Skip to content
2000
Volume 18, Issue 9
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Background

GaN HEMTs with field plates have emerged as a boon for the high power along with high voltage application domains. The work in this paper is based on developing a numerical model to study and analyze the device performance of the GaN HEMT device by including the field plate structure. The study is based on considering both the conventional and the proposed GaN HEMT device incorporated with a field plate structure and comparing their performances under various biasing conditions.

Methods

The study involves initially designing a conventional GaN HEMT device without a field plate. Next, a GaN HEMT device of the same dimensions but including a field plate is designed. The field plate length is varied between 0.5 µm and 4 µm to determine the optimal length. The design and simulations of both devices were performed using the SILVACO ATLAS TCAD tool. The impact of a field-plate on the device performance is also studied in the work. On the basis of the DC and RF characteristics, the device performance of both the proposed conventional and GaN HEMT with a field plate structure was compared. The different S-parameters were also plotted for the devices, which can be implemented in our future work for impedance matching, calculating different power-related parameters and stability parameters.

Results

The increment in the breakdown voltage from 95V (conventional GaN HEMT) to 630V showcases the beneficial characteristics of the proposed GaN device with a field plate. The I –V curve and transconductance curve of both devices were plotted and compared. The drain current and maximum transconductance exhibited by the conventional HEMT is 838mA/mm at a V of 2V and 120mS/mm, respectively, while the drain current and maximum transconductance exhibited by the proposed GaN HEMT, including field-plate, are 814mA/mm at a V of 2V and 118mS/mm respectively. Thus, it can be reported that including the field-plate does not affect the DC performance of the device. The parasitic capacitances and the frequency parameters were plotted for both devices. It is observed that the field-plated device exhibits higher parasitic capacitances in comparison to the conventional GaN HEMT structure. This is further reflected in the frequency performances as the cut-off frequency and maximum frequency reported for the proposed field-plated device are 8GHz and 30GHz, respectively while the conventional GaN device reports a cut-off frequency and maximum frequency of 15GHz and 44GHz, respectively. The delay analysis reports an intrinsic time delay of 23ps for the field-plated and 19ps for the non-field-plated GaN HEMT device. Thus, it can be stated that the field plate affected the RF performance of the device. The S-parameters were also plotted for both the devices.

Conclusion

The work concludes that including a field-plate structure leads to breakdown voltage enhancement, which in turn will help achieve high power performance and withstand high voltages. However, this benefit comes at the cost of compromising the RF performance of the device. This issue can be minimized to a large extent by proper optimization of the device structure. Hence based on the requirement and the application area of the device, it should be designed and optimized accordingly.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965329926241108105402
2024-12-18
2026-01-08
Loading full text...

Full text loading...

References

  1. PattnaikG. MohapatraM. GaN HEMT for High-performance Applications: A Revolutionary Technology.Recent Adv. Electr. Electron. Eng.202417873776210.2174/2352096516666230914103828
    [Google Scholar]
  2. MoonJ.S. GrabarB. WongJ. ChuongD. ArkunE. MoralesD.V. ChenP. MalekC. FanningD. VenkatesanN. FayP. Power Scaling of Graded-Channel GaN HEMTs With Mini-Field-Plate T-gate and 156 GHz f T.IEEE Electron Device Lett.202142679679910.1109/LED.2021.3075926
    [Google Scholar]
  3. MoonJ.S. WongJ. GrabarB. AntcliffeM. ChenP. ArkunE. KhalafI. CorrionA. ChappellJ. VenkatesanN. FayP. 360 GHz f MAX graded-channel AlGaN/GaN HEMTs for mmW low-noise applications.IEEE Electron Device Lett.20204181173117610.1109/LED.2020.3005337
    [Google Scholar]
  4. MoonJ.S. GrabarR. WongJ. AntcliffeM. ChenP. ArkunE. KhalafI. CorrionA. ChappellJ. VenkatesanN. FayP. High‐speed graded‐channel AlGaN/GaN HEMTs with power added efficiency >70% at 30 GHz.Electron. Lett.2020561367868010.1049/el.2020.0281
    [Google Scholar]
  5. MoonJ.S. WongD. HashimotoP. HuM. MilosavljevicI. WilladsenP. McGuireC. BurnhamS. MicovicM. WetzelM. ChowD. Sub-1-dB Noise Figure Performance of High-Power Field-Plated GaN HEMTs.IEEE Electron Device Lett.201132329729910.1109/LED.2010.2095408
    [Google Scholar]
  6. MishraU.K. LikunShen KaziorT.E. WuYi-Feng GaNbased RF power devices and amplifiers.Proc. IEEE200896228730510.1109/JPROC.2007.911060
    [Google Scholar]
  7. SaitoW. KuraguchiM. TakadaY. TsudaK. OmuraI. OguraT. Design optimization of high breakdown voltage AlGaN-GaN power HEMT on an insulating substrate for R/sub ON/A-V/sub B/tradeoff characteristics.IEEE Trans. Electron Dev.200552110611110.1109/TED.2004.841338
    [Google Scholar]
  8. GangwaniP. PandeyS. HaldarS. GuptaM. GuptaR.S. Polarization dependent analysis of AlGaN/GaN HEMT for high power applications.Solid-State Electron.200751113013510.1016/j.sse.2006.11.002
    [Google Scholar]
  9. AlekseevE. EisenbachA. PavlidisD. Interface Properties and Electrical Characteristics of III-V Nitride-Based MISFETsEuropean Gallium Arsenide and Related III-V Compounds Application Symposium (GAAS99) 4-5 Oct, 1999, Munich, Germany, pp. 168-171.
    [Google Scholar]
  10. NirmalD. ArivazhaganL. FletcherA.S.A. AjayanJ. PrajoonP. Current collapse modeling in AlGaN/GaN HEMT using small signal equivalent circuit for high power application.Superlattices Microstruct.201811381082010.1016/j.spmi.2017.12.027
    [Google Scholar]
  11. HuqueM.A. ElizaS.A. RahmanT. HuqH.F. IslamS.K. Temperature dependent analytical model for current–voltage characteristics of AlGaN/GaN power HEMT.Solid-State Electron.200953334134810.1016/j.sse.2009.01.004
    [Google Scholar]
  12. DasP. BanerjiP. BiswasD. A New Single Wafer Cleaning Technology for Compound Semiconductor Manufacturing.CS MANTECH Conference BostonMassachusetts, USA2012
    [Google Scholar]
  13. NeamenD.A. Semiconductor Physics and Devices.New YorkMc Graw Hill2012
    [Google Scholar]
  14. PandaA.K. PavlidisD. AlekseevE. DC and high-frequency characteristics of GaN-based IMPATTs.IEEE Trans. Electron Dev.200148482082310.1109/16.915735
    [Google Scholar]
  15. WangY. MaL. YuZ. TianL. Optimization of two-dimensional electron gases and – characteristics for AlGaN/GaN HEMT devices.Superlattices Microstruct.2004364-686987510.1016/j.spmi.2004.09.042
    [Google Scholar]
  16. BrannickA. ZakhleniukN.A. RidleyB.K. EastmanL.F. ShealyJ.R. SchaffW.J. Hydrodynamic simulation of surface traps in the AlGaN/GaN HEMT.Microelectronics J.200940341041210.1016/j.mejo.2008.06.002
    [Google Scholar]
  17. KarmalkarS. MishraU.K. Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate.IEEE Trans. Electron Dev.20014881515152110.1109/16.936500
    [Google Scholar]
  18. AndoY. OkamotoY. MiyamotoH. NakayamaT. InoueT. KuzuharaM. 10-W/mm AlGaN-GaN HFET with a field modulating plate.IEEE Electron Device Lett.200324528929110.1109/LED.2003.812532
    [Google Scholar]
  19. KarmalkarS. ShurM.S. SiminG. KhanM.A. Field-Plate Engineering for HFETs.IEEE Trans. Electron Dev.200552122534254010.1109/TED.2005.859568
    [Google Scholar]
  20. KabemuraT. UedaS. KawadaY. HorioK. Enhancement of Breakdown Voltage in AlGaN/GaN HEMTs: Field Plate Plus High- $k$ Passivation Layer and High Acceptor Density in Buffer Layer.IEEE Trans. Electron Dev.20186593848385410.1109/TED.2018.2857774
    [Google Scholar]
  21. SoniA. Ajay ShrivastavaM. Novel drain-connected field plate GaN HEMT designs for improved VBD–RON tradeoff and RF PA performanceIEEE Trans. Electron Dev.20206741718172510.1109/TED.2020.2976636
    [Google Scholar]
  22. KaiZ. YiC.M. Field plate structural optimization for enhancing the power gain of GaN-based HEMTs.Chin. Phys. B20132209730310973035
    [Google Scholar]
  23. HaoY. YangL. MaX. MaJ. CaoM. PanC. WangC. ZhangJ. High-performance microwave gate-recessed AlGaN/AlN/GaN MOS-HEMT with 73% power-added efficiency.IEEE Electron Device Lett.201132562662810.1109/LED.2011.2118736
    [Google Scholar]
  24. WuY.F. SaxlerA. MooreM. SmithR.P. SheppardS. ChavarkarP.M. WislederT. MishraU.K. ParikhP. 30-W/mm GaN HEMTs by field plate optimization.IEEE Electron Device Lett.200425311711910.1109/LED.2003.822667
    [Google Scholar]
  25. WakejimaA. OtaK. MatsunagaK. KuzuharaM. A GaAs-based field-modulating plate HFET with improved WCDMA peak-output-power characteristics.IEEE Trans. Electron Dev.20035091983198710.1109/TED.2003.815577
    [Google Scholar]
  26. HorioK. TanakaT. ItagakiK. NakajimaA. Twodimensional analysis of field-plate effects on surface-staterelated current transients and power slump in GaAs FETs.IEEE Trans. Electron Dev.201158369870310.1109/TED.2010.2094621
    [Google Scholar]
  27. HorioK. NakajimaA. ItagakiK. Analysis of field-plate effects on buffer-related lag phenomena and current collapse in GaN MESFETs and AlGaN/GaN HEMTs.Semicond. Sci. Technol.200924808502210.1088/0268‑1242/24/8/085022
    [Google Scholar]
  28. OnoderaH. HorioK. Analysis of buffer-impurity and field-plate effects on breakdown characteristics in small-sized AlGaN/GaN high electron mobility transistors.Semicond. Sci. Technol.201227808501610.1088/0268‑1242/27/8/085016
    [Google Scholar]
  29. Bahat-TreidelE. HiltO. BrunnerF. SidorovV. WürflJ. TränkleG. AlGaN/GaN/AlGaN DH-HEMTs breakdown voltage enhancement using multiple grating field plates (MGFPs).IEEE Trans. Electron Dev.20105761208121610.1109/TED.2010.2045705
    [Google Scholar]
  30. HuangH. LiangY.C. SamudraG.S. ChangT-F. HuangC-F. Effects of Gate Field Plates on the Surface State Related Current Collapse in AlGaN/GaN HEMTs.IEEE Trans. Power Electron.20142952164217310.1109/TPEL.2013.2288644
    [Google Scholar]
  31. SaitoW. KakiuchiY. NittaT. SaitoY. NodaT. FujimotoH. YoshiokaA. OhnoT. YamaguchiM. Field-plate structure dependence of current collapse phenomena in high-voltage GaN-HEMTs.IEEE Electron Device Lett.201031765966110.1109/LED.2010.2048741
    [Google Scholar]
  32. JebalinB.K. Shobha RekhA. PrajoonP. KumarN.M. NirmalD. The influence of high-k passivation layer on breakdown voltage of Schottky AlGaN/GaN HEMTs.Microelectronics J.201546121387139110.1016/j.mejo.2015.04.006
    [Google Scholar]
  33. PattnaikG. MohapatraM. Comparison of DC & RF characteristics of AlGaN/GaN HEMT using different surface passivation materials2021 IEEE 2nd International Conference on Applied Electromagnetics, Signal Processing, & Communication (AESPC) 26-28 Nov, 2021, Bhubaneswar, India, 2021, pp. 1-5.10.1109/AESPC52704.2021.9708538
    [Google Scholar]
  34. Bahat-TreidelE. HiltO. BrunnerF. WurflJ. TrankleG.Ü. Punch through-voltage enhancement of AlGaN/GaN HEMTs using AlGaN double-hetero-junction confinement.IEEE Trans. Electron Dev.200855123354335910.1109/TED.2008.2006891
    [Google Scholar]
  35. UrenM.J. NashK.J. BalmerR.S. MartinT. MorvanE. CaillasN. DelageS.L. DucatteauD. GrimbertB. De JaegerJ.C. Punch through in short-channel AlGaN/GaN HFETs.IEEE Trans. Electron Dev.200653239539810.1109/TED.2005.862702
    [Google Scholar]
  36. TakamiyaS. HarayamaM. SugimuraT. TsuzukuT. TayaT. IiyamaK. HashimotoS. Reverse currents of Schottky gates of III–V MESFET/HEMTs: field emission and tunnel currents.Solid-State Electron.199842344745110.1016/S0038‑1101(97)00264‑5
    [Google Scholar]
  37. EllrodtP. BrockerhoffW. TegudeF.J. Investigation of leakage current behaviour of Schottky gates on InAlAs/InGaAs/InP HFET structures by a 1D model.Solid-State Electron.199538101775178010.1016/0038‑1101(94)00298‑T
    [Google Scholar]
  38. Bahat TreidelE. HiltO. BrunnerF. WürflJ. TränkleG. AlGaN/GaN/AlGaN double hetero-junction HEMTs on ntype SiC substratesProc. 36th Int. Symp. Compound. Semicond.2009711369370
    [Google Scholar]
  39. SathaiyaD.M. KarmalkarS. Edge effects on gate tunneling current in HEMTs.IEEE Trans. Electron Dev.200754102614262210.1109/TED.2007.904993
    [Google Scholar]
  40. OkamotoY. AndoY. NakayamaT. HatayaK. MiyamotoH. InoueT. SendaM. HirataK. KosakiM. ShibataN. KuzuharaM. High power recessed-gate AlGaN GaN HFET with a field-modulating plate.IEEE Trans. Electron Dev.200451122217222210.1109/TED.2004.838453
    [Google Scholar]
  41. ChiniA. ButtariD. CoffieR. HeikmanS. KellerS. MishraU.K. 12 W/mm power density AlGaN/GaN HEMTs on sapphire substrate.Electron. Lett.2004401737410.1049/el:20040017
    [Google Scholar]
  42. AndoY. MakisakoR. TakahashiH. WakejimaA. SudaJ. Fabrication of 150‐nm AlGaN/GaN field‐plated high electron mobility transistors using i ‐line stepper.Electron. Lett.2021572494894910.1049/ell2.12303
    [Google Scholar]
  43. LiuA.C. TuP.T. ChenH.C. LaiY.Y. YehP.C. KuoH.C. Improving performance and breakdown voltage in normally-off GaN recessed gate MIS-HEMTs using atomic layer etching and gate field plate for high-power device applications.Micromachines2023148158210.3390/mi14081582 37630118
    [Google Scholar]
  44. PattnaikG. MohapatraM. Effect of field plate on device performance of wide bandgap HEMT.Recent Adv. Electr. Electron. Eng.202316446047010.2174/2352096516666221205115133
    [Google Scholar]
  45. LenkaT.R. PandaA.K. Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs-based HEMT.Semiconductors201145565065610.1134/S1063782611050198
    [Google Scholar]
  46. MilshteinS. ChuriA. GilC. Is HEMT operating in 2D mode?Microelectronics J.200940355455710.1016/j.mejo.2008.06.036
    [Google Scholar]
  47. AlamM.K. Gate capacitances of high electron mobility transistorsInternational Conference on Electrical and Computer Engineering 26-28 Dec, 2002, Dhaka, Bangladesh, pp. 129-131.
    [Google Scholar]
  48. MohapatraM. MumtazA. PandaA.K. Performance evaluation of GaSb/AlGaAs based high electron mobility transistors3rd International Conference on Advances in Recent Technologies in Communication and Computing (ARTCom 2011) 14-15 Nov, 2011, Bangalore, 2011, pp. 249-252.
    [Google Scholar]
  49. WatanabeI. ShinoharaK. KitadaT. ShimomuraS. YamashitaY. EndohA. MimuraT. HiyamizuS. MatsuiT. Velocity enhancement in cryogenically cooled InP-Based HEMTs on (411)A-Oriented Substrates.IEEE Trans. Electron Dev.200653112842284610.1109/TED.2006.884065
    [Google Scholar]
  50. SilvacoAvailable from: https://www.silvaco.com(accessed on 23-10-2024)
  51. ChiangC.Y. HsuH.T. ChangE.Y. Effect of field plate on the rf performance of AlGaN/GaN HEMT devices.Phys. Procedia201225869110.1016/j.phpro.2012.03.054
    [Google Scholar]
  52. ZhangS. WeiK. MaX.H. ZhangY.C. AsifM. LiuG.G. HuangS. ZhengY.K. WangX.H. NiuJ.B. LeiT.M. LiuX.Y. Millimeter-wave AlGaN/GaN HEMTs breakdown voltage enhancement by an air-bridge recessed source field plate (RSFP).Solid-State Electron.201916010762910.1016/j.sse.2019.107629
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965329926241108105402
Loading
/content/journals/raeeng/10.2174/0123520965329926241108105402
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test