Skip to content
2000
Volume 18, Issue 8
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Background

This paper reports the design and characterization of three Interdigital electrode (IDE) water-level sensors at resonant frequencies. The geometries of the proposed IDE sensors are comb type, circular type, and Archimedean spiral type. These IDE sensors have been fabricated by the printed circuit board technology. The sensor’s performance has been evaluated on both tap and distilled water.

Methods

The multiple resonant frequencies are investigated for the frequency span of 40 Hz to 110 MHz using a 4294A impedance analyzer. The peak of the projected admittance graph appeared at the first resonant frequency. This first resonant frequency is chosen here for the characterization of the proposed sensors.

Results

The study asses that the variations in resonant frequency are caused by both the sensor's geometry and the water under test. The resonant frequency subtly states that sensors can be presented as lumped element equivalent series RLC circuits. In this work, an attempt has been made to show that the change in capacitance plays a pivotal role in estimating the resonant frequency. It is found that the sensor’s sensitivity decreases with water elevation and always be negative.

Conclusion

The circular and Archimedean spiral sensors have comparable sensitivity performance, while the comb IDE sensor is found to be the most sensitive. The IDE sensor features the highest sensitivity at 1 cm of water elevation. The circular and spiral IDE sensor more closely follows the reference resonant frequency   when compared with the comb IDE sensor.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965301133240827095254
2024-09-09
2025-11-15
Loading full text...

Full text loading...

References

  1. FaisalI.A. PurboyoT.W. AnsoriA.S. A review of accelerometer sensor and gyroscope sensor in IMU sensors on motion capture.J. Eng. Appl. Sci. (Asian Res. Publ. Netw.)2019153826829
    [Google Scholar]
  2. SuwardiyantoD. HaqE.S. AyatullahM.D. RudiyantoB. Development and validation of an instrument for wave height measurement with encoder sensors and accelerometer.J. Robot. Mechatron.202436122923810.20965/jrm.2024.p0229
    [Google Scholar]
  3. KimY. JeonY. NaM. HwangS.J. YoonY. Recent trends in chemical sensors for detecting toxic materials.Sensors (Basel)202424243110.3390/s2402043138257524
    [Google Scholar]
  4. LeeC.Y. LeeG.B. Humidity sensors: A review.Sens. Lett.20053111510.1166/sl.2005.001
    [Google Scholar]
  5. JavaidM. HaleemA. RabS. Pratap SinghR. SumanR. Sensors for daily life: A review.Sensors International2021210012110.1016/j.sintl.2021.100121
    [Google Scholar]
  6. Sánche-CanoJ.E. Ayoví-RamirezM.W. Pilozo-PinM.K. Garcia-QuilachaminW.X. Ulloa-HerreraF. Systematic review of motion sensors and their energy efficiency.International Conference on Information Technology & Systems20242577210.1007/978‑3‑031‑54256‑5_6
    [Google Scholar]
  7. UddE. SpillmanW.B.Jr Fiber optic sensors: An introduction for engineers and scientists.John Wiley & Sons202410.1002/9781119678892
    [Google Scholar]
  8. SuiJ. LiaoS. DongR. ZhangH.F. A Janus logic gate with sensing function.Ann. Phys.20235354220066110.1002/andp.202200661
    [Google Scholar]
  9. LiaoS. QiaoZ. SuiJ. ZhangH. Multifunctional device for circular to linear polarization conversion and absorption.Ann. Phys.20235357230019510.1002/andp.202300195
    [Google Scholar]
  10. XuF. LiX. ShiY. LiL. WangW. HeL. LiuR. Recent developments for flexible pressure sensors: A review.Micromachines (Basel)201891158010.3390/mi911058030405027
    [Google Scholar]
  11. YeY. ZhangC. HeC. WangX. HuangJ. DengJ. A review on applications of capacitive displacement sensing for capacitive proximity sensor.IEEE Access2020PP991110.1109/ACCESS.2020.2977716
    [Google Scholar]
  12. Arman KuzubasogluB. Kursun BahadirS. Flexible temperature sensors: A review.Sens. Actuators A Phys.202031511228210.1016/j.sna.2020.112282
    [Google Scholar]
  13. DoeblinE.O. Measurement System Application and Design.New YorkMcGraw-Hill1990
    [Google Scholar]
  14. BGLipták editor. Process Control: Instrument Engineers' Handbook.Butterworth-Heinemann; 2013 Oct 2.
    [Google Scholar]
  15. ConsidineD.M. Process Instruments and Control Hand Book.McGraw-HillNew York1974
    [Google Scholar]
  16. Bentley JP. Principles of measurement systems.Pearson education; 2005.
    [Google Scholar]
  17. NikolovG. NikolovaB. Virtual techniques for liquid level monitoring using differential pressure sensors.Recent20089249
    [Google Scholar]
  18. CataldoA. TarriconeL. AttivissimoF. TrottaA. Simultaneous measurement of dielectric properties and levels of liquids using a TDR method.Measurement200841330731910.1016/j.measurement.2006.11.006.
    [Google Scholar]
  19. ChetpattananondhK. TapoanoiT. PhukpattaranontP. JindapetchN. A self-calibration water level measurement using an interdigital capacitive sensor.Sens. Actuators A Phys.201420920917518210.1016/j.sna.2014.01.040
    [Google Scholar]
  20. MaY. ZhangH.F. The direction-dependent dual-mechanism sensor based on graphene surface plasmon polariton and composite photonic structure with black phosphorus.IEEE Sens. J.20222213127691277510.1109/JSEN.2022.3177738
    [Google Scholar]
  21. ShamsanA.Q.S. FouadM.R. YacoobW.A.R.M. Abdul-MalikM.A. Abdel-RaheemS.A.A. Performance of a variety of treatment processes to purify wastewater in the food industry.Curr. Chem. Lett.202312243143810.5267/j.ccl.2022.11.003
    [Google Scholar]
  22. ShrivastavaV. AliI. MarjubM.M. ReneE.R. SotoA.M.F. Wastewater in the food industry: treatment technologies and reuse potential.Chemosphere202229313355310.1016/j.chemosphere.2022.13355335016953
    [Google Scholar]
  23. Moura de FigueiredoN. Cavalcante BlancoC.J. Pinheiro Campos FilhoL.C. Amarante MesquitaA.L. MUWOS - Multiple use water optimization system for the power generation and navigation trade-offs analysis.Renew. Energy202320320521810.1016/j.renene.2022.12.004
    [Google Scholar]
  24. KothareM.V. MettlerB. MorariM. BendottiP. FalinowerC.M. Level control in the steam generator of a nuclear power plant.IEEE Trans. Control Syst. Technol.200081556910.1109/87.817692
    [Google Scholar]
  25. SetzC. HeinrichA. RostalskiP. PapafotiouG. MorariM. Application of model predictive control to a cascade of river power plants.IFAC Proceedings Volumes2008412119781198310.3182/20080706‑5‑KR‑1001.02027
    [Google Scholar]
  26. HuntJ.D. NascimentoA. CatenC.S. ToméF.M.C. SchneiderP.S. ThomazoniA.L.R. CastroN.J. BrandãoR. FreitasM.A.V. MartiniJ.S.C. RamosD.S. SenneR. Energy crisis in Brazil: Impact of hydropower reservoir level on the river flow.Energy202223912192710.1016/j.energy.2021.121927
    [Google Scholar]
  27. ValenteP. MatosN. EçaL. Framework for the validation of mechanistic and hybrid models as process analytical tools in the pharmaceutical industry.Continuous Pharmaceutical Processing and Process Analytical Technology2023CRC Press
    [Google Scholar]
  28. GadipellyC. Pérez-GonzálezA. YadavG.D. OrtizI. IbáñezR. RathodV.K. MaratheK.V. Pharmaceutical industry wastewater: Review of the technologies for water treatment and reuse.Ind. Eng. Chem. Res.20145329115711159210.1021/ie501210j
    [Google Scholar]
  29. GuptaRasna. SatiBindu. GuptaAnkit. Treatment and recycling of wastewater from pharmaceutical industry.Advances in Biological Treatment of Industrial Waste Water and their Recycling for a Sustainable Future.201926730210.1007/978‑981‑13‑1468‑1_9
    [Google Scholar]
  30. SunkphoJ. OotamakornC. Real-time flood monitoring and warning system.Songklanakarin J. Sci. Technol.2011332
    [Google Scholar]
  31. NatividadJ.G. MendezJ.M. Flood monitoring and early warning system using ultrasonic sensor.IOP Conference Series Materials Science and Engineering2018325101202010.1088/1757‑899X/325/1/012020
    [Google Scholar]
  32. MichtaE. SzulimR. Sojka-PiotrowskaA. PiotrowskiK. IoT-based flood embankments monitoring system.Conference: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, August 2017.10.1117/12.2280830.
    [Google Scholar]
  33. Marin-PerezR. García-PintadoJ. GómezA.S. A real-time measurement system for long-life flood monitoring and warning applications.Sensors (Basel)20121244213423610.3390/s12040421322666028
    [Google Scholar]
  34. MousaM. OudatE. ClaudelC. A novel dual traffic/flash flood monitoring system using passive infrared/ultrasonic sensors.IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems, 2015, pp. 388-397.10.1109/MASS.2015.61
    [Google Scholar]
  35. NegmA. MaX. AggidisG. Review of leakage detection in water distribution networks.IOP Conf. Ser.: Earth Environ. Sci.2023113601205210.1088/1755‑1315/1136/1/012052
    [Google Scholar]
  36. TariqS. BakhtawarB. ZayedT. Data-driven application of MEMS-based accelerometers for leak detection in water distribution networks.Sci. Total Environ.202280915111010.1016/j.scitotenv.2021.15111034688733
    [Google Scholar]
  37. GugliandoloG. NaishadhamK. CrupiG. DonatoN. Design and characterization of a microwave transducer for gas sensing applications.Chemosensors (Basel)202210412710.3390/chemosensors10040127
    [Google Scholar]
  38. HuW. WuB. SrivastavaS.K. AyS.U. Comparative study and simulation of capacitive sensors in microfluidic channels for sensitive red blood cell detection.Micromachines (Basel)20221310165410.3390/mi1310165436296007
    [Google Scholar]
  39. PuL. ZhaoX. DuanW. SunH. HaoM. HillerenR. ChenG. Interdigital capacitance sensor for monitor ageing of power cable–simulation.2021 IEEE International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Johor Bahru, Malaysia, 2021, pp. 290-293.10.1109/ICPADM49635.2021.9493898
    [Google Scholar]
  40. AhmadS. KhalidN. MirzavandR. Detection of soil moisture, humidity, and liquid level using cpw-based interdigital capacitive sensor.IEEE Sens. J.20222211103381034510.1109/JSEN.2022.3167337
    [Google Scholar]
  41. DimitrovK.C. SongS. ChangH. LimT. LeeY. KwakB.J. Interdigital capacitor-based passive LC resonant sensor for improved moisture sensing.Sensors (Basel)20202021630610.3390/s2021630633167552
    [Google Scholar]
  42. Abdullah al RumonM. ShahariarH. Fabrication of interdigitated capacitor on fabric as tactile sensor.Sensors International2021210008610.1016/j.sintl.2021.100086
    [Google Scholar]
  43. ChenT. DubucD. PoupotM. FournieJ.J. GrenierK. Accurate nanoliter liquid characterization up to 40 GHz for biomedical applications: Toward non-invasive living cells monitoring.IEEE Trans. Microw. Theory Tech.201260124171417710.1109/TMTT.2012.2222660
    [Google Scholar]
  44. BaoX. OcketI. BaoJ. DoijenJ. ZhengJ. KilD. LiuZ. PuersB. SchreursD. NauwelaersB. Broadband dielectric spectroscopy of cell cultures.IEEE Trans. Microw. Theory Tech.201866125750575910.1109/TMTT.2018.2873395
    [Google Scholar]
  45. BoothJ.C. MateuJ. JanezicM. Baker-JarvisJ. BeallJ.A. Broadband permittivity measurements of liquid and biological samples using microfluidic channels.IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 2006, pp. 1750-1753.10.1109/MWSYM.2006.249720
    [Google Scholar]
  46. BaoJ. MarkovicT. MaenhoutG. OcketI. NauwelaersB. An impedance matched interdigital capacitor at 1.5 GHz for microfluidic sensing applications.Sens. Actuators A Phys.202133011286710.1016/j.sna.2021.112867
    [Google Scholar]
  47. MarkovicT. BaoJ. MaenhoutG. OcketI. NauwelaersB. An interdigital capacitor for microwave heating at 25 GHz and wideband dielectric sensing of nL volumes in continuous microfluidics.Sensors (Basel)201919371510.3390/s1903071530744177
    [Google Scholar]
  48. KotaniK. KawayamaI. TonouchiM. Dielectric response of c-oriented SrBi2Ta2O9 thin films observed with interdigital electrodes.Jpn. J. Appl. Phys.200241Part 1, No. 11B6790679210.1143/JJAP.41.6790
    [Google Scholar]
  49. EndresH.E. DrostS. Optimization of the geometry of gas-sensitive interdigital capacitors.Sens. Actuators B Chem.199141-2959810.1016/0925‑4005(91)80182‑J
    [Google Scholar]
  50. AlleyG.D. Interdigital capacitors and their application to lumped element microwave integrated circuits.IEEE Trans. Microw. Theory Tech.197018121028103310.1109/TMTT.1970.1127407
    [Google Scholar]
  51. NaghedM. WolffI. Equivalent capacitances of coplanar waveguide discontinuities and interdigitated capacitors using a three-dimensional finite difference method.IEEE Trans. Microw. Theory Tech.199038121808181510.1109/22.64560
    [Google Scholar]
  52. PattenpaulE. KapustaH. WeisgerberA. MampeH. LuginslandJ. WolffI. CAD models of lumped elements on GaAs up to 18 GHz.IEEE Trans. Microw. Theory Tech.198836229430410.1109/22.3518
    [Google Scholar]
  53. GevorgianS.S. MartinssonT. LinnerP.L.J. KollbergE.L. CAD models for multilayered substrate interdigital capacitors.IEEE Trans. Microw. Theory Tech.199644689690410.1109/22.506449
    [Google Scholar]
  54. IgrejaR. DiasC.J. Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure.Sens. Actuators A Phys.20041122-329130110.1016/j.sna.2004.01.040
    [Google Scholar]
  55. SunT. MorganH. GreenN. G. Analytical solutions of ac electrokinetics in interdigitated electrode arrays: Electric field, dielectrophoretic and traveling-wave dielectrophoretic forces.Physical Review E2007764 Pt 204661010.1103/PhysRevE.76.046610
    [Google Scholar]
  56. RivadeneyraA. Fernández-SalmerónJ. Agudo-AcemelM. López-VillanuevaJ.A. Capitan-VallveyL.F. PalmaA.J. Printed electrodes structures as capacitive humidity sensors: A comparison.Sens. Actuators A Phys.2016244566510.1016/j.sna.2016.03.023
    [Google Scholar]
  57. BiswasA. YinS. TursunniyazM. KaramiMohammadiN. HuangJ. AndrewsJ. Geometrical optimization of printed interdigitated electrode sensors to improve soil moisture sensitivity.IEEE Sens. J.20222220191621916910.1109/JSEN.2022.3200008
    [Google Scholar]
  58. Van ValkenburgM. E. Network analysis chapter 1.1974Available from: https://www.scribd.com/document/269860846/Network-Analysis-Chapter-1-Mac-E-Van-Valkenburg
  59. KuoF. Network analysis and synthesis.John Wiley & Sons2006
    [Google Scholar]
  60. CrupiG. BaoX. BarmutaP. OcketI. Microfluidic biosensor for bioengineering: High-frequency equivalent-circuit modeling of interdigital capacitor.14th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), October 2019, pp. 315-318.10.1109/TELSIKS46999.2019.9002021.
    [Google Scholar]
  61. Francisco P., Pablo Otero, E. Marquez-Segura, and C. Camacho-Penalosa. “Wire bonded interdigital capacitor.”.IEEE Microw. Wirel. Compon. Lett.20051510700702
    [Google Scholar]
  62. Van GerwenP. LaureynW. LaureysW. HuyberechtsG. Op De BeeckM. BaertK. SulsJ. SansenW. JacobsP. HermansL. MertensR. Nanoscaled interdigitated electrode arrays for biochemical sensors.Sens. Actuators B Chem.1998491-2738010.1016/S0925‑4005(98)00128‑2
    [Google Scholar]
  63. Gutiérrez-MejíaF. Ruiz-SuárezJ.C. AC magnetic susceptibility at medium frequencies suggests a paramagnetic behavior of pure water.J. Magn. Magn. Mater.201232461129113210.1016/j.jmmm.2011.10.035
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965301133240827095254
Loading
/content/journals/raeeng/10.2174/0123520965301133240827095254
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Admittance; capacitance; IDE sensor; phase angle; resonant frequency; sensitivity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test