Skip to content
2000
Volume 18, Issue 9
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Introduction

Minimally invasive interventional surgical robots are used as delivery tools to assist healthcare professionals with medical devices such as micro guidewires and microcatheters during surgical treatment of cardiovascular and cerebrovascular obstruction, thus reducing surgical fatigue and radiation for healthcare professionals.

Methods

In this paper, a new vascular interventional surgical robot with multiple degrees of freedom is designed, its mechanism principle and movement mode is discussed in detail, and a prototype prototype is fabricated to make it simulate and reproduce the doctor's hand movements.

Results

Through Abaqus simulation and platform experiments, the performance of the surgical robot is evaluated and analyzed from the perspectives of micro guidewire delivery displacement accuracy and radial clamping force for its high accuracy, high reliability, and safety.

Conclusion

The results demonstrate that its surgical robot meets the requirements of providing vessel wall overload protection while the microcatheter delivery positioning accuracy error is less than 1 mm.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965315739240906103348
2024-09-24
2026-01-08
Loading full text...

Full text loading...

References

  1. Yu-BingS.H. Zhong-JianL.I. Hong-YiY.A. Progress of hemodynamic electromechanical simulation of direct thrombus aspiration in the treatment of acute ischemic stroke.J. Prac. Cardiovas. Pulmo. Vascu. Disea.2020289119125
    [Google Scholar]
  2. Quezada-PinedoH.G. AhanchiN.S. Cajachagua-TorresK.N. Obeso-ManriqueJ.A. HuichoL. GräniC. MukaT. A comprehensive analysis of cardiovascular mortality trends in Peru from 2017 to 2022: Insights from 183,386 deaths of the national death registry.Am. Heart. J.20233510033510.1016/j.ahjo.2023.10033538511183
    [Google Scholar]
  3. Association between genetic predisposition and disease burden of stroke in China: a genetic epidemiological study.Lancet Reg. Health West. Pac.202336100779
    [Google Scholar]
  4. XiangX. WangQ. LiJ. Trend analysis of mortality rate of cardiovascular and cerebrovascular diseases in China from 2009 to 2019.Chin. J. Prev. Med20212211811818
    [Google Scholar]
  5. ChuC. ZhangT. HuangX. Progress of thrombus escape during mechanical thrombectomy in acute large vessel occlusive stroke.Chin. J. Cerebrovas. Dis.20211803199204
    [Google Scholar]
  6. YangJ. MoritaM. JiangZ. Design of a novel scissoring micro-stirrer for blood clot dissolution.Sens. Actuators A Phys.201624813013710.1016/j.sna.2016.05.001
    [Google Scholar]
  7. HuangH. XiangL. Research progress of mechanical thrombus extraction therapy for acute ischemic stroke.Neuro. Injur. Funct. Recon.20181312637640
    [Google Scholar]
  8. ZhoumingZ.H. HaoL.I. Progress of mechanical thrombolysis in acute ischemic stroke.J. Stroke Neuro. Dis.202138018488
    [Google Scholar]
  9. YangL. TuS. LingF. Current status and progress of mechanical thrombolysis for acute ischemic stroke in the elderly.Geriat. Health Care2021270511001103
    [Google Scholar]
  10. WangK. LuQ. ChenB. ShenY. LiH. LiuM. XuZ. Endovascular intervention robot with multi-manipulators for surgical procedures: Dexterity, adaptability, and practicability.Robot. Comput.-Integr. Manuf.201956758410.1016/j.rcim.2018.09.004
    [Google Scholar]
  11. PetersB.S. ArmijoP.R. KrauseC. ChoudhuryS.A. OleynikovD. Review of emerging surgical robotic technology.Surg. Endosc.20183241636165510.1007/s00464‑018‑6079‑229442240
    [Google Scholar]
  12. YiL. GuanW. ShuoL. Mechanical thrombus extraction in acute posterior circulation ischemia[J]. Current status and progress of mechanical thrombolysis for acute posterior circulation ischemia.J. Interven. Radio.20202902210214
    [Google Scholar]
  13. Qing-shengL.U. Characteristics and future development direction of robots for vascular endoluminal interventional surgery.J. Robot. Surg.202014231235
    [Google Scholar]
  14. Al-AhmadA. GrossmanJ.D. WangP.J. Early experience with a computerized robotically controlled catheter system.J. Interv. Card. Electrophysiol.200512319920210.1007/s10840‑005‑0325‑y15875110
    [Google Scholar]
  15. KhanE.M. FrumkinW. NgG.A. NeelagaruS. Abi-SamraF.M. LeeJ. GiudiciM. GohnD. WinkleR.A. SussmanJ. KnightB.P. BermanA. CalkinsH. First experience with a novel robotic remote catheter system: Amigo™ mapping trial.J. Interv. Card. Electrophysiol.201337212112910.1007/s10840‑013‑9791‑923636870
    [Google Scholar]
  16. GranadaJ.F. DelgadoJ.A. UribeM.P. FernandezA. BlancoG. LeonM.B. WeiszG. First-in-human evaluation of a novel robotic-assisted coronary angioplasty system.JACC Cardiovasc. Interv.20114446046510.1016/j.jcin.2010.12.00721511227
    [Google Scholar]
  17. ZhengC.H. YuS.H. QingshengL.U. Research progress of robot-assisted vascular intervention.J. Interven. Radiol.201827114
    [Google Scholar]
  18. YuanB.I. Research on product appearance design of breast interventional surgery robot based on usability theory.Tianjin University Industrial Design Engineering2016
    [Google Scholar]
  19. KangD.H. HwangY.H. KimY.S. ParkJ. KwonO. JungC. Direct thrombus retrieval using the reperfusion catheter of the penumbra system: forced-suction thrombectomy in acute ischemic stroke.AJNR Am. J. Neuroradiol.201132228328710.3174/ajnr.A229921087940
    [Google Scholar]
  20. RamW. MeyerH. Heart catheterization in a neonate by interacting magnetic fields: A new and simple method of catheter guidance.Cathet. Cardiovasc. Diagn.199122431731910.1002/ccd.18102204122032279
    [Google Scholar]
  21. ErnstS. OuyangF. LinderC. HerttingK. StahlF. ChunJ. HachiyaH. BänschD. AntzM. KuckK.H. Initial experience with remote catheter ablation using a novel magnetic navigation system: magnetic remote catheter ablation.Circulation2004109121472147510.1161/01.CIR.0000125126.83579.1B15023876
    [Google Scholar]
  22. YangX. Research on robotic system for minimally invasive cardiovascular interventional surgery.Yanshan University2014
    [Google Scholar]
  23. PüschelA. SchafmayerC. GroßJ. Robot-assisted techniques in vascular and endovascular surgery.Langenbecks Arch. Surg.202240751789179510.1007/s00423‑022‑02465‑035226179
    [Google Scholar]
  24. GuoJ. JinX. GuoS. FuQ. A vascular interventional surgical robotic system based on force-visual feedback. IEEE.IEEE Sens. J.20191923110811108910.1109/JSEN.2019.2935002
    [Google Scholar]
  25. LegezaP. BritzG.W. LohT. LumsdenA. Current utilization and future directions of robotic-assisted endovascular surgery.Expert Rev. Med. Devices202017991992710.1080/17434440.2020.181474232835546
    [Google Scholar]
  26. GuoS. WangY. ZhaoY. CuiJ. MaY. MaoG. HongS. A surgeon’s operating skills-based non-interference operation detection method for novel vascular interventional surgery robot systems.IEEE Sens. J.20202073879389110.1109/JSEN.2019.2960926
    [Google Scholar]
  27. OmisoreO.M. HanS. XiongJ. LiH. LiZ. WangL. A review on flexible robotic systems for minimally invasive surgery.IEEE Trans. Syst. Man Cybern. Syst.202252163164410.1109/TSMC.2020.3026174
    [Google Scholar]
  28. JinX. GuoS. GuoJ. ShiP. TamiyaT. HirataH. Development of a tactile sensing robot-assisted system for vascular interventional surgery.IEEE Sens. J.20212110122841229410.1109/JSEN.2021.3066424
    [Google Scholar]
  29. YanY. WangH. YuH. WangF. FangJ. NiuJ. GuoS. Machine learning-based surgical state perception and collaborative control for a vascular interventional robot.IEEE Sens. J.20222277106711810.1109/JSEN.2022.3154921
    [Google Scholar]
  30. KundratD. DagninoG. KwokT.M. AbdelazizM.E. ChiW. NguyenA. RigaC. YangG.Z. An MR-Safe endovascular robotic platform: Design, control, and ex-vivo evaluation.IEEE Trans. Biomed. Eng.202168103110312110.1109/TBME.2021.306514633705306
    [Google Scholar]
  31. ZhouW. GuoS. GuoJ. MengF. ChenZ. LyuC. A surgeon’s habits-based novel master manipulator for the vascular interventional surgical master-slave robotic system.IEEE Sens. J.202222109922993110.1109/JSEN.2022.3166674
    [Google Scholar]
  32. ColvardB. GeorgY. LejayA. RiccoJ.B. SwanstromL. LeeJ. BismuthJ. ChakféN. ThaveauF. Total robotic iliac aneurysm repair with preservation of the internal iliac artery using sutureless vascular anastomosis.J. Vasc. Surg. Cases Innov. Tech.20195321822410.1016/j.jvscit.2019.01.00131297470
    [Google Scholar]
  33. BaoX. GuoS. GuoY. YangC. ShiL. LiY. JiangY. Multilevel operation strategy of a vascular interventional robot system for surgical safety in teleoperation.IEEE Trans. Robot.20223842238225010.1109/TRO.2022.3140887
    [Google Scholar]
  34. WangS. LiuZ. CaoY. ZhangL. XieL. Improved precise guidewire delivery of a cardiovascular interventional surgery robot based on admittance control.Int. J. CARS202319220922110.1007/s11548‑023‑03017‑737787938
    [Google Scholar]
  35. LuQ. ShenY. XiaS. ChenB. WangK. A novel universal endovascular robot for peripheral arterial stent–assisted angioplasty: initial experimental results.Vasc. Endovascular Surg.202054759860410.1177/153857442094083232662355
    [Google Scholar]
  36. GuoS. SongY. YinX. ZhangL. TamiyaT. HirataH. IshiharaH. A novel robot-assisted endovascular catheterization system with haptic force feedback.IEEE Trans. Robot.201935368569610.1109/TRO.2019.2896763
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965315739240906103348
Loading
/content/journals/raeeng/10.2174/0123520965315739240906103348
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test