Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Introduction

The performance of the hydraulic quadruped robots has not yet reached the level of quadrupeds. The whole-body stable motion control method of the hydraulic quadruped robot is the key to determining the motion ability. The paper summarizes the current development status of hydraulic quadruped robots and whole-body control methods, and the advantages of existing and future development trends of the main control methods, with a focus on related research papers.

Methods

The various typical hydraulic quadruped robots and their characteristics that have been published are summarized in this study. Additionally, the whole-body stable control methods of hydraulic quadruped robots are summarized, and the characteristics of various control methods are analyzed, especially the widely used model predictive control method and whole-body control method. Moreover, a few research results on hybrid control methods are introduced.

Results

By summarizing the research results of hydraulic quadruped robots, it is evident that different control methods have different characteristics. The single control method is suitable for simple control tasks of hydraulic quadruped robots on flat road surfaces.

Discussion

Due to the nonlinearity and time-varying parameters of hydraulic drive, hydraulic drive errors are inevitably present. There are still shortcomings in the development of hydraulic quadruped robots, such as energy utilization efficiency, lightweight design of structures, joint servo drive, and intelligent control.

Conclusion

In order to achieve stable control and industrial application of hydraulic quadruped robots, the control methods of whole body are summarized and analyzed. And it is pointed out that the future research work of hydraulic quadruped robots mainly focuses on the lightweight design of the system and the study of intelligent control algorithms with stronger adaptability.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965387219250613053121
2025-07-10
2025-12-09
Loading full text...

Full text loading...

/deliver/fulltext/raeeng/19/1/EENG-19-E23520965387219.html?itemId=/content/journals/raeeng/10.2174/0123520965387219250613053121&mimeType=html&fmt=ahah

References

  1. DeA. KoditschekD.E. Vertical hopper compositions for preflexive and feedback-stabilized quadrupedal bounding, pacing, pronking, and trotting.Int. J. Robot. Res.201837774377810.1177/0278364918779874
    [Google Scholar]
  2. CamurriM. RamezaniM. NobiliS. FallonM. Pronto: a multi sensor state estimator for legged robots in real-world scenarios.Front. Robot. AI202076810.3389/frobt.2020.0006833501235
    [Google Scholar]
  3. HeJ. GaoF. “Mechanism, actuation, perception, and control of highly dynamic multilegged robots: A review”, Chin. J. Mech. Chin. J. Mech. Eng.20203317910.1186/s10033‑020‑00485‑9
    [Google Scholar]
  4. ShiY. YuB. BaK. LiM. A unified trajectory optimization approach for long-term and reactive motion planning of legged locomotion.J. Bionics Eng.20232052108212210.1007/s42235‑023‑00362‑w
    [Google Scholar]
  5. BiswalP. MohantyP.K. Development of quadruped walking robots: A review.Ain Shams Eng. J.20211222017203110.1016/j.asej.2020.11.005
    [Google Scholar]
  6. ChaiH. LiY. SongR. ZhangG. ZhangQ. LiuS. HouJ. XinY. YuanM. ZhangG. YangZ. A survey of the development of quadruped robots: Joint configuration, dynamic locomotion control method and mobile manipulation approach.Biomimetic Intell. Robot.20222110002910.1016/j.birob.2021.100029
    [Google Scholar]
  7. LiJ. CongD. YangY. YangZ.D. A hydraulic actuator for joint robots with higher torque to weight ratio.Robotica202341756774
    [Google Scholar]
  8. OdaK. YasuiY. KuroseY. YasuiY. HyonS.H. Enhancement of a leg-wheel mechanism by hydraulics toward compliantly balancing platforms for heavy duty work.Adv. Robot.20213514501467
    [Google Scholar]
  9. LiJ. QuG. XieS. ChenP. Review of development and application of main micro-hydraulic components and key technologies.Recent Pat. Electr. Electron. Eng.2025195969
    [Google Scholar]
  10. UrbainG. BarasuolV. SeminiC. DambreJ. wyffelsF. Effect of compliance on morphological control of dynamic locomotion with HyQ.Auton. Robots202145342143410.1007/s10514‑021‑09974‑9
    [Google Scholar]
  11. GaoB. GuanH. TangW. HanW. XueS. Research on position recognition and control method of single-leg joint of hydraulic quadruped robot.Recent Pat. Electr. Electron. Eng.20218802811
    [Google Scholar]
  12. ZhangP. WangT. DongR.Q. LiuX. WangP. Research on motion control optimization of quadruped crawling robot for continuous slope.Recent Pat. Eng.202418214022321367910.2174/1872212117666230214112829
    [Google Scholar]
  13. GuptaS.S. Fuzzy PID sliding mode control for robotics: an application to surgical robot.Recent Pat. Electr. Electron. Eng.201912118129
    [Google Scholar]
  14. HoseinifardS.M. SadedelM. Standing balance of single-legged hopping robot model using reinforcement learning approach in the presence of external disturbances.Sci. Rep.20241413203610.1038/s41598‑024‑83749‑x39738451
    [Google Scholar]
  15. LiuX. WangP. DongR. Research on foothold optimization of the quadruped crawling robot based on reinforcement learning.Recent Pat. Mech. Eng.2024171112210.2174/0122127976252847230925104722
    [Google Scholar]
  16. RaibertM. BlankespoorK. NelsonG. PlayterR. BigDog, the rough-terrain quadruped robot.World Congress International Federation of Automatic Control2008, pp. 10822-10825.
    [Google Scholar]
  17. RaibertM. Alphadog, the rough-terrain robot.International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines2012.
    [Google Scholar]
  18. MichaelK. Meet Boston dynamics’ LS3 - the latest robotic war machine.Vancouver, CanadaTedxuwollongong Talk2012110
    [Google Scholar]
  19. LS3 -legged squad support systems”.2021Available from: http:// www. bostondynamics. com/robot_ls3.html
  20. SimonP. Military robotics:Latest trends and spatial grasp solutions.Inter. J. Adva. Res. Artif. Intellig.20154491810.14569/IJARAI.2015.040402
    [Google Scholar]
  21. SeminiC. TsagarakisN.G. GuglielminoE. FocchiM. CannellaF. CaldwellD.G. Design of HyQ-A hydraulically and electrically actuated quadruped robot.P. I. Mech. Eng. I-J Sys.2011225831849
    [Google Scholar]
  22. SeminiC. HyQ-design and development of a hydraulically actuated quadruped robot.Thesis, University of Genoa, Italy and Italian Institute of Technology (IIT)2010
    [Google Scholar]
  23. NeunertM. StäubleM. GiftthalerM. BellicosoC.D. CariusJ. GehringC. HutterM. BuchliJ. Whole-body nonlinear model predictive control through contacts for quadrupeds.IEEE Robot. Autom. Lett.2018331458146510.1109/LRA.2018.2800124
    [Google Scholar]
  24. KhanH. Development of the lightweight hydraulic quadruped robot -MiniHyQ.IEEE International Conference on Technologies for Practical Robot Applications2015, pp. 1-6.10.1109/TePRA.2015.7219671
    [Google Scholar]
  25. SeminiC. BarasuolV. GoldsmithJ. FocchiM. CannellaF. CaldwellD.G. “Design of the hydraulically-actuated, torque-controlled quadruped robot HyQ2Max”.Mech.201622635646
    [Google Scholar]
  26. RadulescuA. Optimization for non-periodic dynamic motions of legged systems.International Workshop on Human Friendly Robotics2016.
    [Google Scholar]
  27. VillarrealO. BarasuolV. WensingP.M. CaldwellD.G. SeminiC. MPC based controller with terrain insight for dynamic legged locomotion.IEEE International Conference on Robotics and Automation2020, pp. 2436-2442.10.1109/ICRA40945.2020.9197312
    [Google Scholar]
  28. KimT.J. The energy minimization algorithm using foot rotation for hydraulic actuated quadruped walking robot with redundancy.International Symposium on Robotics and the 6th German Conference on Robotics2010, pp. 1-6.
    [Google Scholar]
  29. KimH.K. WonD. KwonO. KimT.J. ParkS. Foot trajectory generation of hydraulic quadruped robots on uneven terrain.IFAC World CongressSeoul, Korea, 2008, pp. 3021-3026. 10.3182/20080706‑5‑KR‑1001.00511
    [Google Scholar]
  30. ChoJ. KimJ.T. KimJ. ParkS. KimK.I. Simple walking strategies for hydraulically driven quadruped robot over uneven terrain.J. Electr. Eng. Technol.20161151433144010.5370/JEET.2016.11.5.1433
    [Google Scholar]
  31. JiangY. XuW. YaoQ. Design of vehicle-mounted hydraulic power system of bionic quadruped mobile platform.Acta Armament.2014358085
    [Google Scholar]
  32. HuangH. ZhangJ. XuB. LiuG. LuoQ. WangX. Topology optimization design of a lightweight integrated manifold with low pressure loss in a hydraulic quadruped robot actuator.Mechanical Sciences202112124925710.5194/ms‑12‑249‑2021
    [Google Scholar]
  33. ZhuQ. Research on lightweight parameter matching method of quadruped robot hydraulic drive system.Thesis, Yanshan University, China2022
    [Google Scholar]
  34. BaK. YuB. GaoZ. LiW. MaG. KongX. Parameters sensitivity analysis of position-based impedance control for bionic legged robots’ HDU.Appl. Sci.2017710103510.3390/app7101035
    [Google Scholar]
  35. WanZ. Servo control and compliance control of hydraulic quadruped robot.Thesis, Huazhong University of Science and Technology, Wuhan, HuBei2016
    [Google Scholar]
  36. ZhongJ. Design and control of hydraulical actuators for quadruped legged robot.Thesis, Huazhong University of Science and Technology, Wuhan, HuBei2014
    [Google Scholar]
  37. ZhaoJ. GongS. WangJ. Gait parameters optimization and exploratory walking strategy for quadruped robots.Trans. Beijing Inst. Technol.202242407414
    [Google Scholar]
  38. LiY. LiB. RongX. MengJ. Mechanical design and gait planning of a hydraulically actuated quadruped bionic robot.J. Shand. Univer.2011413237
    [Google Scholar]
  39. RongX. LiY. RuanJ. LiB. Design and simulation for a hydraulic actuated quadruped robot.J. Mech. Sci. Technol.20122641171117710.1007/s12206‑012‑0219‑8
    [Google Scholar]
  40. ChaiH. MengJ. RongX. LiY. Design and Implementation of SCalf, an Advanced Hydraulic Quadruped Robot.Robot201436385391
    [Google Scholar]
  41. RongX. Mechanism design and Kinematics analysis of a hydraulically actuated quadruped robot SCalf.Thesis, Shandong University, Jinan, ON, China2013
    [Google Scholar]
  42. ChaiH. Research and implementation on compliance and force control of hydraulically actuated quadruped robot.Thesis, Shandong University, Jinan, ON, China2016
    [Google Scholar]
  43. YangK. ZhouL. RongX. LiY. Onboard hydraulic system controller design for quadruped robot driven by gasoline engine.Mechatronics201852364810.1016/j.mechatronics.2018.03.010
    [Google Scholar]
  44. ZhangS. Research on walking method of quadruped robot on complex terrain and environment.Thesis, Shandong University, Jinan, ON, China2016
    [Google Scholar]
  45. HuaZ. RongX. LiY. ChaiH. LiB. ZhangS. Analysis and verification on energy consumption of the quadruped robot with passive compliant hydraulic servo actuator.Appl. Sci.202010134010.3390/app10010340
    [Google Scholar]
  46. LiM. JiangZ. WangP. SunL. GeS.S. Control of a quadruped robot with bionic springy legs in trotting gait.J. Bionics Eng.201411218819810.1016/S1672‑6529(14)60043‑3
    [Google Scholar]
  47. ShiY. WangP. WangX. ZhaF. JiangZ. GuoW. LiM. Bio-inspired equilibrium point control scheme for quadrupedal locomotion.IEEE Trans. Cogn. Dev. Syst.201911220020910.1109/TCDS.2018.2853597
    [Google Scholar]
  48. ZongH. AiJ. ZhangK. FangL. JiangL. ZhangJ. XuB. “Lightweight and modular design of a hydraulically actuated quadruped robot with high payload-to-mass ratio”, Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. Article202509544062241308412114
    [Google Scholar]
  49. YangQ. ZhangZ. ZhuR. WangD. “Optimal energy efficiency based high-speed flying control method for hydraulic quadruped robot”.ENG20242111561173
    [Google Scholar]
  50. ZhangZ. Research on design and motion control of energy-efficient hydraulic servo system for quadruped robot.Thesis, Anhui University of Science and Technology, Huainan, Anhui2024
    [Google Scholar]
  51. FangL. ZhangJ. ZongH. WangX. ZhangK. ShenJ. LuZ. Open-source lower controller for twelve degrees of freedom hydraulic quadruped robot with distributed control scheme.HardwareX2023130039310.1016/j.ohx.2022.e0039336683606
    [Google Scholar]
  52. BakırcıoğluV. ÇabukN. JondH.B. KalyoncuM. Optimization-driven design and experimental validation of a hydraulic robot leg mechanism.Measurement202525011709610.1016/j.measurement.2025.117096
    [Google Scholar]
  53. ShaoX. FanY. ShaoJ. SunG. “Improved active disturbance rejection control with the optimization algorithm for the leg joint control of a hydraulic quadruped robot”.Measur. Cont.2023567-800202940221100210.1177/00202940221100298
    [Google Scholar]
  54. GaoB. ZhaoH. HanW. XueS. Research on decoupling control of single leg joints of hydraulic quadruped robot.Robotic Intellig. Automat.202444220121410.1108/RIA‑06‑2023‑0080
    [Google Scholar]
  55. ZhangK. ZhangJ. ZongH. FangL. ShenJ. ChengM. XuB. “High dynamic position control for a typical hydraulic quadruped robot leg based on virtual decomposition control”.IEEE/ASME Transact. Mechat.202599112
    [Google Scholar]
  56. YangQ. LiC. ZhuR. LiY. WangD. WangX. Push recovery control based on model predictive control of hydraulic quadruped robots.J. Intell. Robot. Syst.202310924110.1007/s10846‑023‑01972‑6
    [Google Scholar]
  57. RaibertM.H. TelloE.R. Legged robots that balance.IEEE Expert1986148910.1109/MEX.1986.4307016
    [Google Scholar]
  58. SuiZ. YuW. TianY. XunM. Gait planning of biped robot based on reference trajectory and COM balance.J. Jilin Univer.201735175182
    [Google Scholar]
  59. HanB. YiH. XuZ. YangX. LuoX. 3D-SLIP model based dynamic stability strategy for legged robots with impact disturbance rejection.Sci. Rep.2022121589210.1038/s41598‑022‑09937‑935393501
    [Google Scholar]
  60. GongD. WangP. ZhaoS. DuL. DuanY. Bionic quadruped robot dynamic gait control strategy based on twenty degrees of freedom.IEEE/CAA J. Automat. Sinica20185138238810.1109/JAS.2017.7510790
    [Google Scholar]
  61. de ViraghY. BjelonicM. BellicosoC.D. JeneltenF. HutterM. Trajectory optimization for wheeled-legged quadrupedal robots using linearized ZMP constraints.IEEE Robot. Autom. Lett.2019421633164010.1109/LRA.2019.2896721
    [Google Scholar]
  62. YanH. XuW. SuB. Research on reactive behavior control strategy of quadruped bionic robot based on ZMP.Veh. Power Technol.2021117
    [Google Scholar]
  63. KalakrishnanM. BuchliJ. PastorP. MistryM. SchaalS. Fast, robust quadruped locomotion over challenging terrain.IEEE International Conference on Robotics & Automation2010, pp. 2665-2670.10.1109/ROBOT.2010.5509805
    [Google Scholar]
  64. ErbaturK. KurtO. Natural ZMP trajectories for biped robot reference generation.IEEE Trans. Ind. Electron.200956383584510.1109/TIE.2008.2005150
    [Google Scholar]
  65. WinklerA.W. FarshidianF. PardoD. NeunertM. BuchliJ. Fast trajectory optimization for legged robots using vertex-based ZMP constraints.IEEE Robot. Autom. Lett.2017242201220810.1109/LRA.2017.2723931
    [Google Scholar]
  66. PlayterR. BuehlerM. RaibertM. BigDog.Proceedings200662301710.1117/12.684087
    [Google Scholar]
  67. HavoutisJ. OrtizJ. BazeilleS. BarasuolV. Onboard perception-based trotting and crawling with the hydraulic quadruped robot (HyQ.IEEE/RSJ International Conference on Intelligent Robots and Systems2013, pp. 6052-6057.10.1109/IROS.2013.6697235
    [Google Scholar]
  68. KimuraH. FukuokaY. KonagaK. Adaptive dynamic walking of a quadruped robot using a neural system model.Adv. Robot.200115885987810.1163/156855301317198179
    [Google Scholar]
  69. WeiY. ZhouC. GuoJ. XuP. CPG-based stable walking control of the quadruped robot on the slope.Kongzhi Gongcheng20212810551060
    [Google Scholar]
  70. ZhangX. WangQ. HuangS. JiangL. A multi-model fusion based complex motion control approach for a cheetah-mimicking quadruped robot.Robot202244682707
    [Google Scholar]
  71. ZhangF. CaoL. XuH. ZhangH. Robot foot trajectory planning based on central pattern generator.Chinese J. Med. Phy.20244117280
    [Google Scholar]
  72. LiS. WangH. ChenJ. ZhangX. TianJ. NiuJ. Gait control algorithm and simulation of new parallel quadruped military robot.Acta Armamentarii202344895909
    [Google Scholar]
  73. WangL. MengL. KangR. LiuB. GuS. ZhangZ. MengF. MingA. Design and dynamic locomotion control of quadruped robot with perception-less terrain adaptation.Cyborg Bionic Syst.202220222022/981649510.34133/2022/981649536285308
    [Google Scholar]
  74. CuiJ. LiZ. KuangY. ChengH. Standing balance maintenance by virtual suspension model control for legged robot.Adva. Mech. Eng.20201291810.1177/1687814020954975
    [Google Scholar]
  75. ChenG. GuoS. HouB. WangJ. Virtual model control for quadruped robots.IEEE Access2020814073614075110.1109/ACCESS.2020.3013434
    [Google Scholar]
  76. TanY. ChaoZ. LiH. HanS. JinY. Control of trotting gait for load-carrying quadruped walking vehicle with eccentric torso.Int. J. Adv. Robot. Syst.2020174172988142093167610.1177/1729881420931676
    [Google Scholar]
  77. ZhangY. GuoZ. ChenD. WangB. Gait control of quadruped robot driven by pneumatic muscle based on kimura oscillator and virtual model.Acta Armamentarii20183914111418
    [Google Scholar]
  78. BjelonicM. GrandiaR. HarleyO. GalliardC. ZimmermannS. HutterM. Whole-body mpc and online gait sequence generation for wheeled-legged robots.IEEE/RSJ International Conference on Intelligent Robots and Systems2021, pp. 8388-8395.10.1109/IROS51168.2021.9636371
    [Google Scholar]
  79. LiangQ. LiB. LiZ. ZhangH. RongX. FanY. Algorithm of adaptive slope adjustment of quadruped robot based on model predictive control and its application.J. Shandong Univ.2021513744
    [Google Scholar]
  80. LuG. ChenT. RongX. ZhangG. BiJ. CaoJ. Whole-body motion planning and control of a quadruped robot for challenging terrain".J. Field Robot20234016571677
    [Google Scholar]
  81. CuiJ. LiZ. QiuJ. LiT. Fault-tolerant motion planning and generation of quadruped robots synthesised by posture optimization and whole body control.Complex Intell. Syst.2022842991300310.1007/s40747‑022‑00652‑6
    [Google Scholar]
  82. DingY. PandalaA. ParkH.W. Real-time model predictive control for versatile dynamic motions in quadrupedal robots.International Conference on Robotics and Automation (ICRA)2019, pp. 8484-8490.10.1109/ICRA.2019.8793669
    [Google Scholar]
  83. GrandiaR. FarshidianF. DosovitskiyA. RanftlR. HutterM. Frequency-aware model predictive control.IEEE Robot. Autom. Lett.2019421517152410.1109/LRA.2019.2895882
    [Google Scholar]
  84. ArenaP. PietroF.D. NoceA.L. PatanèL. Attitude control in the Mini Cheetah robot via MPC and reward-based feed-forward controller.IFAC-PapersOnLine20225538414810.1016/j.ifacol.2023.01.131
    [Google Scholar]
  85. XingB. XuW. LiY. ZhaoH. WangK. YanH. Model predictive control for four-wheeled legged robots based on hierarchical decoupling.Acta Armamentarii20244542724282
    [Google Scholar]
  86. ChoB. KimS.W. ShinS. “Energy-efficient hydraulic pump control for legged robots using model predictive control”, IEEE-ASME T. Mech.202228314
    [Google Scholar]
  87. HeJ. SunY. YangL. GaoF. Model predictive control of a novel wheeled–legged planetary rover for trajectory tracking.Sensors20222211416410.3390/s2211416435684785
    [Google Scholar]
  88. DingJ. HeJ. LiL. XiaoX. Real-time walking pattern optimization for humanoid robot based on model predictive control.J. Zhejiang Univ. Eng. Sci.20195318431851
    [Google Scholar]
  89. NeunertM. FarshidianF. WinklerA.W. BuchliJ. Trajectory optimization through contacts and automatic gait discovery for quadrupeds.IEEE Robot. Autom. Lett.2017231502150910.1109/LRA.2017.2665685
    [Google Scholar]
  90. CarloJ.D. WensingP.M. KatzB. BledtG. KimS. Dynamic locomotion in the MIT cheetah 3 through convex model-predictive control.International Conference on Intelligent Robots and Systems (IROS)2018, pp. 1-9.10.1109/IROS.2018.8594448
    [Google Scholar]
  91. DingY. PandalaA. LiC. ShinY.H. ParkH.W. Representation-free model predictive control for dynamic motions in quadrupeds.IEEE Trans. Robot.20213741154117110.1109/TRO.2020.3046415
    [Google Scholar]
  92. KuindersmaS. PermenterF.N. TedrakeR. An efficiently solvable quadratic program for stabilizing dynamic locomotion.IEEE International Conference on Robotics and Automation (ICRA)2014, pp. 2589-2594.10.1109/ICRA.2014.6907230
    [Google Scholar]
  93. LeeY. HwangS. ParkJ. Balancing of humanoid robot using contact force/moment control by task-oriented whole body control framework.Auton. Robots201640345747210.1007/s10514‑015‑9509‑1
    [Google Scholar]
  94. EscandeA. MansardN. WieberP.B. Hierarchical quadratic programming: Fast online humanoid-robot motion generation.Int. J. Robot. Res.20143371006102810.1177/0278364914521306
    [Google Scholar]
  95. KimD. LeeJ. CampbellO. HwangH. SentisL. Computationally-robust and efficient prioritized whole-body controller with contact constraints.IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)2018, pp. 1-8.10.1109/IROS.2018.8593767
    [Google Scholar]
  96. BellicosoC.D. GehringC. HwangboJ. FankhauserP. HutterM. Perception-less terrain adaptation through whole body control and hierarchical optimization.International Conference on Humanoid Robots (Humanoids)2016, pp. 558-564.10.1109/HUMANOIDS.2016.7803330
    [Google Scholar]
  97. AceitunoC.B. MastalliC. DaiH. FocchiM. RadulescuA. CaldwellD.G. CappellettoJ. GriecoJ.C. Fernandez-LopezG. SeminiC. Simultaneous contact, gait and motion planning for robust multi-legged locomotion via mixed-integer convex optimization.IEEE Robot. Autom. Lett.2018325312538
    [Google Scholar]
  98. FahmiS. MastalliC. FocchiM. SeminiC. Passive whole-body control for quadruped robots: experimental validation over challenging terrain.IEEE Robot. Autom. Lett.2019432553256010.1109/LRA.2019.2908502
    [Google Scholar]
  99. MastalliC. HavoutisI. FocchiM. CaldwellD.G. SeminiC. Motion planning for quadrupedal locomotion: coupled planning, terrain mapping and whole-body control.IEEE Trans. Robot.20203661635164810.1109/TRO.2020.3003464
    [Google Scholar]
  100. RaiolaG. Mingo HoffmanE. FocchiM. TsagarakisN. SeminiC. A simple yet effective whole-body locomotion framework for quadruped robots.Front. Robot. AI2020752847310.3389/frobt.2020.52847333501304
    [Google Scholar]
  101. ClementeL. VillarrealO. BrattaA. FocchiM. BarasuolV. MuscoloG.G. SeminiC. Foothold evaluation criterion for dynamic transition feasibility for quadruped robots.International Conference on Robotics and Automation2022, pp. 4679-4685.10.1109/ICRA46639.2022.9812434
    [Google Scholar]
  102. KimD. DiC.J. KatzB. BledtG. KimS. Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control.arXiv:1909.0658620191510.48550/arXiv.1909.06586
    [Google Scholar]
  103. RathodN. BrattaA. FocchiM. ZanonM. VillarrealO. SeminiC. BemporadA. Model predictive control with environment adaptation for legged locomotion.IEEE Access2021914571014572710.1109/ACCESS.2021.3118957
    [Google Scholar]
  104. HamedK.A. KimJ. PandalaA. Quadrupedal Locomotion via Event-Based Predictive Control and QP-Based Virtual Constraints.IEEE Robot. Autom. Lett.2020534463447010.1109/LRA.2020.3001471
    [Google Scholar]
  105. DingC. ZhouL. LiY. RongX. A novel dynamic locomotion control method for quadruped robots running on rough terrains.IEEE Access2020815043515044610.1109/ACCESS.2020.3016312
    [Google Scholar]
  106. JiP. ZongH. AiJ. ZhangJ. XuB. Optimization control of hydraulic quadruped robot single leg jumping based on deep reinforcement learning.Chin. Hydraul. Pneumat.2025496875
    [Google Scholar]
  107. HutterM. SommerH. GehringC. HoepflingerM. BloeschM. SiegwartR. Quadrupedal locomotion using hierarchical operational space control.Int. J. Robot. Res.20143381047106210.1177/0278364913519834
    [Google Scholar]
  108. YanZ. YangH. ZhangW. GongQ. LinF. ZhangY. Trajectory tracking control of hexapod robot based on model prediction and central pattern generator.Robot2023455869
    [Google Scholar]
  109. QinH. QinR. ShiX. ZhuX. Motion control of quadruped robot based on model prediction.J. Zhejiang Univer.20245815651576
    [Google Scholar]
  110. ChenH. HongZ. YangS. WensingP.M. ZhangW. Quadruped capturability and push recovery via a switched-systems characterization of dynamic balance.IEEE Trans. Robot.20233932111213010.1109/TRO.2023.3240622
    [Google Scholar]
  111. FawcettR.T. PandalaA. KimJ. Akbari HamedK. Real-time planning and nonlinear control for quadrupedal locomotion with articulated tails.J. Dyn. Syst. Meas. Control2021143707100410.1115/1.4049555
    [Google Scholar]
  112. LiuM. QuD. XuF. ZouF. JiaK. SongJ. Gait planning of quadruped robot based on divergence component of motion.J. Zhejiang Univer.202155244250
    [Google Scholar]
  113. YeL. YangZ. ZhuoH. XuN. SuiY. HeN. Motion control method of wheeled-legged self-balancing robots based on model predictive control.Appl. Sci. Tech.20245115
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965387219250613053121
Loading
/content/journals/raeeng/10.2174/0123520965387219250613053121
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test