Skip to content
2000
Volume 18, Issue 9
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

In USA, out of all the carcinomas, one of the most rampant variety of carcinomas is skin cancer, with an estimated one in five Americans developing it by the age of 70. As per the Skin Cancer Foundation, in the USA alone, every hour more than 2 people succumb to skin cancer. For melanoma skin cancer, the survival rate could be 99% considering a 5-year time frame if it is detected early. Deep learning, a subdomain of AI, empowers computers to learn complex patterns from massive amounts of data. Convolutional neural networks (CNNs), an eminent deep learning architecture, along with its variations like VGG19, MobileNet, ResNet, ResNext, and the latest Vision transformers excel at image recognition tasks, making them ideally suited for analyzing medical images like skin lesions. This review explores the burgeoning utilization of deep learning in skin cancer detection. The analysis of the constraints of conventional methods and highlights of the potential of deep learning in achieving superior accuracy and objectivity have been discussed in this study. The review methodology involves a comprehensive search of relevant research papers and publications from Google Scholar. The review focuses on the studies involving deep learning for classification or segmentation of skin cancer, enabling more efficient and trustworthy AI systems. The findings reveal CNNs as the mainstay, with both traditional training and transfer learning approaches proving effective. However, recent advancements showcase the promise of vision transformers, ensemble methods, and hybrid models, alongside innovative augmentation and optimization techniques, combining attention layers with state-of-the-art architectures, making clinically trustworthy systems using XAI techniques like GRAD-CAM, leading to significantly improved efficiency. In conclusion, this review emphasizes the transformative power of deep learning algorithms for the diagnosis of skin cancer, paving the way for highly accurate, trustworthy, and accessible diagnostic tools and presents an analysis of the latest developments related to AI and deep learning architectures and frameworks being applied for diagnosis of skin cancer.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965335638241213141707
2025-01-06
2026-01-08
Loading full text...

Full text loading...

References

  1. JerantA.F. JohnsonJ.T. SheridanC.D. CaffreyT.J. Early detection and treatment of skin cancer.Am. Fam. Physician2000622357368, 375-376, 381-38210929700
    [Google Scholar]
  2. ThanhD.N.H. PrasathV.B.S. HieuL.M. HienN.N. Melanoma skin cancer detection method based on adaptive principal curvature, colour normalisation and feature extraction with the abcd rule.J. Digit. Imaging202033357458510.1007/s10278‑019‑00316‑x31848895
    [Google Scholar]
  3. OliveriaS.A. HeneghanM.K. CushmanL.F. UghettaE.A. HalpernA.C. Skin cancer screening by dermatologists, family practitioners, and internists: Barriers and facilitating factors.Arch. Dermatol.20111471394410.1001/archdermatol.2010.41421242390
    [Google Scholar]
  4. KittlerH. PehambergerH. WolffK. BinderM. Diagnostic accuracy of dermoscopy.Lancet Oncol.20023315916510.1016/S1470‑2045(02)00679‑411902502
    [Google Scholar]
  5. AliM.M. AgarwalV. GargI. BabbarP. YadavA. ShahidS.M. An automated rice leaf disease identification using deep learning.2023 International Conference on Emerging Research in Computational Science (ICERCS) 2023, pp. 1-810.1109/ICERCS57948.2023.10434185
    [Google Scholar]
  6. AliM.M. AgrawalJ. MishraT. RajM. An automated deep learning approach for kidney disease detection.2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS) 2023, pp.1-610.1109/ICIICS59993.2023.10421534
    [Google Scholar]
  7. LitjensG. KooiT. BejnordiB.E. SetioA.A.A. CiompiF. GhafoorianM. van der LaakJ.A.W.M. van GinnekenB. SánchezC.I. A survey on deep learning in medical image analysis.Med. Image Anal.201742608810.1016/j.media.2017.07.00528778026
    [Google Scholar]
  8. XuF. UszkoreitH. DuY. FanW. ZhaoD. ZhuJ. Explainable ai: A brief survey on history, research areas, approaches and challenges. 2019, .Natural Language Processing and Chinese Computing: 8th CCF International Conference, NLPCC.Dunhuang, China, October 9–14, 2019, pp. 563-574
    [Google Scholar]
  9. SelvarajuR.R. CogswellM. DasA. VedantamR. ParikhD. BatraD. Grad-cam: Visual explanations from deep networks via gradient-based localization.Proceedings of the IEEE international conference on computer vision2017 (pp. 618-626)
    [Google Scholar]
  10. DwivediR. DaveD. NaikH. SinghalS. OmerR. PatelP. QianB. WenZ. ShahT. MorganG. RanjanR. ExplainableA.I. XAI): Core ideas, techniques, and solutions.ACM Comput. Surv.202355913310.1145/3561048
    [Google Scholar]
  11. ErrichettiE. StincoG. Dermoscopy in general dermatology: A practical overview.Dermatol. Ther.20166447150710.1007/s13555‑016‑0141‑627613297
    [Google Scholar]
  12. DhawanA.P. GordonR. RangayyanR.M. Nevoscopy: Three-dimensional computed tomography of nevi and melanomas in situ by transillumination.IEEE Trans. Med. Imaging198432546110.1109/TMI.1984.430765718234612
    [Google Scholar]
  13. TschandlP. RosendahlC. KittlerH. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions.Sci. Data20185118016110.1038/sdata.2018.16130106392
    [Google Scholar]
  14. RaiD. TyagiK. Bio-inspired optimization techniques.Softw. Eng. Notes20133841710.1145/2492248.2492271
    [Google Scholar]
  15. HincheyM.G. SterrittR. RouffC. Swarms and swarm intelligence.Computer200740411111310.1109/MC.2007.144
    [Google Scholar]
  16. Bartz-BeielsteinT. BrankeJ. MehnenJ. MersmannO. Evolutionary algorithms.Wiley Interdiscip. Rev. Data Min. Knowl. Discov.20144317819510.1002/widm.1124
    [Google Scholar]
  17. GuoC. TangH. NiuB. Boon Patrick LeeC. A survey of bacterial foraging optimization.Neurocomputing202145272874610.1016/j.neucom.2020.06.142
    [Google Scholar]
  18. KennedyJ. EberhartR. Particle swarm optimization.Proceedings of the IEEE International Conference on Neural Networks.1995, 1942-1948.10.1109/ICNN.1995.488968
    [Google Scholar]
  19. DorigoM. BirattariM. StutzleT. Ant colony optimization.IEEE Comput. Intell. Mag.200614283910.1109/MCI.2006.329691
    [Google Scholar]
  20. YangX.S. Hossein GandomiA. Bat algorithm: A novel approach for global engineering optimization.Eng. Comput.201229546448310.1108/02644401211235834
    [Google Scholar]
  21. PanW.T. A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example.Knowl. Base. Syst.201226697410.1016/j.knosys.2011.07.001
    [Google Scholar]
  22. SeyyedabbasiA. KianiF. Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems.Eng. Comput.20233942627265110.1007/s00366‑022‑01604‑x
    [Google Scholar]
  23. LiX.-l. An optimizing method based on autonomous animats: Fish-swarm algorithm.Syst. Eng. Theory Pract.200222113238
    [Google Scholar]
  24. DubeyV.K. KaushikV.D. Epidermis lesion detection via optimized distributed capsule neural network.Comput. Biol. Med.202416810783310.1016/j.compbiomed.2023.10783338071840
    [Google Scholar]
  25. AkilandasowmyaG. NirmaladeviG. SuganthiS.U. AishwariyaA. Skin cancer diagnosis: Leveraging deep hidden features and ensemble classifiers for early detection and classification.Biomed. Signal Process. Control20248810530610.1016/j.bspc.2023.105306
    [Google Scholar]
  26. SuganthiN. KumarK.S. MaramB. SV. Fractional WSD: Fractional war strategy dingo optimization with unified segmentation for detection of skin cancer.Biomed. Signal Process. Control20248710534610.1016/j.bspc.2023.105346
    [Google Scholar]
  27. KumarD.V. Vandana DixitK. Gannet devil optimization-based deep learning for skin lesion segmentation and identification.Biomed. Signal Process. Control20248810561810.1016/j.bspc.2023.105618
    [Google Scholar]
  28. Vishnu PriyanS. RajalakshmiK. Parivendhan InbakumarJ. SwaminathanA. Enhanced melanoma detection using a fuzzy ensemble approach integrating hybrid optimization algorithm.Biomed. Signal Process. Control20248910592410.1016/j.bspc.2023.105924
    [Google Scholar]
  29. ZhangL. ZhangJ. GaoW. BaiF. LiN. GhadimiN. A deep learning outline aimed at prompt skin cancer detection utilizing gated recurrent unit networks and improved orca predation algorithm.Biomed. Signal Process. Control20249010585810.1016/j.bspc.2023.105858
    [Google Scholar]
  30. DingH. HuangQ. AlkhayyatA. A computer aided system for skin cancer detection based on Developed version of the Archimedes Optimization algorithm.Biomed. Signal Process. Control20249010587010.1016/j.bspc.2023.105870
    [Google Scholar]
  31. BhuvaneshwariK.S. Rama ParvathyL. ChatrapathyK. Krishna ReddyC.V. An internet of health things-driven skin cancer classification using progressive cyclical convolutional neural network with ResNexT50 optimized by exponential particle swarm optimization.Biomed. Signal Process. Control20249110587810.1016/j.bspc.2023.105878
    [Google Scholar]
  32. NathaP. RajeswariP.R. Skin cancer detection using machine learning classification models.Int. J. Intell. Syst. Appl. Eng.2024126s139145
    [Google Scholar]
  33. RajeswariR. KalaiselviK. JayashriN. LakshmiP. MuthusamyA. Meta- heuristic based melanoma skin disease detection and classification using wolf antlion neural network (walnn) model.Int. J. Intell. Syst. Appl. Eng.2024129s8795
    [Google Scholar]
  34. BeharaK. BheroE. AgeeJ.T. Grid-based structural and dimensional skin cancer classification with self-featured optimized explainable deep convolutional neural networks.Int. J. Mol. Sci.2024253154610.3390/ijms2503154638338828
    [Google Scholar]
  35. WiesC. SchneiderL. HaggenmüllerS. BucherT.C. HobelsbergerS. HepptM.V. FerraraG. Krieghoff-HenningE.I. BrinkerT.J. Evaluating deep learning-based melanoma classification using immunohistochemistry and routine histology: A three center study.PLoS One2024191e029714610.1371/journal.pone.029714638241314
    [Google Scholar]
  36. SoniaR. JosephJ. KalaiyarasiD. KalyaniN. Gopala GuptaA.S.A.L.G. RamkumarG. AlmoallimH.S. AlharbiS.A. RaghavanS.S. Segmenting and classifying skin lesions using a fruit fly optimization algorithm with a machine learning framework.Automatika202465121723110.1080/00051144.2023.2293515
    [Google Scholar]
  37. VaswaniA. ShazeerN. ParmarN. UszkoreitJ. JonesL. GomezA.N. KaiserL. Attention is all you need.arXiv:1706.03762.2017
    [Google Scholar]
  38. BahdanauD. ChoK. BengioY. Neural machine translation by jointly learning to align and translate.arXiv:1409.04732014
    [Google Scholar]
  39. LuongM-T. PhamH. ManningC.D. Effective approaches to attention-based neural machine translation.arXiv:1508.04025201510.18653/v1/D15‑1166
    [Google Scholar]
  40. GravesA. WayneG. DanihelkaI. Neural turing machines.arXiv:1410.54012014
    [Google Scholar]
  41. NaveedA. NaqviS.S. KhanT.M. RazzakI. PCA: Progressive class-wise attention for skin lesions diagnosis.Eng. Appl. Artif. Intell.202412710741710.1016/j.engappai.2023.107417
    [Google Scholar]
  42. GeijsD.J. DooperS. AswolinskiyW. HillenL.M. AmirA.L. LitjensG. Detection and subtyping of basal cell carcinoma in whole-slide histopathology using weakly-supervised learning.Med. Image Anal.20249310306310.1016/j.media.2023.10306338194735
    [Google Scholar]
  43. ChangM. HeC. DuY. QiuY. WangL. ChenH. RaT: Raman Transformer for highly accurate melanoma detection with critical features visualization.Spectrochim. Acta A Mol. Biomol. Spectrosc.202430512347510.1016/j.saa.2023.12347537806238
    [Google Scholar]
  44. RahmanM.A. PaulB. MahmudT. FattahS.A. CIFF-Net: Contextual image feature fusion for Melanoma diagnosis.Biomed. Signal Process. Control20248810567310.1016/j.bspc.2023.105673
    [Google Scholar]
  45. WeiY. JiL. Multi-modal bilinear fusion with hybrid attention mechanism for multi-label skin lesion classification.Multimedia Tools Appl.20248324652216524710.1007/s11042‑023‑18027‑5
    [Google Scholar]
  46. RezaeeK. ZadehH.G. Self-attention transformer unit-based deep learning framework for skin lesions classification in smart healthcare.Discover Applied Sciences202461310.1007/s42452‑024‑05655‑1
    [Google Scholar]
  47. LanX. GuoG. WangX. YanQ. XueR. LiY. ZhuJ. DongZ. WangF. LiG. WangX. XuJ. JiangY. Differentiation and risk stratification of basal cell carcinoma with deep learning on histopathologic images and measuring nuclei and tumor microenvironment features.Skin Res. Technol.2024301e1357110.1111/srt.1357138196164
    [Google Scholar]
  48. SulthanaA.R. ChamolaV. HussainZ. AlbalwyF. HussainA. A novel end-to-end deep convolutional neural network based skin lesion classification framework.Expert Syst. Appl.202424612305610.1016/j.eswa.2023.123056
    [Google Scholar]
  49. MisraD. Mish: A self regularized non-monotonic activation function.arXiv:1908.086812019
    [Google Scholar]
  50. ChandaD. OnimM.S.H. NyeemH. OviT.B. NabaS.S. DCENSnet: A new deep convolutional ensemble network for skin cancer classification.Biomed. Signal Process. Control20248910575710.1016/j.bspc.2023.105757
    [Google Scholar]
  51. TanE. LimS. LamontD. EpsteinR. LimD. LinF.P.Y. Development and validation of a deep learning model for improving detection of nonmelanoma skin cancers treated with Mohs micrographic surgery.JAAD Int.202414394710.1016/j.jdin.2023.10.00738089398
    [Google Scholar]
  52. WangZ. WangC. PengL. LinK. XueY. ChenX. BaoL. LiuC. ZhangJ. XieY. Radiomic and deep learning analysis of dermoscopic images for skin lesion pattern decoding.Sci Rep2024141978110.1038/s41598‑024‑70231‑x
    [Google Scholar]
  53. NathaP. RajeswariP.R. Advancing skin cancer prediction: A deep dive into hybrid pca-autoencoder.Int. J. Intell. Syst. Appl. Eng.2024128s442449
    [Google Scholar]
  54. HaggertyH. ChandraR. Self-supervised learning for skin cancer diagnosis with limited training data.arXiv:2401.006922024
    [Google Scholar]
  55. LossF.P. CunhaP.H. RochaM.B. ZanoniM.P. LimaL.M. NascimentoI.T. RezendeI. CanutoT.R. VieiraL.P. RossoniR. Skin cancer diagnosis using NIR spectroscopy data of skin lesions in vivo using machine learning algorithms.arXiv:2401.012002024
    [Google Scholar]
  56. FarooqM.A. YaoW. SchukatM. LittleM.A. CorcoranP. Derm-t2im: Harnessing synthetic skin lesion data via stable diffusion models for enhanced skin disease classification using vit and cnn.arXiv:2401.051592024
    [Google Scholar]
  57. HamidaS. LamraniD. El GannourO. SalehS. CherradiB. Toward enhanced skin disease classification using a hybrid RF-DNN system leveraging data balancing and augmentation techniques.Bull. Electr. Eng. Informatics202413153854710.11591/eei.v13i1.6313
    [Google Scholar]
  58. HussienM.A. Hassin AlasadiA.H. Classification of melanoma skin cancer using deep learning approach.TELKOMNIKA (Telecomm. Comput. Electron. Control)202422112913710.12928/telkomnika.v22i1.25428
    [Google Scholar]
  59. SuQ. HamedH.N.A. IsaM.A. HaoX. DaiX. A gan-based data augmentation method for imbalanced multi-class skin lesion classification.IEEE Access202412164981651310.1109/ACCESS.2024.3360215
    [Google Scholar]
  60. GhoshH. RahatI.S. MohantyS.N. RavindraJ. SoburA. A study on the application of machine learning and deep learning techniques for skin cancer detection.Int. J. Comput. Syst. Eng.20241815159
    [Google Scholar]
  61. RenithG. SenthilselviA. Automated skin cancer diagnosis and localization using deep reinforcement learning.J. Inst. Electron. Telecommun. Eng.20247043631364510.1080/03772063.2023.2291805
    [Google Scholar]
  62. ZengX. JiZ. ZhangH. ChenR. LiaoQ. WangJ. LyuT. ZhaoL. Dsp- kd: Dual-stage progressive knowledge distillation for skin disease classification.Bioengineering20241117010.3390/bioengineering1101007038247947
    [Google Scholar]
  63. HuangH.Y. NguyenH.T. LinT.L. SaenprasarnP. LiuP.H. WangH.C. Identification of skin lesions by snapshot hyperspectral imaging.Cancers202416121710.3390/cancers1601021738201644
    [Google Scholar]
  64. LikharK. RidhorkarS. Enhancing skin cancer detection: A comparative analysis of models with vgg-16, vgg-19, and inception v3.Int. J. Intell. Syst. Appl. Eng.20241210s502514
    [Google Scholar]
  65. AhamedA.M.U. YellaV.R. KrishnaP.V. SubramanianM. DeyA.K. BeheraS.K. Multi-class classification of skin cancer using hybrid inception- residual network.Int. J. Intell. Syst. Appl. Eng.2024122810822
    [Google Scholar]
  66. ImamM.H. NaharN. RahmanM.A. RabbiF. Enhancing skin cancer classification using a fusion of densenet and mobilenet models: A deep learning ensemble approach.Multidiscip. Sci. J.2024672024117202411710.31893/multiscience.2024117
    [Google Scholar]
  67. BagheriM. GhanadanA. SaboohiM. DaneshpazhoohM. AtyabiF. HejaziM. Virtual histology staining of skin tissue using ex vivo confocal microscopy and deep learning.J. Biomed. Phys. Eng.2024
    [Google Scholar]
  68. ZhuA.Q. WangQ. ShiY.L. RenW.W. CaoX. RenT.T. WangJ. ZhangY.Q. SunY.K. ChenX.W. LaiY.X. NiN. ChenY.C. HuJ.L. MouL.C. ZhaoY.J. LiuY.Q. SunL.P. ZhuX.X. XuH.X. GuoL.H. A deep learning fusion network trained with clinical and high-frequency ultrasound images in the multi-classification of skin diseases in comparison with dermatologists: A prospective and multicenter study.EClinicalMedicine20246710239110.1016/j.eclinm.2023.10239138274117
    [Google Scholar]
  69. KhanM.A. MuhammadK. SharifM. AkramT. KadryS. Intelligent fusion-assisted skin lesion localization and classification for smart healthcare.Neural Comput. Appl.2024361375210.1007/s00521‑021‑06490‑w
    [Google Scholar]
  70. MauryaA. StanleyR.J. LamaN. NambisanA.K. PatelG. SaeedD. SwinfardS. SmithC. JagannathanS. HagertyJ.R. Hybrid topological data analysis and deep learning for basal cell carcinoma diagnosis.J Imaging Inform Med20243719210610.1007/s10278‑023‑00924‑8
    [Google Scholar]
  71. AnandS. SheebaA. Maha TharshiniM.K. Relative likelihood based aggregated dual deep neural network for skin lesion recognition in dermoscopy images.Multimedia Tools Appl.20248321606036062610.1007/s11042‑023‑17908‑z
    [Google Scholar]
  72. DengX. LSNet: A deep learning based method for skin lesion classification using limited samples and transfer learning.Multimedia Tools Appl.20248322614696148910.1007/s11042‑023‑17975‑2
    [Google Scholar]
  73. SinghS.K. AbolghasemiV. AnisiM.H. Fuzzy logic with deep learning for detection of skin cancer.Appl. Sci. 20231315892710.3390/app13158927
    [Google Scholar]
  74. GururajH.L. ManjuN. NagarjunA. AradhyaV.N.M. FlamminiF. Deep- skin: A deep learning approach for skin cancer classification.IEEE Access202311502055021410.1109/ACCESS.2023.3274848
    [Google Scholar]
  75. Qasim GilaniS. SyedT. UmairM. MarquesO. Skin cancer classification using deep spiking neural network.J. Digit. Imaging20233631137114710.1007/s10278‑023‑00776‑236690775
    [Google Scholar]
  76. InthiyazS. AltahanB.R. AhammadS.H. RajeshV. KalangiR.R. SmiraniL.K. HossainM.A. RashedA.N.Z. Skin disease detection using deep learning.Adv. Eng. Softw.202317510336110.1016/j.advengsoft.2022.103361
    [Google Scholar]
  77. TahirM. NaeemA. MalikH. TanveerJ. NaqviR.A. LeeS.W. Dscc net: Multi-classification deep learning models for diagnosing of skin cancer using dermoscopic images.Cancers 2023157217910.3390/cancers1507217937046840
    [Google Scholar]
  78. TembhurneJ.V. HebbarN. PatilH.Y. DiwanT. Skin cancer detection using ensemble of machine learning and deep learning techniques.Multimedia Tools Appl.20238218275012752410.1007/s11042‑023‑14697‑3
    [Google Scholar]
  79. HeK. ZhangX. RenS. SunJ. Deep residual learning for image recognition.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016, pp.770-778
    [Google Scholar]
  80. CreswellA. WhiteT. DumoulinV. ArulkumaranK. SenguptaB. BharathA.A. Generative adversarial networks: An overview.IEEE Signal Process. Mag.2018351536510.1109/MSP.2017.2765202
    [Google Scholar]
  81. ZhuJ-Y. ParkT. IsolaP. EfrosA.A. Unpaired image-to-image translation using cycle-consistent adversarial networks.Proceedings of the IEEE International Conference on Computer Vision 2017, pp. 2223-223210.1109/ICCV.2017.244
    [Google Scholar]
  82. IzhikevichE.M. Simple model of spiking neurons.IEEE Trans. Neural Netw.20031461569157210.1109/TNN.2003.82044018244602
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965335638241213141707
Loading
/content/journals/raeeng/10.2174/0123520965335638241213141707
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): CNN; Deep learning; machine learning; melanoma; optimization; skin cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test