]
  43. HillerborgA. Analysis of one single crack. WittmanF.H. Fracture Mechanics of Concrete.AmsterdamElsevier1983223249
    [Google Scholar]
  44. HarmuthH. Characterisation of the fracture path in ‘flexible’ refractories.Adv. Sci. Technol.201070303610.4028/www.scientific.net/AST.70.30
    [Google Scholar]
  45. HarmuthH. BradtR.C. Investigation of refractory brittleness by fracture mechanical and fractographic methods.InterCeram2010624610
    [Google Scholar]
  46. BuchebnerG. NeuboeckR. Basic shaped materials.4th ed RoutschkaG. WuthnowH. Handbook of Refractory Materials.EssenVulkan-Verlag GmbH201283117
    [Google Scholar]
  47. PadhiL.N. SahuP. SahooN. SinghS.K. TripathyJ.K. Synthesis of galaxite by plasma fusion & its application in refractory for cement rotary kiln.J Asian Ceram Soc20175214415010.1016/j.jascer.2017.03.007
    [Google Scholar]
  48. RacherR.P. McConnellR.W. BuhrA. Magnesium aluminate spinel raw materials for high-performance refractories for steel ladles.Proceedings of 43rd Conference of MetallurgistsHamilton, Ontario, Canada200470517
    [Google Scholar]
  49. Dal MaschioR. FabbriB. FioriC. Industrial application of refractories containing magnesium-aluminate spinel.Ind. Ceram.198883121126
    [Google Scholar]
  50. ChenJ. GuoZ. Production of bauxite-based spinel clinker.Silic Ind1997629–10163167
    [Google Scholar]
  51. GuoZ. NievollJ. An overview of magnesia–hercynite refractories for cement rotary kilns.China’s Refract2007166571
    [Google Scholar]
  52. OtrojS. Synthesis of hercynite under air atmosphere using MgAl2O4 spinel.Mater. Sci.201521228829210.5755/jo1.mm.21.2.5866
    [Google Scholar]
  53. ChenJ. YuL. SunJ. LiY. XueW. Synthesis of hercynite by reaction sintering.J. Eur. Ceram. Soc.201131325926310.1016/j.jeurceramsoc.2010.09.017
    [Google Scholar]
  54. ShangJ. ShiK. XuT. LiuB. LiuY. ChenB. Synthesis of galaxite by sintering at various temperatures and atmospheres.Ceram. Int.2023498122241223010.1016/j.ceramint.2022.12.074
    [Google Scholar]
  55. TathavakarV.D. AntonyM.P. JhaA. The physical chemistry of thermal decomposition of South African chromite minerals.Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci.2005361758410.1007/s11663‑005‑0008‑1
    [Google Scholar]
  56. SchnabelM. BuhrA. ExenbergerR. RampitschC. Spinel: In-situ versus preformed — Clearing the myth.Refractories Worldforum2010228793
    [Google Scholar]
  57. AkselC. WarrenP.D. RileyF.L. Fracture behaviour of magnesia and magnesia–spinel composites before and after thermal shock.J. Eur. Ceram. Soc.20042482407241610.1016/j.jeurceramsoc.2003.07.005
    [Google Scholar]
  58. Grasset-BourdelR. AlzinaA. HugerM. GruberD. HarmuthH. ChotardT. Influence of thermal damage occurrence at microstructural scale on the thermomechanical behaviour of magnesia–spinel refractories.J. Eur. Ceram. Soc.201232598999910.1016/j.jeurceramsoc.2011.10.048
    [Google Scholar]
  59. SoadyJ.S. PlintS. A quantitative thermal shock approach to the development of magnesia–spinel refractories for the cement kiln. Proceedings of the 2nd UNITECR 91. Aachen, Germany.26–29 Sep19914439
    [Google Scholar]
  60. AkselC. RandB. RileyF.L. WarrenP.D. Mechanical properties of magnesia-spinel composites.J. Eur. Ceram. Soc.200222574575410.1016/S0955‑2219(01)00373‑9
    [Google Scholar]
  61. GuoZ. DaiY. ChenJ. LeiZ. GaoJ. YuanW. Three bond modes of basic refractories used for Ruhrstahl Heraeus degassing process.J. Am. Ceram. Soc.202310695403541910.1111/jace.19148
    [Google Scholar]
/content/journals/rice/10.2174/0124055204343614241015071422
Loading
/content/journals/rice/10.2174/0124055204343614241015071422
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): chromite; Flexibilizing mechanism; galaxite; hercynite; magnesia; spinel
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test