Skip to content
2000
Volume 16, Issue 2
  • ISSN: 2772-574X
  • E-ISSN: 2772-5758

Abstract

Microplastics are emerging sources of environmental pollutants that are increasingly of concern because of their harmful impacts on aquatic life and thereby humans. Their accumulation in the environment is in direct proportion to global plastic production; their being non-degradable, recalcitrant and of a persistent nature creates an urgent need to address this issue on a global scale. Recent reports have demonstrated the presence of microplastics in marine life, and directly becoming a part of the food chain when seafood is ingested by humans. The repercussions of these studies point to an even larger scale presence of microplastics across varied habitats, which are yet to be sampled. Bioremediation, using various microorganisms such as bacteria, algae and fungi, alone or as consortia or in biofilm form can be used as an effective remediation tool. Genetically modified microorganisms for focused removal of microplastics and metagenomics studies, providing taxonomic details of uncultured organisms, are also expected to provide an additional catalogue of technologies in this field. This review offers a comprehensive overview of microplastic sources, existing technologies for treating microplastics and an in-depth analysis of bioremediation mechanisms, its components, and the results from various studies which provide sufficient clues as to the directions to be chosen to address microplastics pollution and can facilitate and instruct researchers to further investigate the more practical approaches and create new and innovative strategies for advanced remediation of microplastic in the future.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X313370240620072831
2024-07-15
2025-10-11
Loading full text...

Full text loading...

References

  1. LithnerD. LarssonÅ. DaveG. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition.Sci. Total Environ.2011409183309332410.1016/j.scitotenv.2011.04.038 21663944
    [Google Scholar]
  2. MishraS. SwainS. SahooM. MishraS. DasA.P. Microbial colonization and degradation of microplastics in aquatic ecosystems: A review.Geomicrobiol. J.2022393-525926910.1080/01490451.2021.1983670
    [Google Scholar]
  3. ZhengY. LiJ. CaoW. LiuX. JiangF. DingJ. YinX. SunC. Distribution characteristics of microplastics in the seawater and sediment: A case study in Jiaozhou Bay, China.Sci. Total Environ.20196745273510.1016/j.scitotenv.2019.04.008 31003085
    [Google Scholar]
  4. RajmohanK.V.S. RamyaC. Raja ViswanathanM. VarjaniS. Plastic pollutants: effective waste management for pollution control and abatement.Curr. Opin. Environ. Sci. Health2019125728410.1016/j.coesh.2019.08.006
    [Google Scholar]
  5. LaskarN. KumarU. Plastics and microplastics: A threat to the environment.Environ. Technol. Innov.201914310035210.1016/j.eti.2019.100352
    [Google Scholar]
  6. WangJ. LiuX. LiY. PowellT. WangX. WangG. ZhangP. Microplastics as contaminants in the soil environment: A mini-review.Sci. Total Environ.2019691484885710.1016/j.scitotenv.2019.07.209 31326808
    [Google Scholar]
  7. HuangD. TaoJ. ChengM. DengR. ChenS. YinL. LiR. Microplastics and nanoplastics in the environment: Macroscopic transport and effects on creatures.J. Hazard. Mater.2021407612439910.1016/j.jhazmat.2020.124399 33191019
    [Google Scholar]
  8. ZhaoX. LiuZ. CaiL. HanJ. Occurrence and distribution of microplastics in surface sediments of a typical river with a highly eroded catchment, a case of the Yan River, a tributary of the Yellow River.Sci. Total Environ.2023863716093210.1016/j.scitotenv.2022.160932 36526203
    [Google Scholar]
  9. KoelmansA.A. Mohamed NorN.H. HermsenE. KooiM. MintenigS.M. De FranceJ. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality.Water Res.2019155741042210.1016/j.watres.2019.02.054 30861380
    [Google Scholar]
  10. GiriS. LamichhaneG. KhadkaD. DevkotaH.P. Microplastics contamination in food products: Occurrence, analytical techniques and potential impacts on human health.Curr. Res. Biotechnol.20247510019010.1016/j.crbiot.2024.100190
    [Google Scholar]
  11. Chico-OrtizN. MahuE. CraneR. GordonC. MarchantR. Microplastics in Ghanaian coastal lagoon sediments: Their occurrence and spatial distribution.Reg. Stud. Mar. Sci.202040610150910.1016/j.rsma.2020.101509
    [Google Scholar]
  12. BauerL.J. KendallM.S. JeffreyC.F.G. Incidence of marine debris and its relationships with benthic features in Gray’s Reef National Marine Sanctuary, Southeast USA.Mar. Pollut. Bull.200856340241310.1016/j.marpolbul.2007.11.001 18096190
    [Google Scholar]
  13. ZimmermannL. GöttlichS. OehlmannJ. WagnerM. VölkerC. What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna.Environ. Pollut.2020267711539210.1016/j.envpol.2020.115392 32871484
    [Google Scholar]
  14. PatelA.K. BhagatC. KumarM. Microplastic vulnerability in the sediments of the sabarmati river of india. resilience, response, and risk in water systems.Shifting Manag. Nat. Forcings Paradigms.2020456127138
    [Google Scholar]
  15. SaitS.T.L. SørensenL. KubowiczS. Vike-JonasK. GonzalezS.V. AsimakopoulosA.G. BoothA.M. Microplastic fibres from synthetic textiles: Environmental degradation and additive chemical content.Environ. Pollut.2021268Pt B11574510.1016/j.envpol.2020.115745 33065478
    [Google Scholar]
  16. ShahnawazM. AvinashA.B. ManishaK. Bioremediation technology for plastic waste.2021Vol. 8797898110.1007/978‑981‑13‑7492‑0
    [Google Scholar]
  17. YurtseverM. Tiny, shiny, and colorful microplastics: Are regular glitters a significant source of microplastics?Mar. Pollut. Bull.2019146767868210.1016/j.marpolbul.2019.07.009 31426209
    [Google Scholar]
  18. NaikR.A. RowlesL.S. HossainA.I. YenM. AldossaryR.M. ApulO.G. ConkleJ. SalehN.B. Microplastic particle versus fiber generation during photo-transformation in simulated seawater.Sci. Total Environ.2020736713969010.1016/j.scitotenv.2020.139690 32504867
    [Google Scholar]
  19. ChatterjeeS. SharmaS. Microplastics in our oceans and marine health.J. Field Act.20191995461
    [Google Scholar]
  20. SuL. NanB. HassellK.L. CraigN.J. PettigroveV. Microplastics biomonitoring in Australian urban wetlands using a common noxious fish (Gambusia holbrooki).Chemosphere20192286657410.1016/j.chemosphere.2019.04.114 31022621
    [Google Scholar]
  21. BrowneM.A. NivenS.J. GallowayT.S. RowlandS.J. ThompsonR.C. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity.Curr. Biol.201323232388239210.1016/j.cub.2013.10.012 24309271
    [Google Scholar]
  22. SchmidC. CozzariniL. ZambelloE. A critical review on marine litter in the Adriatic Sea: Focus on plastic pollution.Environ. Pollut.2021273611643010.1016/j.envpol.2021.116430 33497942
    [Google Scholar]
  23. PengG. XuP. ZhuB. BaiM. LiD. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities.Environ. Pollut.2018234544845610.1016/j.envpol.2017.11.034 29207296
    [Google Scholar]
  24. PrataJ.C. Selection of microplastics by Nile Red staining increases environmental sample throughput by micro-Raman spectroscopy.Sci. Total Environ.20217837146979
    [Google Scholar]
  25. RazeghiN. HamidianA.H. WuC. ZhangY. YangM. Microplastic sampling techniques in freshwaters and sediments: a review.Environ. Chem. Lett.20211964225425210.1007/s10311‑021‑01227‑6 34025333
    [Google Scholar]
  26. BorrelleS.B. RingmaJ. LawK.L. MonnahanC.C. LebretonL. McGivernA. MurphyE. JambeckJ. LeonardG.H. HillearyM.A. EriksenM. PossinghamH.P. De FrondH. GerberL.R. PolidoroB. TahirA. BernardM. MallosN. BarnesM. RochmanC.M. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution.Science202036965101515151810.1126/science.aba3656 32943526
    [Google Scholar]
  27. MerrellT.R.Jr Accumulation of plastic litter on beaches of Amchitka Island, Alaska.Mar. Environ. Res.19803317118410.1016/0141‑1136(80)90025‑2
    [Google Scholar]
  28. ThompsonR.C. Microplastics in the marine environment: Sources, consequences and solutions.Marine Anthropog. Litt.20155518520010.1007/978‑3‑319‑16510‑3_7
    [Google Scholar]
  29. JambeckJ.R. GeyerR. WilcoxC. SieglerT.R. PerrymanM. AndradyA. NarayanR. LawK.L. Plastic waste inputs from land into the ocean.Science2015347622376877110.1126/science.1260352 25678662
    [Google Scholar]
  30. EriksenM. LebretonL.C.M. CarsonH.S. ThielM. MooreC.J. BorerroJ.C. GalganiF. RyanP.G. ReisserJ. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea.PLoS One2014912e11191310.1371/journal.pone.0111913 25494041
    [Google Scholar]
  31. European association of plastics recycling and recovery organisations.2020Available from: www.epro-plasticsrecycling.org (accessed on 30-5-2024)
  32. ZalasiewiczJ. WatersC.N. Ivar do SulJ.A. CorcoranP.L. BarnoskyA.D. CearretaA. EdgeworthM. GałuszkaA. JeandelC. LeinfelderR. McNeillJ.R. SteffenW. SummerhayesC. WagreichM. WilliamsM. WolfeA.P. YonanY. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene.Anthropocene201613441710.1016/j.ancene.2016.01.002
    [Google Scholar]
  33. Plastics - the Facts2021Available from: https://plasticseurope.org/wp-content/uploads/2021/12/Plastics-the-Facts-2021-web-final.pdf (accessed on 30-5-2024)
  34. BoskerT. GuaitaL. BehrensP. Microplastic pollution on caribbean beaches in the lesser antilles.Mar. Pollut. Bull.2018133744244710.1016/j.marpolbul.2018.05.060 30041335
    [Google Scholar]
  35. SaleyA.M. SmartA.C. BezerraM.F. BurnhamT.L.U. CapeceL.R. LimaL.F.O. CarshA.C. WilliamsS.L. MorganS.G. Microplastic accumulation and biomagnification in a coastal marine reserve situated in a sparsely populated area.Mar. Pollut. Bull.20191465545910.1016/j.marpolbul.2019.05.065 31426191
    [Google Scholar]
  36. HarrisL.S.T. GillH. CarringtonE. Microplastic changes the sinking and resuspension rates of marine mussel biodeposits.Mar. Pollut. Bull.2021165411216510.1016/j.marpolbul.2021.112165 33611232
    [Google Scholar]
  37. ChenG. FengQ. WangJ. Mini-review of microplastics in the atmosphere and their risks to humans.Sci. Total Environ.2020703313550410.1016/j.scitotenv.2019.135504 31753503
    [Google Scholar]
  38. TataT. BelabedB.E. BououdinaM. BellucciS. Occurrence and characterization of surface sediment microplastics and litter from North African coasts of Mediterranean Sea: Preliminary research and first evidence.Sci. Total Environ.2020713413666410.1016/j.scitotenv.2020.136664 32019027
    [Google Scholar]
  39. PasoliniF. WaltherB.A. BergmannM. Citizen scientists reveal small but concentrated amounts of fragmented microplastic on Arctic beaches.Front. Environ. Sci.2023115121001910.3389/fenvs.2023.1210019
    [Google Scholar]
  40. ErikssonC. BurtonH. FitchS. SchulzM. van den HoffJ. Daily accumulation rates of marine debris on sub-Antarctic island beaches.Mar. Pollut. Bull.2013661-219920810.1016/j.marpolbul.2012.08.026 23219394
    [Google Scholar]
  41. WuF. WangY. LeungJ.Y.S. HuangW. ZengJ. TangY. ChenJ. ShiA. YuX. XuX. ZhangH. CaoL. Accumulation of microplastics in typical commercial aquatic species: A case study at a productive aquaculture site in China.Sci. Total Environ.2020708413543210.1016/j.scitotenv.2019.135432 31806295
    [Google Scholar]
  42. Global Plastics OutlookAvailable from: https://www.oecd-ilibrary.org/environment/global-plastics-outlook_de747aef-en (accessed on 30-5-2024)
  43. WoottonN. Reis-SantosP. GillandersB.M. Microplastic in fish – A global synthesis.Rev. Fish Biol. Fish.202131475377110.1007/s11160‑021‑09684‑6
    [Google Scholar]
  44. AndradyA.L. The plastic in microplastics: A review.Mar. Pollut. Bull.20171191122210.1016/j.marpolbul.2017.01.082 28449819
    [Google Scholar]
  45. SiddiquiS.A. BahmidN.A. SalmanS.H.M. NawazA. WalayatN. ShekhawatG.K. GvozdenkoA.A. BlinovA.V. NagdalianA.A. Migration of microplastics from plastic packaging into foods and its potential threats on human health.Adv. Food Nutr. Res.2023103431335910.1016/bs.afnr.2022.07.002 36863838
    [Google Scholar]
  46. SivagamiM. SelvambigaiM. DevanU. VelanganiA.A.J. KarmegamN. BirunthaM. ArunA. KimW. GovarthananM. KumarP. Extraction of microplastics from commonly used sea salts in India and their toxicological evaluation.Chemosphere2021263212818110.1016/j.chemosphere.2020.128181 33297148
    [Google Scholar]
  47. HernandezL.M. XuE.G. LarssonH.C.E. TaharaR. MaisuriaV.B. TufenkjiN. Plastic teabags release billions of microparticles and nanoparticles into tea.Environ. Sci. Technol.20195321123001231010.1021/acs.est.9b02540 31552738
    [Google Scholar]
  48. HabibiN. UddinS. FowlerS.W. Microplastics in the atmosphere: A review.J. Environ. Expo. Assess.202213624
    [Google Scholar]
  49. KanhaiL.D.K. GårdfeldtK. LyashevskaO. HassellövM. ThompsonR.C. O’ConnorI. Microplastics in sub-surface waters of the Arctic Central Basin.Mar. Pollut. Bull.2018130581810.1016/j.marpolbul.2018.03.011 29866573
    [Google Scholar]
  50. DussudC. MeistertzheimA.L. ConanP. Pujo-PayM. GeorgeM. FabreP. CoudaneJ. HiggsP. ElineauA. PedrottiM.L. GorskyG. GhiglioneJ.F. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters.Environ. Pollut.2018236380781610.1016/j.envpol.2017.12.027 29459335
    [Google Scholar]
  51. PadervandM. LichtfouseE. RobertD. WangC. Removal of microplastics from the environment. A review.Environ. Chem. Lett.202018380782810.1007/s10311‑020‑00983‑1
    [Google Scholar]
  52. QiongjieW. YongZ. YangyangZ. ZhouqiL. JinxiaoxueW. HuijuanC. Effects of biofilm on metal adsorption behavior and microbial community of microplastics.J. Hazard. Mater.2022424Pt A12734010.1016/j.jhazmat.2021.127340 34607028
    [Google Scholar]
  53. ShabbirS. FaheemM. AliN. KerrP.G. WangL.F. KuppusamyS. LiY. Periphytic biofilm: An innovative approach for biodegradation of microplastics.Sci. Total Environ.2020717113706410.1016/j.scitotenv.2020.137064 32070890
    [Google Scholar]
  54. HadadD. GereshS. SivanA. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis.J. Appl. Microbiol.20059851093110010.1111/j.1365‑2672.2005.02553.x 15836478
    [Google Scholar]
  55. FaheemM. ShabbirS. ZhaoJ. KerrG. P.; Ali, S.; Sultana, N.; Jia, Z. Multifunctional periphytic biofilms: Polyethylene degradation and Cd2+ and Pb2+ bioremediation under high methane scenario.Int. J. Mol. Sci.20202115315310.3390/ijms21155331 32727088
    [Google Scholar]
  56. AnaniO.A. AdetunjiC.O. Bioremediation of polythene and plastics using beneficial microorganisms.Microorg. Sustain.202127328130210.1007/978‑981‑15‑7459‑7_13
    [Google Scholar]
  57. HeS. JiaM. XiangY. SongB. XiongW. CaoJ. PengH. YangY. WangW. YangZ. ZengG. Biofilm on microplastics in aqueous environment: Physicochemical properties and environmental implications.J. Hazard. Mater.2022424Pt B12728610.1016/j.jhazmat.2021.127286 34879504
    [Google Scholar]
  58. TuC. ChenT. ZhouQ. LiuY. WeiJ. WaniekJ.J. LuoY. Biofilm formation and its influences on the properties of microplastics as affected by exposure time and depth in the seawater.Sci. Total Environ.2020734313923710.1016/j.scitotenv.2020.139237 32450399
    [Google Scholar]
  59. ZhangB. YangX. LiuL. ChenL. TengJ. ZhuX. ZhaoJ. WangQ. Spatial and seasonal variations in biofilm formation on microplastics in coastal waters.Sci. Total Environ.2021770314530310.1016/j.scitotenv.2021.145303 33515883
    [Google Scholar]
  60. FlemmingH.C. Relevance of biofilms for the biodeterioration of surfaces of polymeric materials.Polym. Degrad. Stabil.1998591-330931510.1016/S0141‑3910(97)00189‑4
    [Google Scholar]
  61. WenB. LiuJ.H. ZhangY. ZhangH.R. GaoJ.Z. ChenZ.Z. Community structure and functional diversity of the plastisphere in aquaculture waters: Does plastic color matter?Sci. Total Environ.2020740314008210.1016/j.scitotenv.2020.140082 32927571
    [Google Scholar]
  62. ChenX. LianX. WangY. ChenS. SunY. TaoG. TanQ. FengJ. Impacts of hydraulic conditions on microplastics biofilm development, shear stresses distribution, and microbial community structures in drinking water distribution pipes.J. Environ. Manage.2023325Pt A11651010.1016/j.jenvman.2022.116510 36265230
    [Google Scholar]
  63. Olicón-HernándezD.R. González-LópezJ. ArandaE. Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds.Front. Microbiol.201783179210.3389/fmicb.2017.01792 28979245
    [Google Scholar]
  64. SoaresM.O. MatosE. LucasC. RizzoL. AllcockL. RossiS. Microplastics in corals: An emergent threat.Mar. Pollut. Bull.2020161Pt A11181010.1016/j.marpolbul.2020.111810 33142139
    [Google Scholar]
  65. KhanS. NadirS. ShahZ.U. ShahA.A. KarunarathnaS.C. XuJ. KhanA. MunirS. HasanF. Biodegradation of polyester polyurethane by Aspergillus tubingensis.Environ. Pollut.2017225446948010.1016/j.envpol.2017.03.012 28318785
    [Google Scholar]
  66. Sangeetha DeviR. Rajesh KannanV. NivasD. KannanK. ChandruS. Robert AntonyA. Biodegradation of HDPE by Aspergillus spp. from marine ecosystem of Gulf of Mannar, India.Mar. Pollut. Bull.2015961-2324010.1016/j.marpolbul.2015.05.050 26006776
    [Google Scholar]
  67. KunlereI.O. FagadeO.E. NwadikeB.I. Biodegradation of low density polyethylene (LDPE) by certain indigenous bacteria and fungi.Int. J. Environ. Stud.201976342844010.1080/00207233.2019.1579586
    [Google Scholar]
  68. SchwartzM. PerrotT. AubertE. DumarçayS. FavierF. GérardinP. Morel-RouhierM. MulliertG. SaiagF. DidierjeanC. GelhayeE. Molecular recognition of wood polyphenols by phase II detoxification enzymes of the white rot Trametes versicolor.Sci. Rep.201881847210.1038/s41598‑018‑26601‑3 29855494
    [Google Scholar]
  69. StraubS. HirschP.E. Burkhardt-HolmP. Biodegradable and petroleum-based microplastics do not differ in their ingestion and excretion but in their biological effects in a freshwater invertebrate Gammarus fossarum.Int. J. Environ. Res. Public Health201714777410.3390/ijerph14070774 28703776
    [Google Scholar]
  70. ChiaR.W. LeeJ.Y. ChaJ. Comment on the paper ‘Soil microplastic pollution under different land uses in tropics, southwestern China.Chemosphere2022298413428910.1016/j.chemosphere.2022.134289 35283144
    [Google Scholar]
  71. MiaoL. HouJ. YouG. LiuZ. LiuS. LiT. MoY. GuoS. QuH. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification.Environ. Pollut.2019255Pt 211330010.1016/j.envpol.2019.113300 31610513
    [Google Scholar]
  72. SeeleyM.E. SongB. PassieR. HaleR.C. Microplastics affect sedimentary microbial communities and nitrogen cycling.Nat. Commun.2020111237210.1038/s41467‑020‑16235‑3 32398678
    [Google Scholar]
  73. LagardeF. OlivierO. ZanellaM. DanielP. HiardS. CarusoA. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type.Environ. Pollut.2016215433133910.1016/j.envpol.2016.05.006 27236494
    [Google Scholar]
  74. XiongX. ZhangK. ChenX. ShiH. LuoZ. WuC. Sources and distribution of microplastics in China’s largest inland lake – Qinghai Lake.Environ. Pollut.2018235589990610.1016/j.envpol.2017.12.081 29353805
    [Google Scholar]
  75. SarmaH. HazarikaR.P. KumarV. RoyA. PanditS. PrasadR. Microplastics in marine and aquatic habitats: sources, impact, and sustainable remediation approaches.Environmen Sustain.202251394910.1007/s42398‑022‑00219‑8 37519772
    [Google Scholar]
  76. KumarM. KumarR. ChaudharyD.R. JhaB. An appraisal of early stage biofilm-forming bacterial community assemblage and diversity in the Arabian Sea, India.Mar. Pollut. Bull.2022180511373210.1016/j.marpolbul.2022.113732 35594757
    [Google Scholar]
  77. HadiyantoH. KhoironiA. DianratriI. SuhermanS. MuhammadF. VaidyanathanS. Interactions between polyethylene and polypropylene microplastics and Spirulina sp. microalgae in aquatic systems.Heliyon2021752545
    [Google Scholar]
  78. KimS.W. AnY.J. Edible size of polyethylene microplastics and their effects on springtail behavior.Environ. Pollut.2020266Pt 111525510.1016/j.envpol.2020.115255 32717557
    [Google Scholar]
  79. CampanaleC. MozzarellaC. SavinoI. LocaputoV. UricchioV.F. A detailed review study on potential effects of microplastics and additives of concern on human health.Int. J. Environ. Res. Public Health2020175122010.3390/ijerph17041212
    [Google Scholar]
  80. SunX. ChenB. XiaB. LiQ. ZhuL. ZhaoX. GaoY. QuK. Impact of mariculture-derived microplastics on bacterial biofilm formation and their potential threat to mariculture: A case in situ study on the Sungo Bay, China.Environ. Pollut.2020262411433610.1016/j.envpol.2020.114336 32443196
    [Google Scholar]
  81. AwasthiA.K. TanQ. LiJ. Biotechnological potential for microplastic waste.Trends Biotechnol.202038111196119910.1016/j.tibtech.2020.03.002 32331801
    [Google Scholar]
  82. SinghG. SinghA.K. BhattK. Biodegradation of polythenes by bacteria isolated from soil.Int J Res Dev Pharm Life Sci.20165520562062
    [Google Scholar]
  83. ParkS.Y. KimC.G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site.Chemosphere2019222452753310.1016/j.chemosphere.2019.01.159 30721811
    [Google Scholar]
  84. SkariyachanS. PatilA.A. ShankarA. ManjunathM. BachappanavarN. KiranS. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants.Polym. Degrad. Stabil.20181495526810.1016/j.polymdegradstab.2018.01.018
    [Google Scholar]
  85. CacciariI. QuatriniP. ZirlettaG. MincioneE. VinciguerraV. LupattelliP. Giovannozzi SermanniG. Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced.Appl. Environ. Microbiol.199359113695370010.1128/aem.59.11.3695‑3700.1993 8285678
    [Google Scholar]
  86. ArkatkarA. ArutchelviJ. BhaduriS. UpparaP.V. DobleM. Degradation of unpretreated and thermally pretreated polypropylene by soil consortia.Int. Biodeterior. Biodegradation200963110611110.1016/j.ibiod.2008.06.005
    [Google Scholar]
  87. YangJ. YangY. WuW.M. ZhaoJ. JiangL. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms.Environ. Sci. Technol.20144823137761378410.1021/es504038a 25384056
    [Google Scholar]
  88. AribaB. Biodegradation of polythene bag using bacteria isolated from soil.Int. J. Curr. Microbiol. Appl. Sci.201544674680
    [Google Scholar]
  89. JumaahO.S. Screening of plastic degrading bacteria from dumped soil area.IOSR J. Environ. Sci. Toxicol. Food Technol.2017115939810.9790/2402‑1105029398
    [Google Scholar]
  90. AravinthanA. ArkatkarA. JuwarkarA.A. DobleM. Synergistic growth of Bacillus Pseudomonas and its degradation potential on pretreated polypropylene.Prep. Biochem. Biotechnol.201646210911510.1080/10826068.2014.985836 25551336
    [Google Scholar]
  91. WilkesR.A. AristildeL. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges.J. Appl. Microbiol.2017123358259310.1111/jam.13472 28419654
    [Google Scholar]
  92. WeiR. ZimmermannW. Microbial enzymes for the recycling of recalcitrant petroleum‐based plastics: how far are we?Microb. Biotechnol.20171061308132210.1111/1751‑7915.12710 28371373
    [Google Scholar]
  93. SivanA. SzantoM. PavlovV. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber.Appl. Microbiol. Biotechnol.200672234635210.1007/s00253‑005‑0259‑4 16534612
    [Google Scholar]
  94. YoshidaS. HiragaK. TakehanaT. TaniguchiI. YamajiH. MaedaY. ToyoharaK. MiyamotoK. KimuraY. OdaK. A bacterium that degrades and assimilates poly(ethylene terephthalate).Science201635162781196119910.1126/science.aad6359 26965627
    [Google Scholar]
  95. DansoD. ChowJ. StreitW.R. Plastics: environmental and biotechnological perspectives on microbial degradation.Appl. Environ. Microbiol.20198519e01095e1910.1128/AEM.01095‑19 31324632
    [Google Scholar]
  96. Sanluis-VerdesA. Colomer-VidalP. Rodriguez-VenturaF. Bello-VillarinoM. Spinola-AmilibiaM. Ruiz-LopezE. Illanes-ViciosoR. CastroviejoP. Wax worm saliva and the enzymes therein are the key to polyethylene degradation by Galleria mellonella.Nat. Commun.2022135111
    [Google Scholar]
  97. Palacios-MateoC. MengK. Legaz-PolL. Steen RedekerE. Huerta-LwangaE. BlankL.M. Enzymes for microplastic-free agricultural soils.Ecotoxicol. Environ. Saf.2023258611498210.1016/j.ecoenv.2023.114982 37156039
    [Google Scholar]
  98. SchwamingerS.P. FehnS. SteegmüllerT. RauwolfS. LöweH. Pflüger-GrauK. BerensmeierS. Immobilization of PETase enzymes on magnetic iron oxide nanoparticles for the decomposition of microplastic PET.Nanoscale Adv.20213154395439910.1039/D1NA00243K 36133462
    [Google Scholar]
  99. KawaiF. FurushimaY. MochizukiN. MurakiN. YamashitaM. IidaA. MamotoR. ToshaT. IizukaR. KitajimaS. Efficient depolymerization of polyethylene terephthalate (PET) and polyethylene furanoate by engineered PET hydrolase Cut190.AMB Express202212113415010.1186/s13568‑022‑01474‑y 36289098
    [Google Scholar]
  100. WeiR. TisoT. BertlingJ. O’ConnorK. BlankL.M. BornscheuerU.T. Possibilities and limitations of biotechnological plastic degradation and recycling.Nat. Catal.202031186787110.1038/s41929‑020‑00521‑w
    [Google Scholar]
  101. TournierV. TophamC.M. GillesA. DavidB. FolgoasC. Moya-LeclairE. KamionkaE. DesrousseauxM.L. TexierH. GavaldaS. CotM. GuémardE. DalibeyM. NommeJ. CiociG. BarbeS. ChateauM. AndréI. DuquesneS. MartyA. An engineered PET depolymerase to break down and recycle plastic bottles.Nature2020580780221621910.1038/s41586‑020‑2149‑4 32269349
    [Google Scholar]
  102. LiuS.Y. LeungM.M.L. FangJ.K.H. Engineering a microbial ‘trap and release’mechanism for microplastics removal.Chem. Eng. J.20214057079
    [Google Scholar]
  103. LamehF. BaseerA.Q. AshiruA.G. Retracted: Comparative molecular docking and molecular‐dynamic simulation of wild‐type‐ and mutant carboxylesterase with BTA‐hydrolase for enhanced binding to plastic.Eng. Life Sci.2022221132910.1002/elsc.202100083 35024024
    [Google Scholar]
  104. MohamedM.S.M. El-ArabiN.I. El-HusseinA. El-MaatyS.A. AbdelhadiA.A. Reduction of chromium-VI by chromium-resistant Escherichia coli FACU: a prospective bacterium for bioremediation.Folia Microbiol.202065468769610.1007/s12223‑020‑00771‑y 31989423
    [Google Scholar]
  105. JiangW. BikardD. CoxD. ZhangF. MarraffiniL.A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems.Nat. Biotechnol.201331323323910.1038/nbt.2508 23360965
    [Google Scholar]
  106. ShaoH. ChenM. FeiX. ZhangR. ZhongY. NiW. TaoX. HeX. ZhangE. YongB. TanX. Complete genome sequence and characterization of a polyethylene biodegradation strain, Streptomyces albogriseolus LBX-2.Microorganisms201971037940310.3390/microorganisms7100379 31546741
    [Google Scholar]
  107. PurohitJ. ChattopadhyayA. TeliB. Metagenomic exploration of plastic degrading microbes for biotechnological application.Curr. Genomics202021425327010.2174/1389202921999200525155711 33071619
    [Google Scholar]
  108. CaspiR. BillingtonR. KeselerI.M. KothariA. KrummenackerM. MidfordP.E. OngW.K. PaleyS. SubhravetiP. KarpP.D. The MetaCyc database of metabolic pathways and enzymes - a 2019 update.Nucleic Acids Res.202048D1D445D45310.1093/nar/gkz862 31586394
    [Google Scholar]
  109. LeeH. ChooK.S. ParkI.H. Physical and biomimetic treatment methods to reduce microplastic waste accumulation.Mol. Cell. Toxicol.202245113 36157379
    [Google Scholar]
  110. DikarevaN. SimonK.S. Microplastic pollution in streams spanning an urbanisation gradient.Environ. Pollut.2019250629229910.1016/j.envpol.2019.03.105 31003141
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X313370240620072831
Loading
/content/journals/rafna/10.2174/012772574X313370240620072831
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test