Skip to content
2000
Volume 18, Issue 6
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Switched Reluctance Motors (SRMs) are renowned for their robustness, wide speed range, and high fault-tolerant capability, making them highly suitable for high-speed and safety-critical applications. Research has indicated that power converters are particularly susceptible to failure in switched reluctance motor drive systems (SRD). Open-circuit faults in the power converter or winding can result in phase-deficient operation, leading to decreased output torque and significant torque ripple in SRMs. On the other hand, a short-circuit fault in the power converter can cause a substantial increase in circuit current, potentially generating a large reverse braking torque that can destabilize the drive system and damage the entire system, thereby impacting the normal operation of the SRD. Consequently, it is imperative to conduct fault diagnosis and fault tolerance studies on power converters for SRD. In this article, the fault diagnosis of a switched reluctance motor power converter is summarised and described in four aspects, namely current detection methods, gate signals auxiliary, and mathematical analysis. Fault tolerance of switched reluctance motor is summarised and described in two aspects, namely improvement of power converter topology, fault tolerance, and control strategy. A new switched reluctance motor fault-tolerant power converter structure is proposed.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965305585240825084141
2024-08-30
2025-11-03
Loading full text...

Full text loading...

References

  1. RadunA.V. High-power density switched reluctance motor drive for aerospace applications.IEEE Trans. Ind. Appl.199228111311910.1109/28.120219
    [Google Scholar]
  2. LanY. BenomarY. DeepakK. AksozA. BaghdadiM.E. BostanciE. HegazyO. Switched reluctance motors and drive systems for electric vehicle powertrains: State of the art analysis and future trends.Energies2021148207910.3390/en14082079
    [Google Scholar]
  3. KoyuncuS. TuncerU. DalcaliA. OncuS. External rotor 6/8 switched reluctance motor design for e-Bike.10th International Conference on Renewable Energy Research and Application (ICRERA),Istanbul, Turkey, 2021, pp. 131-135.10.1109/ICRERA52334.2021.9598785
    [Google Scholar]
  4. SonI. LukmanG.F. ShahM.H. JeongK.I. AhnJ.W. Design considerations and selection of cost-effective switched reluctance drive for radiator cooling fans.Electronics (Basel)202110891710.3390/electronics10080917
    [Google Scholar]
  5. JiangJ. XiaT. An integrated charger with central-tapped winding switched reluctance motor drive.IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA),San Diego, CA, USA, 2017, pp. 870-874.10.1109/ICRERA.2017.8191184
    [Google Scholar]
  6. CordeiroA. Fernão PiresV. FoitoD. PiresA.J. MartinsJ.F. Three-level quadratic boost DC-DC converter associated to a SRM drive for water pumping photovoltaic powered systems.Sol. Energy2020209425610.1016/j.solener.2020.08.076
    [Google Scholar]
  7. MolletY. GyselinckJ. SarrazinM. Van Der AuweraerH. Experimental noise and vibration analysis of switched reluctance machines comparison of soft and hard chopping in transient conditions.International Conference on Renewable Energy Research and Applications (ICRERA),Palermo, Italy, 2015, pp. 420-425.10.1109/ICRERA.2015.7418448
    [Google Scholar]
  8. PanJ.F. ZouY. CheungN. CaoG. On the voltage ripple reduction control of the linear switched reluctance generator for wave energy utilization.IEEE Trans. Power Electron.201429105298530710.1109/TPEL.2013.2292069
    [Google Scholar]
  9. SongS. ChenS. LiuW. Analytical rotor position estimation for SRM based on scaling of reluctance characteristics from torque balanced measurement.IEEE Trans. Ind. Electron.20176453524353610.1109/TIE.2016.2645144
    [Google Scholar]
  10. TakenoM. ChibaA. HoshiN. OgasawaraS. TakemotoM. RahmanM.A. Test results and torque improvement of the 50-kW switched reluctance motor designed for hybrid electric vehicles.IEEE Trans. Ind. Appl.20124841327133410.1109/TIA.2012.2199952
    [Google Scholar]
  11. Khayam HoseiniS.R. FarjahE. GhanbariT. GiviH. Extended Kalman filter‐based method for inter‐turn fault detection of the switched reluctance motors.IET Electr. Power Appl.2016108714722[J].10.1049/iet‑epa.2015.0602
    [Google Scholar]
  12. ChenQ. XuD. XuL. WangJ. LinZ. ZhuX. Fault-tolerant operation of a novel dual-channel switched reluctance motor using two 3-phase standard inverters.IEEE Trans. Appl. Supercond.2018PP991110.1109/TASC.2018.2799838
    [Google Scholar]
  13. TorkamanH. AfjeiE. Sensorless method for eccentricity fault monitoring and diagnosis in switched reluctance machines based on stator voltage signature.IEEE Trans. Magn.201349291292010.1109/TMAG.2012.2213606
    [Google Scholar]
  14. LukmanG.F. Son NguyenX. JeongK-I. AhnJ-W. Design and performance analysis of switched reluctance motor with inner holes to reduce radial force.IEEE Energy Conversion Congress and Exposition (ECCE),Detroit, MI, USA, 2020.10.1109/ECCE44975.2020.9235634.
    [Google Scholar]
  15. PengW. GyselinckJ.J.C. AhnJ.W. LeeD.H. Minimal current sensing strategy for switched reluctance machine control with enhanced fault-detection capability.IEEE Trans. Ind. Appl.20195543725373510.1109/TIA.2019.2904433
    [Google Scholar]
  16. ChenH. GuanG. HanG. ChenH. Fault diagnosis and tolerant control strategy for position sensors of switched reluctance starter/generator systems.IEEE Trans. Transp. Electrif.2020641508151810.1109/TTE.2020.2997349
    [Google Scholar]
  17. DingW. SongK. Position sensorless control of switched reluctance motors using reference and virtual flux linkage with one-phase current sensor in medium and high speed.IEEE Trans. Ind. Electron.20206742595260610.1109/TIE.2019.2912764
    [Google Scholar]
  18. ValdiviaV. ToddR. BryanF.J. BarradoA. LazaroA. ForsythA.J. Behavioral modeling of a switched reluctance generator for aircraft power systems.IEEE Trans. Ind. Electron.20146162690269910.1109/TIE.2013.2276768
    [Google Scholar]
  19. GopalakrishnanS. OmekandaA.M. LequesneB. Classification and remediation of electrical faults in the switched reluctance drive.IEEE Trans. Ind. Appl.200642247948610.1109/TIA.2006.870044
    [Google Scholar]
  20. AliN. GaoQ. MaK. Detection and discrimination of multiple faults in switched reluctance motor drives for safety-critical applications.2022 IEEE International Conference on Industrial Technology (ICIT),Shanghai, China, 2022.10.1109/ICIT48603.2022.10002754.
    [Google Scholar]
  21. ChenH. LuS. Fault diagnosis digital method for power transistors in power converters of switched reluctance motors.IEEE Trans. Ind. Electron.201360274976310.1109/TIE.2012.2207661
    [Google Scholar]
  22. ChenH. HanG. ShiX. DongJ. Phase current digital analysis of power converter for freewheeling diode fault diagnosis on switched reluctance motor drive.IEEE Trans. Ind. Electron.20196686613662410.1109/TIE.2018.2889628
    [Google Scholar]
  23. MarquesJ.F. EstimaJ.O. GameiroN.S. Marques CardosoA.J. A new diagnostic technique for real-time diagnosis of power converter faults in switched reluctance motor drives.IEEE Trans. Ind. Appl.20145031854186010.1109/TIA.2013.2279898
    [Google Scholar]
  24. HanG. ChenH. ShiX. Modelling, diagnosis, and tolerant control of phase‐to‐phase fault in switched reluctance machine.IET Electr. Power Appl.20171191527153710.1049/iet‑epa.2017.0185
    [Google Scholar]
  25. HanG. ChenH. GuanG. Generalised fault diagnostic method for power transistors in asymmetric half‐bridge power converter of SRM drive.IET Electr. Power Appl.201913216818010.1049/iet‑epa.2018.5375
    [Google Scholar]
  26. AmaralT.G. PiresV.F. PiresA.J. MartinsJ.F. ChenH. Power transistor fault diagnosis in SRM drives based on indexes of symmetry.16th Biennial Baltic Electronics Conference (BEC),Tallinn, Estonia, 2018, pp. 1-4.10.1109/BEC.2018.8600966
    [Google Scholar]
  27. Hussain ShahS.M.M. AliN. LukmanG.F. HussainJ. AhnJ-W. A fault diagnostic analysis of power switches in SR drives based on freewheeling current.24th International Conference on Electrical Machines and Systems (ICEMS),Gyeongju, Korea, Republic of, 2021, pp. 2591-2595.10.23919/ICEMS52562.2021.9634447
    [Google Scholar]
  28. GameiroN.S. Marques CardosoA.J. A new method for power converter fault diagnosis in SRM drives.IEEE Trans. Ind. Appl.201248265366210.1109/TIA.2011.2180876
    [Google Scholar]
  29. HangJ. DingS. ZhangJ. ChengM. WangQ. Open-phase fault detection in delta-connected PMSM drive systems.IEEE Trans. Power Electron.20183386456646010.1109/TPEL.2017.2772793
    [Google Scholar]
  30. GanC. WuJ. HuY. YangS. CaoW. GuerreroJ.M. New integrated multilevel converter for switched reluctance motor drives in plug-in hybrid electric vehicles with flexible energy conversion.IEEE Trans. Power Electron.20173253754376610.1109/TPEL.2016.2583467
    [Google Scholar]
  31. LeeK. ParkN. KimK. HyunD. Simple fault detection and tolerant scheme in VSI-fed switched reluctance motor.37th IEEE Power Electronics Specialists Conference,Jeju, Korea (South), 2006, pp. 1-6.10.1109/pesc.2006.1712238
    [Google Scholar]
  32. ParkB. KimT. RyuJ. HyunD. Fault tolerant strategies for bldc motor drives under switch faults.Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting,Tampa, FL, USA, 2006, pp. 1637-1641.10.1109/IAS.2006.256755
    [Google Scholar]
  33. CuiB. RenZ. Fault detection and isolation of inverter based on FFT and neural network.Trans. China Electrotech. Soc.20062173743
    [Google Scholar]
  34. WangX. WangZ. XuZ. ChengM. WangW. HuY. Comprehensive diagnosis and tolerance strategies for electrical faults and sensor faults in dual three-phase PMSM drives.IEEE Trans. Power Electron.20193476669668410.1109/TPEL.2018.2876400
    [Google Scholar]
  35. GanC. ChenY. QuR. YuZ. KongW. HuY. An overview of fault-diagnosis and fault-tolerance techniques for switched reluctance machine systems.IEEE Access2019717482217483810.1109/ACCESS.2019.2956552
    [Google Scholar]
  36. ZhangL. HuY. HuangW. Fault diagnosis and tolerant techniques of inverter in three-phase variable frequency drive system.Trans. China Electrotech. Soc.2004191219
    [Google Scholar]
  37. LuS. ChenH. ZanX. Fault diagnosis and fault-tolerant control strategy for power converter of switched reluctance motor.Trans. China Electrotech. Soc.20092411199206
    [Google Scholar]
  38. ArkadanA.A. DuP. SidaniM. BoujiM. Performance prediction of SRM drive systems under normal and fault operating conditions using GA-based ANN method.IEEE Trans. Magn.20003641945194910.1109/20.877828
    [Google Scholar]
  39. GanC. SunQ. WuJ. KongW. ShiC. HuY. MMCbased SRM drives with decentralized battery energy storage system for hybrid electric vehicles.IEEE Trans. Power Electron.20193432608262110.1109/TPEL.2018.2846622
    [Google Scholar]
  40. GanC. MengF. YuZ. QuR. LiuZ. SiJ. Online calibration of sensorless position estimation for switched reluctance motors with parametric uncertainties.IEEE Trans. Power Electron.20203511123071232010.1109/TPEL.2020.2983103
    [Google Scholar]
  41. BostanciE. MoallemM. ParsapourA. FahimiB. Opportunities and challenges of switched reluctance motor drives for electric propulsion: A comparative study.IEEE Trans. Transp. Electrif.201731587510.1109/TTE.2017.2649883
    [Google Scholar]
  42. YadavR.R. LokhandeM.M. AwareM.V. Fault diagnosis of power transistors in power converter used in switched reluctance motor drive.IEEE Renewable Energy and Sustainable E-Mobility Conference (RESEM),May 2023.10.1109/RESEM57584.2023.10236273.
    [Google Scholar]
  43. AliN. GaoQ. SovičkaP. MakyšP. ŠtulrajterM. MaK. Power converter fault detection and isolation using high-frequency voltage injection in switched reluctance motor drives for automotive applications.IEEE J. Emerg. Sel. Top. Power Electron.20221033395340810.1109/JESTPE.2020.3022575
    [Google Scholar]
  44. AliN. GaoQ. XuC. MakysP. StulrajterM. Fault diagnosis and tolerant control for power converter in SRM drives.J. Eng. (Stevenage)201820181354655110.1049/joe.2018.0012
    [Google Scholar]
  45. AliN. WangQ. GaoQ. MaK. Fast detection of power transistor faults in srm drives based on transient pulse injection.IEEE J. Emerg. Sel. Top. Power Electron.20231155256526710.1109/JESTPE.2023.3293002
    [Google Scholar]
  46. ShinH-U. LeeK-B. Fault diagnosis method for power transistors in switched reluctance machine drive system.Proc. IEEE 8th Int. Power Electron. Motion Control Conf. (IPEMC-ECCE Asia),Hefei, China, 2016.10.1109/IPEMC.2016.7512688.
    [Google Scholar]
  47. HanG. ZhuB. Virtual current coefficients based power transistors fault diagnosis for small power EV-SRM drives.IEEE Trans. Transp. Electrif.2021742881289110.1109/TTE.2021.3082146
    [Google Scholar]
  48. WangR. LiuY. GuanZ. Short-circuit fault diagnosis of SRM power converter based on interval current.J Beijing Univ Aeronaut Astronaut20214761085109410.13700/j.bh.1001‑5965.2020.0134
    [Google Scholar]
  49. ChenH. ChenH. HanG. GuanG. Power transistors’ fault diagnosis method of SR S/G for more electric aircraft with cross-leg current analysis.IEEE Trans. Transp. Electrif.2020641528153610.1109/TTE.2020.3019249
    [Google Scholar]
  50. XuS. ChenH. DongF. CuiS. Online sensorless fault diagnosis and remediation strategies selection of transistors for power converter in SRD.IET Electr. Power Appl.201913101553156410.1049/iet‑epa.2019.0087
    [Google Scholar]
  51. S.X. Research on reliability evaluation and improvement method of switched reluctance motor system.PhD Dissertation, China University of Mining and technology2019
    [Google Scholar]
  52. RoH.S. KimD.H. JeongH.G. LeeK.B. Tolerant control for power transistor faults in switched reluctance motor drives.IEEE Trans. Ind. Appl.20155143187319710.1109/TIA.2015.2411662
    [Google Scholar]
  53. ZhouZ. LiuY-Z. SongJ-L. LinB-W. WangC. A method for power converter fault diagnosis.IEEE International Conference on Aircraft Utility Systems (AUS), Beijing, China, 2016, pp. 62-67.10.1109/AUS.2016.7748021
    [Google Scholar]
  54. AmaralT.G. Fernao PiresV. FoitoD. CordeiroA. RochaJ-I. ChavesM. PiresA.J. MartinsJ.F. A fault diagnosis scheme based on the normalized indexes of the images eccentricity for a multilevel converter of a switched reluctance motor drive.11th IEEE International Conference on Renewable Energy Research and Applications, ICRERA,2022.10.1109/ICRERA55966.2022.9922711
    [Google Scholar]
  55. GameiroN.S. Marques CardosoA.J. Fault tolerant control strategy of SRM drives.2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion,Ischia, Italy, 2008, pp. 301-306.10.1109/SPEEDHAM.2008.4581086
    [Google Scholar]
  56. GanC. WuJ. YangS. HuY. CaoW. SiJ. Fault diagnosis scheme for open‐circuit faults in switched reluctance motor drives using fast Fourier transform algorithm with bus current detection.IET Power Electron.201691203010.1049/iet‑pel.2014.0945
    [Google Scholar]
  57. GanC. WuJ. YangS. HuY. CaoW. Wavelet packet decomposition-based fault diagnosis scheme for srm drives with a single current sensor.IEEE Trans. Energ. Convers.201631130331310.1109/TEC.2015.2476835
    [Google Scholar]
  58. TangC. YangJ. RenX. JinK. ChenZ. DuanmuZ. Fault diagnosis of power converter for switched reluctance motor system based on wavelet transform.J. Electr. Mach. Control. App.20184510125131
    [Google Scholar]
  59. K. S.V. D.P. R. S.R. ShaheedM. K. N.P. Analysis of converter fault in switched reluctance motor using finite element method.IEEE 19th India Council International Conference (INDICON),Kochi, India, 2022, pp. 1-6.10.1109/INDICON56171.2022.10039700.
    [Google Scholar]
  60. JingwenZ. LixinX. DunxinB. Fault diagnosis of switched reluctance motor power converter based on VMD-MPE.24th International Conference on Electrical Machines and Systems (ICEMS),2021, pp. 2546-2550.10.23919/ICEMS52562.2021.9634232
    [Google Scholar]
  61. FangC. ChenH. TorkamanH. AnuchinA. LiX. Fault diagnosis for power transistors in a converter of switched reluctance motors based on current features.IEEE Sensors Journal2214141423202210.1109/JSEN.2021.3128487
    [Google Scholar]
  62. MohamedA.H. VansompelH. SergeantP. Reconfigurable modular fault-tolerant converter topology for switched reluctance motors.IEEE J. Emerg. Sel. Top. Power Electron.20221032890290210.1109/JESTPE.2021.3130124
    [Google Scholar]
  63. HuY. GanC. CaoW. ZhangJ. LiW. FinneyS.J. Flexible fault-tolerant topology for switched reluctance motor drives.IEEE Trans. Power Electron.20163164654466810.1109/TPEL.2015.2477165
    [Google Scholar]
  64. CordeiroA. PiresV.F. PiresA.J. MartinsJ.F. ChenH. Fault-tolerant voltage-source-inverters for switched reluctance motor drives.IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG),2019.10.1109/CPE.2019.8862394
    [Google Scholar]
  65. MaM. YuanK. YangQ. YangS. Open-circuit fault-tolerant control strategy based on five-level power converter for SRM system.CES TEMS20193217818610.30941/CESTEMS.2019.00024
    [Google Scholar]
  66. PiresV.F. CordeiroA. FoitoD. PiresA.J. Multilevel converter with fault-tolerant capability for the switched reluctance machine.28th International Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED),Moscow, Russia, 2021, pp. 1-6.10.1109/IWED52055.2021.9376359
    [Google Scholar]
  67. Fernão PiresV. CordeiroA. FoitoD. PiresA.J. MartinsJ. ChenH. A multilevel fault-tolerant power converter for a switched reluctance machine drive.IEEE Access20208219172193110.1109/ACCESS.2020.2967591
    [Google Scholar]
  68. PiresV.F. PiresA.J. FoitoD. ChavesM. CordeiroA. A fault tolerant multilevel converter topology for an 8/6 srm drive based on a cross-switched configuration.IEEE 8th International Conference on Energy Smart Systems (ESS),Kyiv, Ukraine,2022, pp. 335-340.10.1109/ESS57819.2022.9969238
    [Google Scholar]
  69. ChaurasiyaS.K. BhattacharyaA. DasS. Reduced switch multilevel converter topology to improve magnetization and demagnetization characteristics of an SRM.IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE),Trivandrum, India, 2022, pp. 1-6.10.1109/PESGRE52268.2022.9715913
    [Google Scholar]
  70. ReddyB.P. ReddyB.P. KumarK.S. Asymmetrical 7-level neutral point clamped converter for switch reluctance motors.IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020),Cochin, India, 2020, pp. 1-6.10.1109/PESGRE45664.2020.9070710
    [Google Scholar]
  71. SunQ. WuJ. GanC. GuoJ. Modular full-bridge converter for three-phase switched reluctance motors with integrated fault-tolerance capability.IEEE Trans. Power Electron.20193432622263410.1109/TPEL.2018.2846539
    [Google Scholar]
  72. AzerP. YeJ. EmadiA. Advanced fault-tolerant control strategy for switched reluctance motor drives.IEEE Transportation Electrification Conference and Expo (ITEC),Long Beach, CA, USA, 2018, pp. 20-25.10.1109/ITEC.2018.8450151.
    [Google Scholar]
  73. ToudjiR. ZerougH. SahraouiH. MahmoudiM.O. Performance evaluation into the fault-tolerant operation of SRM with proportional-integral and integral-proportional speed controllers.8th IET International Conference on Power Electronics, Machines and Drives (PEMD 2016),Glasgow, UK, 2016, pp. 1-7.10.1049/cp.2016.0319
    [Google Scholar]
  74. AzizG.A.A. SalemM. ArafaO.M. AminM. Improved dynamics proportional-integral control of four-phase 8/6 switched reluctance motor.6th International Conference on Advanced Control Circuits and Systems (ACCS) & 5th International Conference on New Paradigms in Electronics & information Technology (PEIT),Hurgada, Egypt, 2019, pp. 44-49.10.1109/ACCS‑PEIT48329.2019.9062850.
    [Google Scholar]
  75. LinF.J. SunI.F. YangK.J. ChangJ.K. Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive.IEEE Trans. Fuzzy Syst.201624115316710.1109/TFUZZ.2015.2446535
    [Google Scholar]
  76. ZhangYueling Fuzzy control of switched reluctance motor based on torque distribution function.Micromotors201649116266
    [Google Scholar]
  77. RoH.S. LeeK.G. LeeJ.S. JeongH-G. LeeK-B. Torque ripple minimization scheme using torque sharing function based fuzzy logic control for a switched reluctance motor.J. Electr. Eng. Technol.201510111812710.5370/JEET.2015.10.1.118
    [Google Scholar]
  78. ZhiyaoX. GuobaoZ. YongmingH. Research on fuzzy PI control and torque ripple suppression technology of switched reluctance motor.Chinese Control And Decision Conference (CCDC), 2020.10.1109/CCDC49329.2020.9164207.
    [Google Scholar]
  79. LiuF. ZhuY. LiuP. LiuC. QianY. A fuzzy plus integral composite control strategy of switched reluctance motor for electric vehicles.IEEE 4th Student Conference on Electric Machines and Systems (SCEMS),2021.10.1109/SCEMS52239.2021.9646083
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965305585240825084141
Loading
/content/journals/raeeng/10.2174/0123520965305585240825084141
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test