Skip to content
2000
Volume 18, Issue 10
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

The increasing complexity of healthcare, coupled with an ageing population, poses significant challenges for decision-making in healthcare delivery. Implementing smart decision support systems can indeed alleviate some of these challenges by providing clinicians with timely and personalized insights. These systems can leverage vast amounts of patient data, advanced analytics, and predictive modeling to offer clinicians a comprehensive view of individual patient needs and potential outcomes.

Currently, researchers and doctors need a faster solution for various diseases in health care. So they started to use the Machine Learning (ML) algorithms for better solution. ML is a sub field of Artificial Intelligence (AI) that provides a useful tool for data analysis, automatic process and others for healthcare system. The use of ML is increasing continuously in healthcare system due to its learning power.

In this paper the following algorithms are used for the diagnosis of Diabetes and Kidney Disease such as: Gradient Boosting Classifier (GBC), Random Forest Classifier (RFC), Extra Trees Classifier (ETC), Support Vector Classifier (SVC) and Multilayer Perceptron (MNP) Neural Network, In our model, Gradient Boosting Classifier is used with repeated cross validation to develop our system for better results. The experiment analysis performed for both unbalanced and balanced dataset. The accuracy achieved in case of unbalanced and balanced datasets for GBC, ETC, RFC SVC, MLP & DTC are 75.7 & 92.2, 75.7 & 90.1, 74.4 & 80.0, 62.5 & 66.4, 58.3 & 63.0 and 59.4 & 74.5 respectively. On comparing these results, we found that GBC results are better than other algorithms.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965316924241007052621
2025-01-06
2026-01-01
Loading full text...

Full text loading...

References

  1. CharD.S. ShahN.H. MagnusD. Implementing machine learning in health care — Addressing ethical challenges.N. Engl. J. Med.20183781198198310.1056/NEJMp171422929539284
    [Google Scholar]
  2. DuaS. AcharyaU.R. DuaP. Supervised learning methods for fraud detection in healthcare insurance.Machine learning in healthcare informatics.BerlinSpringer DuaS. AcharyaU. DuaP. 20145610.1007/978‑3‑642‑40017‑9_12
    [Google Scholar]
  3. AhamedF. FaridF. Applying internet of things and machine-learning for personalized healthcare: Issues and challenges.2018 International Conference on Machine Learning and Data Engineering (iCMLDE), 2018 Sydney, NSW, Australia, 03-07 Dec, 2018, pp. 19-21.10.1109/iCMLDE.2018.00014
    [Google Scholar]
  4. GhassemiM. NaumannT. SchulamP. BeamA.L. ChenI.Y. RanganathR. A review of challenges and opportunities in machine learning for health.AMIA Jt. Summits Transl. Sci. Proc.2020202019120032477638
    [Google Scholar]
  5. NaylorC.D. On the prospects for a (deep) learning health care system.JAMA2018320111099110010.1001/jama.2018.1110330178068
    [Google Scholar]
  6. FutomaJ. SimonsM. PanchT. Doshi-VelezF. CeliL.A. The myth of generalisability in clinical research and machine learning in health care.Lancet Digit. Health202029e489e49210.1016/S2589‑7500(20)30186‑232864600
    [Google Scholar]
  7. BallM.J. LillisJ. E-health: Transforming the physician/patient relationship.Int. J. Med. Inform.200161111010.1016/S1386‑5056(00)00130‑111248599
    [Google Scholar]
  8. GoodfellowI. BengioY. CourvilleA. Machine learning basics.Deep LearningMIT Press201698164
    [Google Scholar]
  9. JordanM.I. MitchellT.M. Machine learning: Trends, perspectives, and prospects.Science2015349624525526010.1126/science.aaa841526185243
    [Google Scholar]
  10. ChandraG. DwivediS.K. A literature survey on various approaches of word sense disambiguation.2nd International Symposium on Computational and Business Intelligence, 2014 New Delhi, India, 07-08 Dec, 2014, pp. 106-109.10.1109/ISCBI.2014.30
    [Google Scholar]
  11. El NaqaI. MurphyM.J. What is machine learning?Machine learning in radiation oncology.ChamSpringer El NaqaI. LiR. Murphyand M. 201531110.1007/978‑3‑319‑18305‑3_1
    [Google Scholar]
  12. YangB. ShaoQ. PanL. LiW. A study on regularized weighted least square support vector classifier.Pattern Recognit. Lett.2018108485510.1016/j.patrec.2018.03.002
    [Google Scholar]
  13. ChenM. HaoY. HwangK. WangL. WangL. Disease prediction by machine learning over big data from healthcare communities.IEEE Access201758869887910.1109/ACCESS.2017.2694446
    [Google Scholar]
  14. KaurG. ChhabraA. Improved J48 classification algorithm for the prediction of diabetes.Int. J. Comput. Appl.20149822131710.5120/17314‑7433
    [Google Scholar]
  15. VijayanVV. RavikumarA. Study of data mining algorithms for prediction and diagnosis of diabetes mellitus.Int. J. Comput. Appl.20149517121610.5120/16685‑6801
    [Google Scholar]
  16. IyerA. SJ. SumbalyR. Diagnosis of diabetes using classification mining techniques.Int. J. Data Min. Knowl. Manage. Process201551011410.5121/ijdkp.2015.5101
    [Google Scholar]
  17. PandeeswariL. RajeswariK. PhillM. K-means clustering and Naïve Bayes classifier for categorization of diabetes patients.Eng Technol201521179185
    [Google Scholar]
  18. SoltaniZ. JafarianA. A new artificial neural networks approach for diagnosing diabetes disease type II.Int. J. Adv. Comput. Sci. Appl.201676899410.14569/IJACSA.2016.070611
    [Google Scholar]
  19. SaravananathanK. VelmuruganT. Analyzing diabetic data using classification algorithms in data mining.Indian J. Sci. Technol.20169431610.17485/ijst/2016/v9i43/93874
    [Google Scholar]
  20. FuH. LiuS. BastackyS.I. WangX. TianX.J. ZhouD. Diabetic kidney diseases revisited: A new perspective for a new era.Mol. Metab.20193025026310.1016/j.molmet.2019.10.00531767176
    [Google Scholar]
  21. ElSayedN.A. AleppoG. ArodaV.R. BannuruR.R. BrownF.M. BruemmerD. CollinsB.S. HilliardM.E. IsaacsD. JohnsonE.L. KahanS. KhuntiK. LeonJ. LyonsS.K. PerryM.L. PrahaladP. PratleyR.E. SeleyJ.J. StantonR.C. GabbayR.A. 11. Chronic kidney disease and risk management: Standards of care in diabetes — 2023.Diabetes Care202346Suppl. 1S191S20210.2337/dc23‑S01136507634
    [Google Scholar]
  22. Rayego-MateosS. Rodrigues-DiezR.R. Fernandez-FernandezB. Mora-FernándezC. MarchantV. Donate-CorreaJ. Navarro-GonzálezJ.F. OrtizA. Ruiz-OrtegaM. Targeting inflammation to treat diabetic kidney disease: The road to 2030.Kidney Int.2023103228229610.1016/j.kint.2022.10.03036470394
    [Google Scholar]
  23. KanasakiK. UekiK. NangakuM. Diabetic kidney disease: The kidney disease relevant to individuals with diabetes.Clin. Exp. Nephrol.202410.1007/s10157‑024‑02537‑z39031296
    [Google Scholar]
  24. AsifM. Al-RazganM. AliY.A. YunrongL. Graph convolution networks for social media trolls detection use deep feature extraction.J. Cloud Comput. (Heidelb.)20241313310.1186/s13677‑024‑00600‑4
    [Google Scholar]
  25. GuptaS. DominguezM. GolestanehL. Diabetic kidney disease: An update.Med. Clin. North Am.2023107468970510.1016/j.mcna.2023.03.00437258007
    [Google Scholar]
  26. ChandraG. DwivediS.K. Query expansion for effective retrieval results of hindi–english cross-lingual IR.Appl. Artif. Intell.201933756759310.1080/08839514.2019.1577018
    [Google Scholar]
  27. ChuW. KeerthiS.S. OngC.J. Bayesian trigonometric support vector classifier.Neural Comput.20031592227225410.1162/089976603322297368
    [Google Scholar]
  28. KeerthiS.S. ChapelleO. DeCosteD. BennettK.P. Parrado-HernándezE. Building support vector machines with reduced classifier complexity.J. Mach. Learn. Res.20067614931515
    [Google Scholar]
  29. PindoriyaN.M. JirutitijaroenP. SrinivasanD. SinghC. Composite reliability evaluation using Monte Carlo simulation and least squares support vector classifier.IEEE Trans. Power Syst.20112642483249010.1109/TPWRS.2011.2116048
    [Google Scholar]
  30. KaurM. SinghB. Diagnosis of malignant pleural mesothelioma using KNN.Proceedings of 2nd International Conference on Communication, Computing and Networking, 2019 Singapore, 08 Sept, 2018, pp. 637-641.10.1007/978‑981‑13‑1217‑5_62
    [Google Scholar]
  31. ZhengZ. CaiY. LiY. Oversampling method for imbalanced classification.Comput. Inf.201634510171037
    [Google Scholar]
  32. DrummondC. HolteR.C. C4.5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling.International Conference on Machine Learning (ICML 2003) Workshop on Learning from Imbalanced Data Sets II Washington, DC, USA, 31 July, 2003.
    [Google Scholar]
  33. KrawczykB. Learning from imbalanced data: Open challenges and future directions.Progress in Artificial Intelligence20165422123210.1007/s13748‑016‑0094‑0
    [Google Scholar]
  34. JohnsonJ.M. KhoshgoftaarT.M. Survey on deep learning with class imbalance.J. Big Data2019612710.1186/s40537‑019‑0192‑5
    [Google Scholar]
  35. TsudaK. Support vector classifier with asymmetric kernel functions.7th European Symposium on Artificial Neural Networks, 1999 Bruges, Belgium, April 21-23, 1999, pp. 183-188.
    [Google Scholar]
  36. YouyunZ.Y.Z. The study on some problems of support vector classifier.ComEngApp2003393638
    [Google Scholar]
  37. LiuQ. HeQ. ShiZ. Extreme support vector machine classifier.Advances in Knowledge Discovery and Data Mining, 12th Pacific-Asia Conference, PAKDD Osaka, Japan, May 20-23, 2008, pp. 222-233.10.1007/978‑3‑540‑68125‑0_21
    [Google Scholar]
  38. AzarA.T. ElshazlyH.I. HassanienA.E. ElkoranyA.M. A random forest classifier for lymph diseases.Comput. Methods Programs Biomed.2014113246547310.1016/j.cmpb.2013.11.00424290902
    [Google Scholar]
  39. XuB. GuoX. YeY. ChengJ. An improved random forest classifier for text categorization.J. Comput. (Taipei)201271229132920
    [Google Scholar]
  40. NguyenC. WangY. NguyenH.N. Random forest classifier combined with feature selection for breast cancer diagnosis and prognostic.J. Biomed. Sci. Eng.20136555156010.4236/jbise.2013.65070
    [Google Scholar]
  41. DevetyarovD. NouretdinovI. Prediction with confidence based on a random forest classifier.Artificial Intelligence Applications and Innovations, 2010 Larnaca, Cyprus, 6-7 Oct, 2010, pp. 37-4410.1007/978‑3‑642‑16239‑8_8
    [Google Scholar]
  42. BreimanL. Random forests - Random features.Technical Note, University of California1999
    [Google Scholar]
  43. LivingstonF. Implementation of Breiman’s random forest machine learning algorithm .J. Mach. Learn.2005
    [Google Scholar]
  44. OshiroT.M. PerezP.S. BaranauskasJ.A. How many trees in a random forest?8th International workshop on machine learning and data mining in pattern recognition, 2012 Berlin, Heidelberg, July, 2012, pp. 154-168.10.1007/978‑3‑642‑31537‑4_13
    [Google Scholar]
  45. QiY. Random forest for bioinformatics.Ensemble machine learning.Boston, MASpringer Zhangc. Maand Y. 201230732310.1007/978‑1‑4419‑9326‑7_11
    [Google Scholar]
  46. KulkarniV.Y. SinhaP.K. Pruning of random forest classifiers: A survey and future directions.2012 International Conference on Data Science & Engineering (ICDSE), 2012 Cochin, India, 18-20 July 2012, pp. 64-68.10.1109/ICDSE.2012.6282329
    [Google Scholar]
  47. NitzeI. SchulthessU. AscheH. Comparison of machine learning algorithms random forest, artificial neural network and support vector machine to maximum likelihood for supervised crop type classification.Proceedings of the 4th GEOBIA, 2012 Rio de Janeiro, Brazil, 7-9 May, 2012, pp. 35-40.
    [Google Scholar]
  48. BhatiB.S. RaiC.S. Ensemble based approach for intrusion detection using extra tree classifier.Intelligent Computing in EngineeringSingaporeSpringer SolankiV. HoangM. LuZ. Pattnaikand P. 213220202010.1007/978‑981‑15‑2780‑7_25
    [Google Scholar]
  49. KaurK. MittalS.K. Withdrawn: Classification of mammography image with CNN-RNN based semantic features and extra tree classifier approach using LSTMMater. Today Proc.202010.1016/j.matpr.2020.09.619
    [Google Scholar]
  50. MaierO. WilmsM. von der GablentzJ. KrämerU.M. MünteT.F. HandelsH. Extra Tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences.J. Neurosci. Methods20152408910010.1016/j.jneumeth.2014.11.01125448384
    [Google Scholar]
  51. ShafiqueR. MehmoodA. ChoiG.S. 2019Cardiovascular disease prediction system using extra trees classifier.Res. Sq.10.21203/rs.2.14454/v1
    [Google Scholar]
  52. NatekinA. KnollA. Gradient boosting machines, a tutorial.Front. Neurorobot.201372110.3389/fnbot.2013.0002124409142
    [Google Scholar]
  53. DhiebN. GhazzaiH. BesbesH. MassoudY. Extreme gradient boosting machine learning algorithm for safe auto insurance operations.2019 IEEE International Conference on Vehicular Electronics and Safety (ICVES), 2019 Cairo, Egypt, 4-6 Sept, 2019, pp. 1-5.10.1109/ICVES.2019.8906396
    [Google Scholar]
  54. BansalA. KaurS. Extreme gradient boosting based tuning for classification in intrusion detection systems.Advances in Computing and Data SciencesSpringerSingapore SinghM. GuptaP. TyagiV. FlusserJ. Örenand T. 372380201810.1007/978‑981‑13‑1810‑8_37
    [Google Scholar]
  55. SchapireR.E. The boosting approach to machine learning: An overview.Nonlinear Estimation and ClassificationNew YorkSpringer DenisonD.D. HansenM.H. HolmesC.C. MallickB. Yuand B. 200314917110.1007/978‑0‑387‑21579‑2_9
    [Google Scholar]
  56. KonstantinovA.V. UtkinL.V. Interpretable machine learning with an ensemble of gradient boosting machines.Knowl. Base. Syst.202122210699310.1016/j.knosys.2021.106993
    [Google Scholar]
  57. SyN.L. Modelling the infiltration process with a multi-layer perceptron artificial neural network.Hydrol. Sci. J.200651132010.1623/hysj.51.1.3
    [Google Scholar]
  58. PhamB.T. NguyenM.D. BuiK.T.T. PrakashI. ChapiK. BuiD.T. A novel artificial intelligence approach based on multi-layer perceptron neural network and biogeography-based optimization for predicting coefficient of consolidation of soil.Catena201917330231110.1016/j.catena.2018.10.004
    [Google Scholar]
  59. DesaiM. ShahM. An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN).Clinical eHealth2020111410.1016/j.ceh.2020.11.002
    [Google Scholar]
  60. NasiriV. DarvishsefatA.A. RafieeR. ShirvanyA. HematM.A. Land use change modeling through an integrated multi-layer perceptron neural network and markov chain analysis (case study: Arasbaran region, Iran).J. For. Res.201930394395710.1007/s11676‑018‑0659‑9
    [Google Scholar]
  61. MoallemP. RazmjooyN. A multi layer perceptron neural network trained by invasive weed optimization for potato color image segmentation.Trends Appl. Sci. Res.20127644545510.3923/tasr.2012.445.455
    [Google Scholar]
  62. MurtaghF. Multilayer perceptrons for classification and regression.Neurocomputing199125-618319710.1016/0925‑2312(91)90023‑5
    [Google Scholar]
  63. ChiccoD. JurmanG. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation.BMC Genomics2020211610.1186/s12864‑019‑6413‑731898477
    [Google Scholar]
  64. BoughorbelS. JarrayF. El-AnbariM. Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric.PLoS One2017126e017767810.1371/journal.pone.017767828574989
    [Google Scholar]
  65. ChiccoD. TötschN. JurmanG. The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation.BioData Min.20211411310.1186/s13040‑021‑00244‑z33541410
    [Google Scholar]
  66. ChiccoD. WarrensM.J. JurmanG. The Matthews correlation coefficient (MCC) is more informative than Cohen’s Kappa and Brier score in binary classification assessment.IEEE Access20219783687838110.1109/ACCESS.2021.3084050
    [Google Scholar]
  67. BorgesA.M. KuangJ. MilhornH. YiR. An alternative approach to calculating Area‐Under‐the‐Curve (AUC) in delay discounting research.J. Exp. Anal. Behav.2016106214515510.1002/jeab.21927566660
    [Google Scholar]
  68. BowersA.J. ZhouX. Receiver operating characteristic (ROC) area under the curve (AUC): A diagnostic measure for evaluating the accuracy of predictors of education outcomes.J. Educ. Students Placed Risk2019241204610.1080/10824669.2018.1523734
    [Google Scholar]
  69. KottasM. KussO. ZapfA. A modified Wald interval for the area under the ROC curve (AUC) in diagnostic case-control studies.BMC Med. Res. Methodol.20141412610.1186/1471‑2288‑14‑2624552686
    [Google Scholar]
  70. ChandraG. DwivediS.K. Query expansion based on term selection for Hindi – English cross lingual IR.Journal of King Saud University - Computer and Information Sciences202032331031910.1016/j.jksuci.2017.09.002
    [Google Scholar]
  71. ChandraG. DwivediS.K. Assessing query translation quality using back translation in hindi-english clir.Int. J. Intell. Syst. Appl.201793515910.5815/ijisa.2017.03.07
    [Google Scholar]
  72. ZebariR. AbdulazeezA. ZeebareeD. ZebariD. SaeedJ. A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction.J. Appl. Sci. Technol. Trends202011567010.38094/jastt1224
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965316924241007052621
Loading
/content/journals/raeeng/10.2174/0123520965316924241007052621
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test