Skip to content
2000
Volume 18, Issue 9
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

It presents a thorough analysis of Multilevel Inverter (MLI) topologies. The standard two-level converters are expensive, heavy, and cause substantial switching loss in order to obtain the sinusoidal output waveform. This is due to the requirement of the filter circuit. Multilevel Inverter topologies are becoming increasingly popular in power electronics inverters as a solution to this issue in recent years. The Multilevel Inverter configuration, which generates output voltage in more than two levels to get the stepped voltage minimizing total harmonic distortion (THD) and lowering switching frequencies, eliminates the need for bulky transformers and filter circuits. To assess the inverter efficiency, the optimal output voltage with less harmonic content requires the correct switching mechanism. In order to achieve excellent power quality and minimal switching loss, the power consumption must also be taken into consideration while choosing the topology and control method. However, because separate gate drivers are used for the switching components, it is vital to reduce count of semiconductors because this increases the complexity of the circuit. The advantages, disadvantages, and applications of MLI topologies are deliberated in this work.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965309258240917150616
2024-10-03
2026-01-08
Loading full text...

Full text loading...

References

  1. SarebanzadehM. HosseinzadehM.A. GarciaC. BabaeiE. IslamS. RodriguezJ. Reduced Switch Multilevel Inverter Topologies for Renewable Energy Sources.IEEE Access2021912058012059510.1109/ACCESS.2021.3105832
    [Google Scholar]
  2. BughnedaA. SalemM. RichelliA. IshakD. AlataiS. Review of Multilevel Inverters for PV Energy System Applications.Energies2021146158510.3390/en14061585
    [Google Scholar]
  3. WangY. DuG. LiangJ. QinM. Flexible cascaded multilevel inverter with multiple operation modes.J. Power Electron.202020367568610.1007/s43236‑020‑00060‑4
    [Google Scholar]
  4. VenkataramanaiahJ. SureshY. PandaA.K. A review on symmetric, asymmetric, hybrid and single DC sources based multilevel inverter topologies.Renew. Sustain. Energy Rev.20177678881210.1016/j.rser.2017.03.066
    [Google Scholar]
  5. MerajS.T. YahayaN.Z. HasanK. Hossain LipuM.S. MasaoudA. AliS.H.M. HussainA. OthmanM.M. MumtazF. Three-PhaseS-L.M.V.S.I. Three-Phase Six-Level Multilevel Voltage Source Inverter: Modeling and Experimental Validation.Micromachines (Basel)2021129113310.3390/mi1209113334577776
    [Google Scholar]
  6. AmirA. AmirA. SelvarajJ. Abd RahimN. Grid-connected photovoltaic system employing a single-phase T-type cascaded H-bridge inverter.Sol. Energy202019964565610.1016/j.solener.2020.02.045
    [Google Scholar]
  7. ColakI. KabalciE. BayindirR. Review of multilevel voltage source inverter topologies and control schemes.Energy Convers. Manage.201052211141128
    [Google Scholar]
  8. Sumit SanjeevkumarR.A. A novel generalised topology of a reduced part count multilevel inverter with level boosting network to improve the quality of supply.Glob. Transit. Proc.20212223824510.1016/j.gltp.2021.08.019
    [Google Scholar]
  9. ThakreK. MohantyK.B. KommukuriV.S. ChatterjeeA. NigamP. GuptaS.K. Modified cascaded multilevel inverter for renewable energy systems with less number of unidirectional switches.Energy Rep.202285296530410.1016/j.egyr.2022.03.167
    [Google Scholar]
  10. VemugantiH.P. SreenivasaraoD. GanjikuntaS.K. SuryawanshiH.M. Abu-RubH. A Survey on Reduced Switch Count Multilevel Inverters.IEEE Open J. Ind. Electron. Soc.202128011110.1109/OJIES.2021.3050214
    [Google Scholar]
  11. DhanamjayuluC. KhasimS.R. PadmanabanS. ArunkumarG. Holm-NielsenJ.B. BlaabjergF. Design and Implementation of Multilevel Inverters for Fuel Cell Energy Conversion System.IEEE Access2020818369018370710.1109/ACCESS.2020.3029153
    [Google Scholar]
  12. Nasr EsfahaniF. DarwishA. MassoudA. PV/Battery Grid Integration Using a Modular Multilevel Isolated SEPIC-Based Converter.Energies20221515546210.3390/en15155462
    [Google Scholar]
  13. SiddiqueM.D. MekhilefS. ShahN.M. SarwarA. IqbalA. MemonM.A. A new multilevel inverter topology with reduce switch count.IEEE Access20197585845859410.1109/ACCESS.2019.2914430
    [Google Scholar]
  14. SiddiqueM.D. MekhilefS. ShahN.M. MemonM.A. Optimal Design of a New Cascaded Multilevel Inverter Topology With Reduced Switch Count.IEEE Access20197244982451010.1109/ACCESS.2019.2890872
    [Google Scholar]
  15. MerajS.T. A Pensil Shaped 9-Level Multilevel Inverter with Voltage Boosting Ability: Configuration and Experimental Investigation.IEEE Access20221011131011132110.1109/ACCESS.2022.3194950
    [Google Scholar]
  16. SalemA. NarimaniM. Offline-Based SVM Techniques to Reduce Common-Mode Voltage of Six-Phase Cascaded-CSI.IEEE Open J. Power Electron.2022352153410.1109/OJPEL.2022.3193058
    [Google Scholar]
  17. EsmaeiliS. AzimiE. HafeziH. MahmoudiA. JamilM. KhanA.A. Magnetically Coupled Single-Phase AC-AC Converter With Reduced Number of Passive Components.IEEE Access202210796287964310.1109/ACCESS.2022.3192656
    [Google Scholar]
  18. SabyasachiS. BorghateV.B. KarasaniR.R. MaddugariS.K. SuryawanshiH.M. Hybrid Control Technique-Based Three-Phase Cascaded Multilevel Inverter Topology.IEEE Access20175269122692110.1109/ACCESS.2017.2727551
    [Google Scholar]
  19. MerajS.T. YahayaN.Z. HasanK. MasaoudA. Single phase 21 level hybrid multilevel inverter with reduced power components employing low frequency modulation technique.Int. J. Power Electron. Drive Syst.202011281082210.11591/ijpeds.v11.i2.pp810‑822
    [Google Scholar]
  20. KampitsisG. BatzelisE.I. MitchesonP.D. PalB.C. A Clamping-Circuit-Based Voltage Measurement System for High-Frequency Flying Capacitor Multilevel Inverters.IEEE Transac. Power Electron.202237101230112315
    [Google Scholar]
  21. LashabA. SeraD. HahnF. A Reduced power switches count Multilevel converter-based Photovoltaic System with Integrated Energy Storage.IEEE Trans. Ind. Electron.20209911
    [Google Scholar]
  22. MahatoB. MajumdarS. JanaK.C. AgrawalA. ShrivastavaA. A Generalized Series-Connected Multilevel Inverter (MLI) Based on Reduced Power Electronic Devices for Symmetrical/Asymmetrical Sources.Arab. J. Sci. Eng.2022
    [Google Scholar]
  23. ArunN. NoelM.M. Crisscross switched multilevel inverter using cascaded semi‐half‐bridge cells.IET Power Electron.2018111233210.1049/iet‑pel.2016.0644
    [Google Scholar]
  24. AvanakiH.N. Reduced switch-count structure for symmetrical multilevel inverters with a novel switched-DC-source submodule.IET Power Electron.20191231132110.1049/iet‑pel.2018.5089
    [Google Scholar]
  25. LeeS.S. ChuB. IdrisN.R.N. GohH.H. HengY.E. Switched-Battery Boost-Multilevel Inverter with GA Optimized SHEPWM for Standalone Application.IEEE Trans. Ind. Electron.20166342133214210.1109/TIE.2015.2506626
    [Google Scholar]
  26. GuptaA. Power quality evaluation of photovoltaic grid interfaced cascaded H-bridge nine-level multilevel inverter systems using D-STATCOM and UPQC.Energy202223812170710.1016/j.energy.2021.121707
    [Google Scholar]
  27. ThakkarN. AgrawalR. A Comprehensive Introduction to Numerous MLI Topologies with Reduced Component Count.Int. J. Scientific Res. Develop.2019705463468
    [Google Scholar]
  28. KommojuN.D.V.S.E. MohanA.N.D. VishnuramP. SelimA. BajajM. KotbH. KamelS. Comprehensive Study on Reduced DC Source Count: Multilevel Inverters and Its Design Topologies.Energies20231618
    [Google Scholar]
  29. ChoudhuryS. BajajM. DashT. KamelS. JuradoF. InverterM. Multilevel Inverter: A Survey on Classical and Advanced Topologies, Control Schemes, Applications to Power System and Future Prospects.Energies20211418577310.3390/en14185773
    [Google Scholar]
  30. BassiH.M. SalamZ. A New Hybrid Multilevel Inverter Topology with Reduced Switch Count and dc Voltage Sources.Energies201912697710.3390/en12060977
    [Google Scholar]
  31. TashiwaIbrahim Emmanuel DungGyang Davou AdoleBenson Stephen Review of Multilevel Inverters and Their Control Techniques.European J. Eng. Technol. Res.202056659664
    [Google Scholar]
  32. Vinay KumarN.V. Gowri ManoharT. A comprehensive survey on reduced switch count multilevel inverter topologies and modulation techniques.J. Electric. Syst. Technol.202310310.1186/s43067‑023‑00071‑8
    [Google Scholar]
  33. BarnawiA.B. AbdullR.A. Review of multilevel inverter for high-power applications.Front. Eng. Built Environ.2023477789
    [Google Scholar]
  34. ShahaneR. RaoK.N. ShuklaA. A Review on Hybrid Modular Multilevel Converters for Medium Voltage Applications.IEEE Energy Conversion Congress and Exposition., 2022 Detroit, MI, USA
    [Google Scholar]
  35. YahyaA. HusainN. SyedM. Multilevel Inverter-a survey for MV and HV applications.Int. J. Sci. Eng. Res.20156114531460
    [Google Scholar]
  36. MerajS.T. YuS.S. RahmanM.S. HasanK. Hossain LipuM.S. TrinhH. Energy management schemes, challenges and impacts of emerging inverter technology for renewable energy integration towards grid decarbonization.J. Clean. Prod.202340513700210.1016/j.jclepro.2023.137002
    [Google Scholar]
  37. BernetS. Recent developments of high power converters for industry and traction applications.IEEE Trans. Power Electron.20001561102111710.1109/63.892825
    [Google Scholar]
  38. SrinivasanG.K. RiveraM. LoganathanV. RavikumarD. MohanB. Trends and Challenges in Multi-Level Inverter with Reduced Switches.Electronics (Basel)202110436810.3390/electronics10040368
    [Google Scholar]
  39. Abu-RubH. HoltzJ. RodriguezJ. Ge Baoming Medium-Voltage Multilevel Converters—State of the Art, Challenges, and Requirements in Industrial Applications.IEEE Trans. Ind. Electron.20105782581259610.1109/TIE.2010.2043039
    [Google Scholar]
  40. SuG.J. Multilevel DC-link inverter.IEEE Trans. Ind. Appl.200541384885410.1109/TIA.2005.847306
    [Google Scholar]
  41. BenmerabetM.S. TalhaA. BerkoukE.M. A novel asymmetrical inverter proposal based on switched series/parallel inverter.Int. Trans. Electr. Energy Syst.2019295e283010.1002/2050‑7038.2830
    [Google Scholar]
  42. BabaeiE. A cascade multilevel converter topology with reduced number of switches.IEEE Trans. Power Electron.20082362657266410.1109/TPEL.2008.2005192
    [Google Scholar]
  43. Mohanish WakodeMr. Manjeet SakhareMr. Vaishali MalekarMs. Model Predictive Control for a Seven-Level Packed U-Cell Inverter Is Implemented In The Real Time.Int. J. Res. Eng. Sci.202193643
    [Google Scholar]
  44. PakdelM. JalilzadehS. A New Family of Multilevel Grid Connected Inverters Based on Packed U Cell Topology.Sci. Rep.2017711239610.1038/s41598‑017‑12806‑528963473
    [Google Scholar]
  45. JasniM.H. AyobS.M. AyopR. Performance Analysis of Cross-Connected Sources Multilevel Inverter (CCSMLI) based on NLM and SHE Switching Schemes, Elektrika.J. Electric. Eng.20222124249
    [Google Scholar]
  46. AgrawalR. JainS. An Improvisation of CCS-MLI Topology in Terms of Maximization of Levels.J. Inst. Electron. Telecommun. Eng.201763565166110.1080/03772063.2017.1304288
    [Google Scholar]
  47. KangarluM.F. BabaeiE. A Generalized Cascaded Multilevel Inverter Using Series Connection of Submultilevel Inverters.IEEE Trans. Power Electron.201328262563610.1109/TPEL.2012.2203339
    [Google Scholar]
  48. SatyanarayanaK.V.V. A Reduced Switch Count Multilevel Module Multilevel Converter Topology.Int. J. Emerg. Technol.2019103148159
    [Google Scholar]
  49. VargheseN. RasheedR. Design of a New Five Level MLM based Multilevel InverterIEEE International Power and Renewable Energy Conference (IPRECON), 2020 p. 931527110.1109/IPRECON49514.2020.9315271
    [Google Scholar]
  50. KangS.H. LeeF.S. A new structure of H-bridge multilevel inverter.2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon), 2008 Bengaluru, India
    [Google Scholar]
  51. Arun Noyal DossM. MohanrajK. Sayantan Bhattacharjee, Maulik Tiwari, Devashish Vashishtha, Photovoltaic fed multilevel inverter using reverse voltage topology for standalone systems.Int. J. Power Electron. Drive Syst.201910313471354
    [Google Scholar]
  52. DileepK. SatishB. New Reverse VoltageA. (RV) Topology for Multi-Level Inverters Fed to Induction Motor Drive.Int. J. Eng. Res. Technol. (Ahmedabad)20143134
    [Google Scholar]
  53. ShrivasP. Reverse Voltage Topology for Multilevel Inverters.IJIREEICE2019517
    [Google Scholar]
  54. NilkarM. BabaeiE. A New Single-Phase Cascade Multilevel Inverter Topology Using Four-Level Cells.20th Iranian Conference on Electrical Engineering, 2012 Tehran, Iran.10.1109/IranianCEE.2012.6292382
    [Google Scholar]
  55. MohammedM.F. QasimM.A. Single Phase T-Type Multilevel Inverters for Renewable Energy Systems, Topology, Modulation, and Control Techniques: A Review.Energies20221522872010.3390/en15228720
    [Google Scholar]
  56. WoldegiorgisD. MantoothA. Five-level Hybrid T-type Inverter Topology with Mixed "Si+SiC" Semiconductor Device Configuration.IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia)2021
    [Google Scholar]
  57. LeeS.S. LeeK.B. Switched-Capacitor-Based Modular T-Type Inverter.IEEE Trans. Ind. Electron.20216875725573210.1109/TIE.2020.2992963
    [Google Scholar]
  58. MerajS.T. HasanK. MasaoudA. A Novel Configuration of Cross-Switched T-Type (CT-Type) Multilevel Inverter.IEEE Trans. Power Electron.20203543688369610.1109/TPEL.2019.2935612
    [Google Scholar]
  59. MerajS.T. YahayaN.Z. HasanK. MasaoudA. A hybrid T-type (HT-type) multilevel inverter with reduced components.Ain Shams Eng. J.20211221959197110.1016/j.asej.2020.12.010
    [Google Scholar]
  60. BabaeiE. AliluS. LaaliS. A new general topology for cascaded multilevel inverters with reduced number of components based on developed H-Bridge.IEEE Trans. Ind. Electron.20146183932393910.1109/TIE.2013.2286561
    [Google Scholar]
  61. EbrahimiJ. BabaeiE. GharehpetianG.B. A new multilevel converter topology with reduced number of power electronic components.IEEE Trans. Ind. Electron.201259265566710.1109/TIE.2011.2151813
    [Google Scholar]
  62. AliJ.S.M. KhanA.R. PanduranganG.N. PonnusamyP. AlamriF.S. BahajS.A. A 7L and 11L High Step-Up SCMLI Topology With Reduced Component Voltage Stress.IEEE Access20231113978513979710.1109/ACCESS.2023.3333363
    [Google Scholar]
  63. YarlagaddaA.K. VermaV. TariqM. UroojS. A Seven Level Fault Tolerant Switched Capacitor Boost Inverter With a Single DC Source.IEEE Access20231113154913156110.1109/ACCESS.2023.3332920
    [Google Scholar]
  64. NiaziY. RajaeiA. TehraniV.M. ShasadeghiM. MobayenS. SkruchP. A Switched-Capacitor Multi-Level Inverter With Variable Voltage Gain Based on Current-Fed Dickson Voltage Multiplier.IEEE Access20231111935211936110.1109/ACCESS.2023.3327309
    [Google Scholar]
  65. HaghighianS.K. YehH.G. MarangaluM.G. KurdkandiN.V. AbbasiM. TarzamniH. A Seventeen-Level Step-Up Switched-Capacitor-Based Multilevel Inverter With Reduced Charging Current Stress on Capacitors for PV Applications.IEEE Access20231111812411814310.1109/ACCESS.2023.3325212
    [Google Scholar]
  66. ManojP. KirubakaranA. SomasekharV.T. A Quasi-Switched Capacitor Based Grid-Connected PV Inverter With Minimum Leakage Current.IEEE J. Emerg. Sel. Top. Power Electron.20231165969597810.1109/JESTPE.2023.3313625
    [Google Scholar]
  67. KumarD. RaushanR. ChakrabortyS. A Single Source Quadruple Boost Nine-Level Switched-Capacitor Inverter With Reduced Components and Continuous Input Current.IEEE Access202412529225293310.1109/ACCESS.2024.3386747
    [Google Scholar]
  68. BoomaN. Nine level cascaded H-bridge multilevel DC-link inverter.International Conference on Emerging Trends in Electrical and Computer Technology, 2011 Nagercoil, India
    [Google Scholar]
  69. BoomaN. Simulation of Nine Level Cascaded H-bridge Multilevel DC-Link Inverter.Int. J. Electron. Commun. Comp. Eng.20112222784209
    [Google Scholar]
  70. Prachi BandaS.P. Single Phase Seven Level MLDCL Inverter with Half Bridge Cell Topology.Int. J. Eng. Res. Technol. (Ahmedabad)201439577580
    [Google Scholar]
  71. HinagoY. KoizumiH. A Single-Phase Multilevel Inverter Using Switched Series/Parallel DC Voltage Sources.IEEE Trans. Ind. Electron.20105782643265010.1109/TIE.2009.2030204
    [Google Scholar]
  72. GeethaR. RamaswamyM. New series parallel switched multilevel inverter for a three phase induction motor.J. Vib. Control20182481440145410.1177/1077546316661466
    [Google Scholar]
  73. EzhilarasanG. MohanrajK. VishnuramP. BajajM. BlazekV. ProkopL. MisakS. An empirical survey of topologies, evolution, and current developments in multilevel inverters.Alex. Eng. J.20238314819410.1016/j.aej.2023.10.049
    [Google Scholar]
  74. SabyasachiS. BorghateV.B. MaddugariS.K. A 21-Level Bipolar Single-Phase Modular Multilevel Inverter.J. Circuits Syst. Comput.2020291205000410.1142/S0218126620500048
    [Google Scholar]
  75. HassanifarM. NazarpourD. GolshannavazS. NeyshabouriY. A Modular Cascaded Multilevel Converter With High Configurability: Design, Analysis, and Optimization Study.IEEE J. Emerg. Sel. Top. Power Electron.202311185086110.1109/JESTPE.2021.3114501
    [Google Scholar]
  76. TripathiS. TomarS.S. SoniN. Multilevel Inverter topologies with Reduced Power Switch Count: - A Review.Int. J. Advance Res. Sci. Eng.20180703830836
    [Google Scholar]
  77. AzisA.H. EviningsihR.P. MochR.D.A. RamadhanN.S. Packed U-Cell Inverter with Mamdani Type Fuzzy Logic Controller to Regulate Output Voltage for Off-Grid Applications.2023 International Electronics Symposium (IES), 2023 Denpasar, Indonesia10.1109/IES59143.2023.10242569
    [Google Scholar]
  78. JuniorS.C.S. JacobinaC.B. FabricioE.L.L. FelintoA.S. Asymmetric 49-Levels Cascaded MPUC Multilevel Inverter Fed by a Single DC Source.IEEE Trans. Ind. Appl.20225867539754910.1109/TIA.2022.3202875
    [Google Scholar]
  79. SharmaP. SantA.V. A New 9-Level Modified Packed U-Cell Inverter.2023 IEEE 11th Region 10 Humanitarian Technology Conference (R10-HTC), 2023 Rajkot, India.
    [Google Scholar]
  80. EbrahimiF. WindarkoN.A. GunawanA.I. Reducing THD of 7-Level Packed U-cell Multilevel Inverter Using Genetic Algorithm2023 International Electronics Symposium (IES), 2023 Denpasar, Indonesia.10.1109/IES59143.2023.10242460
    [Google Scholar]
  81. AbdelbassetK. RefaatS.S. TrabelsiM. Model Predictive Control of a 9- Level Packed U-Cells based Grid-Connected PV System.2019 2nd International Conference on Smart Grid and Renewable Energy (SGRE), 2019 Doha, Qatar.
    [Google Scholar]
  82. DewanganN.K. GuptaK.K. SinghM. A Level-Increment Circuit for Multilevel Inverter Based on Cross-Connected Sources.IEEE International Future Energy Electronics Conference (IFEEC), 2023 Sydney, Australia.10.1109/IFEEC58486.2023.10458583
    [Google Scholar]
  83. Jagabar SathikM. SandeepN. Dhafer Almakhles, Frede Blaabjerg, Cross Connected Compact Switched-Capacitor Multilevel Inverter.Topol. Red. Switch Count2020671232873291
    [Google Scholar]
  84. KumarR. SubudhiP.S. Simulation Analysis of a Nearest Level Modulation Scheme for Cross-Connected Sources based MLI.2019 Innovations in Power and Advanced Computing Technologies (i-PACT), 2019 22-23 March 2019.
    [Google Scholar]
  85. SulakeN.R. ., Cross Connected Source based Reduced Switch Count Multilevel Inverter Topology with Fault Tolerance.Global Conference for Advancement in Technology (GCAT), 2019 Bangalore, India.
    [Google Scholar]
  86. Vinay KumarN.V. Gowri ManoharT. A comprehensive survey on reduced switch count multilevel inverter topologies and modulation techniques.J. Electric. Syst. Inform. Technol.2023103
    [Google Scholar]
  87. TaieaA. Three phase modular multilevel inverter-based multi-terminal asymmetrical DC inputs for renewable energy applications.Int. J. Eng. Sci. Technol.2020234831839
    [Google Scholar]
  88. VargheseN. RasheedR. Design of a New Five Level MLM based Multilevel Inverter.2020 IEEE International Power and Renewable Energy Conference, 2020 Karunagappally, India.10.1109/IPRECON49514.2020.9315271
    [Google Scholar]
  89. GuptaK.K. JainS. Multilevel inverter topology based on series connected switched sources.IET Power Electron.20136116417410.1049/iet‑pel.2012.0209
    [Google Scholar]
  90. VelaniM. MatnaniM. KhuntK. SantokiK. PedhadiyaS. Analysis of a Nearest Level Modulation Scheme for a Cascaded/Series Connected Switched Sources (SCSS) based MLI.3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), 2019 Noida, India.
    [Google Scholar]
  91. XingL. WeiQ. Series-ConnectedC.S.I.W.L.S. Series-Connected Current Source Inverters With Less Switches.IEEE Trans. Power Electron.20203565553555610.1109/TPEL.2019.2951794
    [Google Scholar]
  92. NajafiE. YatimA.H. SamosirA.S. A New Topology -Reversing Voltage (RV) - for Multi-Level Inverters.Power Energy Conf.2009
    [Google Scholar]
  93. Nagaraja RaoS. ManjunathaB.M. Suresh KumarA. Kiran KumarB.M. Satish KumarR. PranupaS. An assessment of advanced DC-link based reversing voltage type multilevel inverter topologies.Int. Rev. Appl. Sci. Eng.202314110011310.1556/1848.2022.00448
    [Google Scholar]
  94. Nagaraja RaoS. Ashok Kumar DrD.V. Sai BabuC. Integration of reversing voltage multilevel inverter topology with high voltage gain boost converter for distributed generation.Int. J. Power Electron. Drive Syst.201891210219
    [Google Scholar]
  95. Toupchi KhosroshahiM. Crisscross cascade multilevel inverter with reduction in number of components.IET Power Electron.20147122914292410.1049/iet‑pel.2013.0541
    [Google Scholar]
  96. LinW. ZengJ. LiuJ. YanZ. HuR. GeneralizedS.S-U.M.I.U.C.C.U. Generalized Symmetrical Step-Up Multilevel Inverter Using Crisscross Capacitor Units.IEEE Trans. Ind. Electron.20206797439745010.1109/TIE.2019.2942554
    [Google Scholar]
  97. NilkarM. Ebrahim BabaeiM. A new single-phase cascade multilevel inverter topology using four-level cells.20th Iranian Conf. Electric. Eng.20122012348353
    [Google Scholar]
  98. KhanA. AhmadM. BhattiM.A. IjazM.A. UllahS. A Comparative Study of Multilevel Inverter Typologies with Reduced SwitchesInternational Conference on Engineering and Emerging Technologies (ICEET), 2019 Lahore, Pakistan.10.1109/CEET1.2019.8711851
    [Google Scholar]
  99. OmerP. KumarJ. SurjanB.S. A Review on Reduced Switch Count Multilevel Inverter Topologies.IEEE Access20208222812230210.1109/ACCESS.2020.2969551
    [Google Scholar]
  100. di BenedettoM. LidozziA. SoleroL. CrescimbiniF. GrbovićP.J. Self-Balancing 3-phase 5-Level Flying E-Type Inverter for Photovoltaic Applications.2021 IEEE Energy Conversion Congress and Exposition (ECCE), 2021 Vancouver, BC, Canada.
    [Google Scholar]
  101. di BenedettoM. LidozziA. SoleroL. CrescimbiniF. GrbovićP.J. Five-Level E-Type Inverter for Grid-Connected Applications.IEEE Trans. Ind. Appl.20185455536554810.1109/TIA.2018.2859040
    [Google Scholar]
  102. SamadaeiE. GholamianS.A. SheikholeslamiA. AdabiJ. An Envelope Type (E-Type) Module: Asymmetric Multilevel Inverters With Reduced Components.IEEE Trans. Ind. Electron.201663117148715610.1109/TIE.2016.2520913
    [Google Scholar]
  103. SamadaeiE. SheikholeslamiA. GholamianS.A. AdabiJ. A Square T-Type (ST-Type) Module for Asymmetrical Multilevel Inverters.IEEE Trans. Power Electron.201833298799610.1109/TPEL.2017.2675381
    [Google Scholar]
  104. ChiranjeeviS. PattnaikS. SinghV.P. A Novel Cross Connected Square T-Type Multilevel Inverter.Advances in Automation, Signal Processing, Instrumentation, and ControlBerlin, HeidelbergSpringer Link202117371748
    [Google Scholar]
  105. SinghA. BhandariS. KumarJ. A Comparative Study on Multilevel Inverters with Reduced Number of Components – A Review.1st International Conference on Sustainable Technology for Power and Energy Systems (STPES), 2022 Srinagar, India.
    [Google Scholar]
  106. NadeemA. SohailM.M. A Review on Recent Multilevel Inverter Topologies with Reduced Count of ComponentsFirst International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI), 2023 Tiruchengode, India.10.1109/ICAEECI58247.2023.10370851
    [Google Scholar]
  107. IslamN. MohammadK. KhanR.A. SarwerZ. SarwarA. Symmetrical and Asymmetrical Multilevel Inverter Topologies with Reduced Device Count: A Review2nd International Conference for Emerging Technology (INCET), 2021 Belagavi, India.10.1109/INCET51464.2021.9456047
    [Google Scholar]
  108. VijayarajaL. Ganesh KumarS. RiveraM. A review on multilevel inverter with reduced switch countIEEE International Conference on Automatica (ICA-ACCA), 2016 Curico, Chile.10.1109/ICA‑ACCA.2016.7778467
    [Google Scholar]
  109. AnandV. SinghV. A 13-Level Switched-Capacitor Multilevel Inverter With Single DC Source.IEEE J. Emerg. Sel. Top. Power Electron.20221021575158610.1109/JESTPE.2021.3077604
    [Google Scholar]
  110. RoyT. TesfayM.W. NayakB. PanigrahiC.K. A 7-Level Switched Capacitor Multilevel Inverter With Reduced Switches and Voltage Stresses.IEEE Trans. Circuits Syst. II Express Briefs202168123587359110.1109/TCSII.2021.3078903
    [Google Scholar]
  111. MerajS.T. HasanM.K. IslamJ. El-EbiaryY.A.B. NebhenJ. HossainM.M. AlamM.K. VoN. A Diamond Shaped Multilevel Inverter With Dual Mode of Operation.IEEE Access20219598735988710.1109/ACCESS.2021.3067139
    [Google Scholar]
  112. BabaeiE. GowganiS.S. HybridM.I.U.S.C.U. Hybrid Multilevel Inverter Using Switched Capacitor Units.IEEE Trans. Ind. Electron.20146194614462110.1109/TIE.2013.2290769
    [Google Scholar]
  113. SarebanzadehM. HosseinzadehM.A. GarciaC. BabaeiE. HosseinpourM. SeifiA. RodriguezJ. A 15-Level Switched-Capacitor Multilevel Inverter Structure With Self-Balancing Capacitor.IEEE Trans. Circuits Syst. II Express Briefs20226931477148110.1109/TCSII.2021.3123115
    [Google Scholar]
  114. MerajS.T. YuS.S. RahmanM.S. ArefinA.A. LipuM.S.H. TrinhH. A novel extendable multilevel inverter for efficient energy conversion with fewer power components: Configuration and experimental validation.Int. J. Circuit Theory Appl.20245262760278510.1002/cta.3910
    [Google Scholar]
  115. WoldegiorgisD. WuY. WeiY. MantoothH.A. A High Efficiency and Low Cost ANPC Inverter Using Hybrid Si/SiC Switches.IEEE Open J. Ind. Appl.2021215416710.1109/OJIA.2021.3091549
    [Google Scholar]
  116. JenaK. Chinmoy KumarP.A.N.I.G.R.A.H.I. Krishna KumarG.U.P.T.A. A 6X-Voltage-Gain 13-Level Inverter With Self-Balanced Switched-Capacitors.CPSS Transac. Power Electron. Appl.2022719410210.24295/CPSSTPEA.2022.00009
    [Google Scholar]
  117. SaahithiS. RaghuC.N. Sai ShashankK. Jyotheswara ReddyK. Investigation of Switched Capacitor Multi Level Inverter Topology for Different Voltage Levels.4th International Conference for Emerging Technology (INCET), 2023 Belgaum, India.
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965309258240917150616
Loading
/content/journals/raeeng/10.2174/0123520965309258240917150616
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test