Skip to content
2000
Volume 16, Issue 2
  • ISSN: 2772-574X
  • E-ISSN: 2772-5758

Abstract

Introduction

The process of bar creation involves improving the texture of the product to increase its palatability, which can be further induced by various physical or chemical changes during storage, such as sugar crystallization and molecular migrations in which Maillard’s reaction occurs, forming the N-epsilon- (carboxymethyl) lysine (CML) adduct. In this study, we aimed to assess (the CML) adduct used in commercial bars today as meal substitutes or for athletic or sports purposes. The adduct CML is an advanced glycation end-product (AGEs) found in the human body (serum) and foods. It is the significant ligand for the Receptor for Advanced Glycation End Products (RAGE), resulting in chronic inflammation upon CML activation. Additionally, it aimed to assess the amount of AGEs-CML in various energy bars available on the Italian market.

Methods

CML OxiSelect™ ELISA was used to assess the quantity of CML bars. The amount of AGE-CML was assessed in commercially available energy bars.

Results

According to the ELISA analysis, CML concentrations per g protein in all the tested energy bars varied from 138,42 to 1387,54 µg/gr per bar and from 461,41 to 3970,46 µg/gr per 100 gr of product, which depends on the quantity of protein.

Conclusion

The amount per gram of protein is relatively uniform (with a variation of about 10%), and when compared to other foods, it is positioned in a medium-low range.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X300368240318051000
2024-04-09
2025-10-11
Loading full text...

Full text loading...

References

  1. ElechiJ.O.G. SirianniR. ConfortiF.L. CioneE. PellegrinoM. Food system transformation and gut microbiota transition: Evidence on advancing obesity, cardiovascular diseases, and cancers—a narrative review.Foods20231212228610.3390/foods12122286 37372497
    [Google Scholar]
  2. CioneE. FazioA. CurcioR. TucciP. LauriaG. CappelloA.R. DolceV. Resistant starches and non-communicable disease: A Focus on mediterranean diet.Foods2021109206210.3390/foods10092062 34574171
    [Google Scholar]
  3. La TorreC. FazioA. CaputoP. PlastinaP. CaroleoM.C. CannataroR. CioneE. Effects of long-term storage on radical scavenging properties and phenolic content of Kombucha from black tea.Molecules20212618547410.3390/molecules26185474 34576945
    [Google Scholar]
  4. Twarda-ClapaA. OlczakA. BiałkowskaA.M. KoziołkiewiczM. Advanced glycation end-products (AGEs): Formation, chemistry, classification, receptors, and diseases related to AGEs.Cells2022118131210.3390/cells11081312 35455991
    [Google Scholar]
  5. KimY. Blood and tissue advanced glycation end products as determinants of cardiometabolic disorders focusing on human studies.Nutrients2023158200210.3390/nu15082002 37111220
    [Google Scholar]
  6. UribarriJ. WoodruffS. GoodmanS. CaiW. ChenX. PyzikR. YongA. StrikerG.E. VlassaraH. Advanced glycation end products in foods and a practical guide to their reduction in the diet.J. Am. Diet. Assoc.20101106911916.e1210.1016/j.jada.2010.03.018 20497781
    [Google Scholar]
  7. MaillardL.C. “Action des acides amines sur les sucres; formation des melanoidies par voie methodique,” CR.Acad. Sci.19121546668
    [Google Scholar]
  8. FeinerG. Meat products handbook: Practical science and technology.Elsevier2006
    [Google Scholar]
  9. ZhangQ. WangY. FuL. Dietary advanced glycation end‐products: Perspectives linking food processing with health implications.Compr. Rev. Food Sci. Food Saf.20201952559258710.1111/1541‑4337.12593 33336972
    [Google Scholar]
  10. KathuriaD. Hamid; Gautam, S.; Thakur, A. Maillard reaction in different food products: Effect on product quality, human health and mitigation strategies.Food Control202315310991110.1016/j.foodcont.2023.109911
    [Google Scholar]
  11. PerroneA. GiovinoA. BennyJ. MartinelliF. Advanced glycation end products (AGEs): Biochemistry, signaling, analytical methods, and epigenetic effects.Oxid. Med. Cell. Longev.202020203818196
    [Google Scholar]
  12. RiuzziF. SorciG. SaghedduR. ChiappalupiS. SalvadoriL. DonatoR. RAGE in the pathophysiology of skeletal muscle.J. Cachexia Sarcopenia Muscle2018971213123410.1002/jcsm.12350 30334619
    [Google Scholar]
  13. van der LugtT. OpperhuizenA. BastA. VrolijkM.F. Dietary advanced glycation endproducts and the gastrointestinal tract.Nutrients2020129281410.3390/nu12092814 32937858
    [Google Scholar]
  14. ManzoccoL. CalligarisS. MastrocolaD. NicoliM.C. LericiC.R. Review of non-enzymatic browning and antioxidant capacity in processed foods.Trends Food Sci. Technol.2000119-1034034610.1016/S0924‑2244(01)00014‑0
    [Google Scholar]
  15. HellwigM. AuerbachC. MüllerN. SamuelP. KammannS. BeerF. GunzerF. HenleT. Metabolization of the advanced glycation end product N-ε-carboxymethyllysine (CML) by different probiotic E. coli strains.J. Agric. Food Chem.20196771963197210.1021/acs.jafc.8b06748 30701968
    [Google Scholar]
  16. HelouC. Nogueira Silva LimaM.T. Niquet-LeridonC. JacolotP. BoulangerE. DelgusteF. GuilbaudA. GeninM. AntonP.M. Delayre-OrthezC. PapazianT. HowsamM. TessierF.J. Plasma levels of free NƐ-Carboxymethyllysine (CML) after different oral doses of cml in rats and after the intake of different breakfasts in humans: postprandial plasma level of srage in humans.Nutrients2022149189010.3390/nu14091890 35565855
    [Google Scholar]
  17. JaraN. LealM.J. BunoutD. HirschS. BarreraG. LeivaL. de la MazaM.P. Dietary intake increases serum levels of carboxymethil-lysine (CML) in diabetic patients.Nutr. Hosp.201227412721278 23165573
    [Google Scholar]
  18. JovanovP. SakačM. JurdanaM. PražnikarZ.J. KenigS. HadnađevM. JakusT. PetelinA. ŠkrobotD. MarićA. High-protein bar as a meal replacement in elite sports nutrition: A pilot study.Foods20211011262810.3390/foods10112628 34828911
    [Google Scholar]
  19. SproesserG. RubyM.B. ArbitN. AkotiaC.S. AlvarengaM.S. BhangaokarR. FurumitsuI. HuX. ImadaS. KaptanG. Kaufer-HorwitzM. MenonU. FischlerC. RozinP. SchuppH.T. RennerB. Understanding traditional and modern eating: The TEP10 framework.BMC Public Health2019191160610.1186/s12889‑019‑7844‑4 31791293
    [Google Scholar]
  20. CannataroR. CioneE. CerulloG. RondanelliM. MichelettiP. CrisafulliO. MicheliM.L. D’AntonaG. Type 1 diabetes management in a competitive athlete: A five‐year case report.Physiol. Rep.20231113e1574010.14814/phy2.15740 37402564
    [Google Scholar]
  21. CannataroR. CarboneL. PetroJ.L. CioneE. VargasS. AnguloH. ForeroD.A. Odriozola-MartínezA. KreiderR.B. BonillaD.A. Sarcopenia: Etiology, nutritional approaches, and miRNAs.Int. J. Mol. Sci.20212218972410.3390/ijms22189724 34575884
    [Google Scholar]
  22. IannoneF. MontesantoA. CioneE. CroccoP. CaroleoM.C. DatoS. RoseG. PassarinoG. Expression patterns of muscle-specific miR-133b and miR-206 correlate with nutritional status and sarcopenia.Nutrients202012229710.3390/nu12020297 31979011
    [Google Scholar]
  23. MeadeA. Protein supplementation with sports protein bars in renal patients.J. Ren. Nutr.200717321421710.1053/j.jrn.2006.12.006 17462554
    [Google Scholar]
  24. BolsterD.R. RahnM. KamilA.G. BristolL.T. GoltzS.R. LeidyH.J. BlazeM.T.M. NunezM.A. GuoE. WangJ. HarknessL.S. Consuming lower-protein nutrition bars with added leucine elicits postprandial changes in appetite sensations in healthy women.J. Nutr.2018148569370110.1093/jn/nxy023 29897544
    [Google Scholar]
  25. BonillaD.A. KreiderR.B. StoutJ.R. ForeroD.A. KerksickC.M. RobertsM.D. RawsonE.S. Metabolic basis of creatine in health and disease: A bioinformatics-assisted review.Nutrients2021134123810.3390/nu13041238 33918657
    [Google Scholar]
  26. FISSNR.B.K.P.F. Essentials of Exercise & Sport Nutrition: Science to Practice2019
    [Google Scholar]
  27. Giraldo-VallejoJ.E. Cardona-GuzmánM.Á. Rodríguez-AlcivarE.J. KočíJ. PetroJ.L. KreiderR.B. CannataroR. BonillaD.A. Nutritional strategies in the rehabilitation of musculoskeletal injuries in athletes: A systematic integrative review.Nutrients202315481910.3390/nu15040819 36839176
    [Google Scholar]
  28. RussoR. GallelliL. CannataroR. PerriM. CalignanoA. CitraroR. RussoE. GareriP. CorsonelloA. De SarroG. When nutraceuticals reinforce drugs side effects: A case report.Curr. Drug Saf.201611326426610.2174/1574886311666160201152047 26830519
    [Google Scholar]
  29. MótyánJ. TóthF. TőzsérJ. Research applications of proteolytic enzymes in molecular biology.Biomolecules20133492394210.3390/biom3040923 24970197
    [Google Scholar]
  30. LiL. ZhuangY. ZouX. ChenM. CuiB. JiaoY. ChengY. Advanced glycation end products: A comprehensive review of their detection and occurrence in food.Foods20231211210310.3390/foods12112103 37297348
    [Google Scholar]
  31. GallelliL. MichniewiczA. CioneE. SquillaceA. ColosimoM. PelaiaC. FazioA. ZampognaS. PeltroneF. IannaccheroR. SarroG. SalernoM. Di MizioG. Di MizioG. 25-Hydroxy Vitamin D detection using different analytic methods in patients with migraine.J. Clin. Med.20198689510.3390/jcm8060895 31234518
    [Google Scholar]
  32. GuilbaudA. Niquet-LeridonC. BoulangerE. TessierF. How can diet affect the accumulation of advanced glycation end-products in the human body?Foods2016548410.3390/foods5040084 28231179
    [Google Scholar]
  33. ZhangQ. AmesJ.M. SmithR.D. BaynesJ.W. MetzT.O. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: Probing the pathogenesis of chronic disease.J. Proteome Res.20098275476910.1021/pr800858h 19093874
    [Google Scholar]
  34. Gutierrez-MariscalF.M. CardeloM.P. de la CruzS. Alcala-DiazJ.F. Roncero-RamosI. GulerI. Vals-DelgadoC. López-MorenoA. LuqueR.M. Delgado-ListaJ. Perez-MartinezP. Yubero-SerranoE.M. Lopez-MirandaJ. Reduction in circulating advanced glycation end products by mediterranean diet is associated with increased likelihood of type 2 diabetes remission in patients with coronary heart disease: from the cordioprev study.Mol. Nutr. Food Res.2021651190129010.1002/mnfr.201901290 32529753
    [Google Scholar]
  35. GoldbergT. CaiW. PeppaM. DardaineV. BaligaB.S. UribarriJ. VlassaraH. Advanced glycoxidation end products in commonly consumed foods.J. Am. Diet. Assoc.200410481287129110.1016/j.jada.2004.05.214 15281050
    [Google Scholar]
  36. Gómez-OjedaA. Jaramillo-OrtízS. WrobelK. WrobelK. Barbosa-SabaneroG. Luevano-ContrerasC. de la MazaM.P. UribarriJ. del CastilloM.D. Garay-SevillaM.E. Comparative evaluation of three different ELISA assays and HPLC-ESI-ITMS/MS for the analysis of N ε -carboxymethyl lysine in food samples.Food Chem.2018243111810.1016/j.foodchem.2017.09.098 29146316
    [Google Scholar]
  37. SalamaA.H. Spray drying as an advantageous strategy for enhancing pharmaceuticals bioavailability.Drug Deliv. Transl. Res.202010111210.1007/s13346‑019‑00648‑9 31144213
    [Google Scholar]
  38. OttC. JacobsK. HauckeE. Navarrete SantosA. GruneT. SimmA. Role of advanced glycation end products in cellular signaling.Redox Biol.2014241142910.1016/j.redox.2013.12.016 24624331
    [Google Scholar]
  39. MengstieM.A. Chekol AbebeE. Behaile TeklemariamA. Tilahun MuluA. AgidewM.M. Teshome AzezewM. ZewdeE.A. Agegnehu TeshomeA. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications.Front. Mol. Biosci.20229100271010.3389/fmolb.2022.1002710 36188225
    [Google Scholar]
  40. FournetM. BontéF. DesmoulièreA. Glycation damage: A possible hub for major pathophysiological disorders and aging.Aging Dis.20189588090010.14336/AD.2017.1121 30271665
    [Google Scholar]
  41. ALjahdaliN. CarboneroF. Impact of Maillard reaction products on nutrition and health: Current knowledge and need to understand their fate in the human digestive system.Crit. Rev. Food Sci. Nutr.201959347448710.1080/10408398.2017.1378865 28901784
    [Google Scholar]
  42. DrenthH. ZuidemaS. BuntS. BautmansI. van der SchansC. HobbelenH. The contribution of advanced glycation end product (AGE) accumulation to the decline in motor function.Eur. Rev. Aging Phys. Act.2016131310.1186/s11556‑016‑0163‑1 26949420
    [Google Scholar]
  43. DalalM. FerrucciL. SunK. BeckJ. FriedL.P. SembaR.D. Elevated serum advanced glycation end products and poor grip strength in older community-dwelling women.J. Gerontol. A Biol. Sci. Med. Sci.200964A113213710.1093/gerona/gln018 19182228
    [Google Scholar]
  44. MommaH. NiuK. KobayashiY. GuanL. SatoM. GuoH. ChujoM. OtomoA. YufeiC. TadauraH. SaitoT. MoriT. MiyataT. NagatomiR. Skin advanced glycation end product accumulation and muscle strength among adult men.Eur. J. Appl. Physiol.201111171545155210.1007/s00421‑010‑1779‑x 21188413
    [Google Scholar]
  45. TanakaK. KanazawaI. SugimotoT. Elevated serum pentosidine and decreased serum IGF-I levels are associated with loss of muscle mass in postmenopausal women with type 2 diabetes mellitus.Exp. Clin. Endocrinol. Diabetes20161243163166 26575120
    [Google Scholar]
  46. de la MazaM.P. UribarriJ. OlivaresD. HirschS. LeivaL. BarreraG. BunoutD. Weight increase is associated with skeletal muscle immunostaining for advanced glycation end products, receptor for advanced glycation end products, and oxidation injury.Rejuvenation Res.20081161041104810.1089/rej.2008.0786 19086911
    [Google Scholar]
  47. HausJ.M. CarrithersJ.A. TrappeS.W. TrappeT.A. Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle.J. Appl. Physiol.200710362068207610.1152/japplphysiol.00670.2007 17901242
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X300368240318051000
Loading
/content/journals/rafna/10.2174/012772574X300368240318051000
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): AGE-CML; AGEs; CML; energy bar; glycation; protein bar
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test