Skip to content
2000
image of Nanosponges in Detoxification: Strategy for Toxin Removal and Drug Overdose Management

Abstract

A potential class of cutting-edge medication delivery devices, nanosponges have become an effective tool for managing drug overdoses and detoxification. The capacity to adsorb and sequester a variety of toxins, such as heavy metals, bacterial endotoxins, and medications, makes these highly porous, biocompatible, and biodegradable particles—which are usually made from cross-linked polymers—an effective way to remove toxins. Nanosponges' adaptability enables their use in a number of sectors, including drug-resistant illness treatment, environmental remediation, and acute poisoning treatment. Detoxification and targeted drug release for diseases like cancer, heart disease, and neurological problems are made possible by the controlled delivery of therapeutic substances using nanosponges. With a focus on their capacity to improve medication bioavailability and lower systemic toxicity, this study examines the mechanism of action, design approaches, and therapeutic potential of nanosponges in detoxification. The paper also discusses new developments in the sector, such as how they can be used to treat drug overdoses and how nanosponges can help stop and lessen the negative effects of environmental contaminants. Despite its potential, there are still obstacles to overcome in order to maximize nanosponges' manufacturing, scalability, and regulatory acceptance. In order to optimize their potential in therapeutic treatments, this review attempts to give a thorough overview of the most recent advancements in detoxifying nanosponges, their clinical uses, and future research objectives.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878375572250629214237
2025-07-17
2025-09-17
Loading full text...

Full text loading...

References

  1. Gole G.V. Patwekar S.L. Doiphode A. Rode A. Shaikh S. A overview on nanosponges. Asian J Res Pharma Sci 2022 12 3 1 6 10.52711/2231‑5659.2022.00037
    [Google Scholar]
  2. Ahire U.R. Talele D.G.S. Kolpe S.S. Kolpe S.S. Systematic overview on nanosponges. Asian J Pharma Res Develop 2024 12 4 97 102 10.22270/ajprd.v12i4.1447
    [Google Scholar]
  3. Prasad Yadav R. Sheeba F.R. Nanosponges - overview. Asian J Pharma Tech 2022 12 1 70 76 10.52711/2231‑5713.2022.00012
    [Google Scholar]
  4. Sachdeva D. Goyal N. Amar A. Gulati S. Introduction to nanosponges. Nanosponges for Environmental Remediation. Cham Springer Nature Switzerland 2023 1 30 10.1007/978‑3‑031‑41077‑2_1
    [Google Scholar]
  5. Raut P. Bhosale N. Joshi V. Nanosponge: An overview. Asian J Pharma Res Develop 2023 11 3 76 83 10.22270/ajprd.v11i3.1259
    [Google Scholar]
  6. Gowda B.H.J. Ahmed M.G. Almoyad M.A.A. Wahab S. Almalki W.H. Kesharwani P. Nanosponges as an emerging platform for cancer treatment and diagnosis. Adv. Funct. Mater. 2024 34 7 2307074 10.1002/adfm.202307074
    [Google Scholar]
  7. Herlinger K. Lingford-Hughes A. Addressing unmet needs in opiate dependence: Supporting detoxification and advances in relapse prevention. BJPsych Adv. 2021 27 6 362 372 10.1192/bja.2020.98
    [Google Scholar]
  8. Lu B. Wei L. Shi G. Du J. Nanotherapeutics for alleviating anesthesia-associated complications. Adv. Sci. 2024 11 15 2308241 10.1002/advs.202308241 38342603
    [Google Scholar]
  9. Zhang J.A. Feng K. Shen W.T. Gao W. Zhang L. Research advances of cellular nanoparticles as multiplex countermeasures. ACS Nano 2024 18 44 30211 30223 10.1021/acsnano.4c09830 39441568
    [Google Scholar]
  10. Pashirova T. Salah-Tazdaït R. Tazdaït D. Masson P. Applications of microbial organophosphate-degrading enzymes to detoxification of organophosphorous compounds for medical countermeasures against poisoning and environmental remediation. Int. J. Mol. Sci. 2024 25 14 7822 10.3390/ijms25147822 39063063
    [Google Scholar]
  11. Shah R. Chavda D. Nano sponge: An emerging nano-technology based drug delivery system. Res. J. Pharm. Dos. Forms Technol. 2024 16 1 67 75 10.52711/0975‑4377.2024.00012
    [Google Scholar]
  12. Pashirova T.N. Shaihutdinova Z.M. Mironov V.F. Masson P. Biomedical nanosystems for in vivo detoxification: From passive delivery systems to functional nanodevices and nanorobots. Acta Nat 2023 15 1 4 12 37153510
    [Google Scholar]
  13. Altaf S. Muhammad F. Aslam B. Faisal M.N. Cell membrane enveloped polymeric nanosponge for detoxification of chlorpyrifos poison: In vitro and in vivo studies. Hum. Exp. Toxicol. 2021 40 8 1286 1295 10.1177/0960327121993207 33583223
    [Google Scholar]
  14. Tiwari K. Bhattacharya S. The ascension of nanosponges as a drug delivery carrier: Preparation, characterization, and applications. J. Mater. Sci. Mater. Med. 2022 33 3 28 10.1007/s10856‑022‑06652‑9 35244808
    [Google Scholar]
  15. Utzeri G. Matias P.M.C. Murtinho D. Valente A.J.M. Cyclodextrin-based nanosponges: Overview and opportunities. Front Chem. 2022 10 859406 10.3389/fchem.2022.859406 35402388
    [Google Scholar]
  16. Varan C. Anceschi A. Sevli S. Preparation and characterization of cyclodextrin nanosponges for organic toxic molecule removal. Int. J. Pharm. 2020 585 119485 10.1016/j.ijpharm.2020.119485 32497732
    [Google Scholar]
  17. Goyal N. Amar A. Gulati S. Varma R.S. Cyclodextrin-based nanosponges as an environmentally sustainable solution for water treatment: A review. ACS Appl. Nano Mater. 2023 6 15 13766 13791 10.1021/acsanm.3c02026
    [Google Scholar]
  18. Azeez S A Sultana A Hajera A. β-cyclodextrin with sodium alginate based nanosponges preparation and characterization in the removal of organic toxin: P-cresol in the simulated biological fluids. Asian J Res Pharma Sci 2022 12 4 261 271 10.52711/2231‑5659.2022.00045
    [Google Scholar]
  19. Kumar A. Mohite P. Munde S. Revolutionizing the biomedical and environmental clean-up through polymeric nano-sponges: A review. Nano Struct Nano Obj 2024 39 101193 10.1016/j.nanoso.2024.101193
    [Google Scholar]
  20. Valente A.J.M. Pirozzi D. Cinquegrana A. Utzeri G. Murtinho D. Sannino F. Synthesis of β-cyclodextrin-based nanosponges for remediation of 2,4-D polluted waters. Environ. Res. 2022 215 Pt 1 114214 10.1016/j.envres.2022.114214 36058273
    [Google Scholar]
  21. Zhang L. Guo Y. Hao R. Ultra-rapid and highly efficient enrichment of organic pollutants via magnetic mesoporous nanosponge for ultrasensitive nanosensors. Nat. Commun. 2021 12 1 6849 10.1038/s41467‑021‑27100‑2 34824226
    [Google Scholar]
  22. Shukla S. Sangwan A. Pabreja N. Gulati S. Concluding remarks and future perspectives of nanosponges in environmental remediation. Nanosponges for Environmental Remediation. Cham Springer Nature Switzerland 2023 449 473 10.1007/978‑3‑031‑41077‑2_20
    [Google Scholar]
  23. Allahyari S. Zahednezhad F. Khatami M. Hashemzadeh N. Zakeri-Milani P. Trotta F. Cyclodextrin nanosponges as potential anticancer drug delivery systems to be introduced into the market, compared with liposomes. J. Drug Deliv. Sci. Technol. 2022 67 102931 10.1016/j.jddst.2021.102931
    [Google Scholar]
  24. Lee J.S. Park S.Y. Oh H. Thermoresponsive nanosponges: Efficient antigen delivery carriers and adjuvants for in vivo vaccination. Eur. Polym. J. 2024 216 113239 10.1016/j.eurpolymj.2024.113239
    [Google Scholar]
  25. Iravani S. Varma R.S. Nanosponges for drug delivery and cancer therapy: Recent advances. Nanomaterials 2022 12 14 2440 10.3390/nano12142440 35889665
    [Google Scholar]
  26. Krabicová I. Appleton S.L. Tannous M. History of cyclodextrin nanosponges. Polymers 2020 12 5 1122 10.3390/polym12051122 32423091
    [Google Scholar]
  27. Moin A. Roohi N.K.F. Rizvi S.M.D. Design and formulation of polymeric nanosponge tablets with enhanced solubility for combination therapy. RSC Advances 2020 10 57 34869 34884 10.1039/D0RA06611G 35514416
    [Google Scholar]
  28. Mashaqbeh H. Obaidat R. Al-Shar’i N. Evaluation and characterization of curcumin-β-cyclodextrin and cyclodextrin-based nanosponge inclusion complexation. Polymers 2021 13 23 4073 10.3390/polym13234073 34883577
    [Google Scholar]
  29. Rizzi V. Gubitosa J. Signorile R. Cyclodextrin nanosponges as adsorbent material to remove hazardous pollutants from water: The case of ciprofloxacin. Chem. Eng. J. 2021 411 128514 10.1016/j.cej.2021.128514
    [Google Scholar]
  30. Gad S. Alhussini S. Gardouh A. Polymeric nano sponge drug delivery system: A review. Rec Pharma Biomed Sci 2022 6 3 34 58 10.21608/rpbs.2022.88495.1131
    [Google Scholar]
  31. Sadhu P. Singh P.H. Kumari M. Trends in cosmeceuticals based nanotechnology: Up-to-date. J. Pharm. Res. Int. 2021 33 37B 136 149 10.9734/jpri/2021/v33i37B32033
    [Google Scholar]
  32. Ambika, Singh PP. Supported ionic liquids and their applications in organic transformations. Curr. Org. Synth. 2022 19 8 905 922 10.2174/1570179419666220303110933
    [Google Scholar]
  33. Dombe S. Shirote P. Nanosponges encapsulated phytochemicals for targeting cancer: A review. Curr. Drug Targets 2021 22 4 443 462 10.2174/1389450121999201012201455 33045959
    [Google Scholar]
  34. Petitjean M. García-Zubiri I.X. Isasi J.R. History of cyclodextrin-based polymers in food and pharmacy: A review. Environ. Chem. Lett. 2021 19 4 3465 3476 10.1007/s10311‑021‑01244‑5 33907537
    [Google Scholar]
  35. Utzeri G. Murtinho D. Maria T.M.R. Pais A.A.C.C. Sannino F. Valente A.J.M. Amine-β-cyclodextrin-based nanosponges. The role of cyclodextrin amphiphilicity in the imidacloprid uptake. Colloids Surf. A Physicochem. Eng. Asp. 2022 635 128044 10.1016/j.colsurfa.2021.128044
    [Google Scholar]
  36. Kadian V. Dalal P. Kumar S. Kapoor A. Rao R. Comparative evaluation of dithranol-loaded nanosponges fabricated by solvent evaporation technique and melt method. Future J. Pharm. Sci. 2023 9 1 13 10.1186/s43094‑023‑00461‑9
    [Google Scholar]
  37. Dhanaraju M.D. Sundar V.D. Vadaga A. Anitha Y.M. Formulation development and in vitro evaluation of lovastatin nanosponges by emulsion solvent evaporation method. Adv. Biores. 2024 15 4 38 49 10.15515/abr.0976‑4585.15.4.3849
    [Google Scholar]
  38. Chhabra L. Amar A. Gulati S. Varma R.S. General synthetic routes for various nanosponges. Nanosponges for Environmental Remediation. Cham Springer Nature Switzerland 2023 49 59 10.1007/978‑3‑031‑41077‑2_3
    [Google Scholar]
  39. Dai Y. Li Q. Zhang S. Smart GSH/pH dual-bioresponsive degradable nanosponges based on β-CD-appended hyper-cross-linked polymer for triggered intracellular anticancer drug delivery. J. Drug Deliv. Sci. Technol. 2021 64 102650 10.1016/j.jddst.2021.102650
    [Google Scholar]
  40. Hoti G. Ferrero R. Caldera F. A comparison between the molecularly imprinted and non-molecularly imprinted cyclodextrin-based nanosponges for the transdermal delivery of melatonin. Polymers 2023 15 6 1543 10.3390/polym15061543 36987322
    [Google Scholar]
  41. Lee J.S. Oh H. Kim S. Lee J.H. Shin Y.C. Choi W.I. A novel chitosan nanosponge as a vehicle for transepidermal drug delivery. Pharmaceutics 2021 13 9 1329 10.3390/pharmaceutics13091329 34575405
    [Google Scholar]
  42. Gharakhloo M. Sadjadi S. Rezaeetabar M. Askari F. Rahimi A. Cyclodextrin-based nanosponges for improving solubility and sustainable release of curcumin. ChemistrySelect 2020 5 5 1734 1738 10.1002/slct.201904007
    [Google Scholar]
  43. Srivastava H. Pandey M. Singh S. Nanosponge drug delivery systems: Advances, applications, and challenges introduction. YMER Digit 2024 23 8 1 7 10.37896/YMER23.08/29
    [Google Scholar]
  44. Bagade O.M. Dhole S.N. Chaudhari P.D. An influence of lyophilization on praziquantel loaded nanosponge’s by using food protein as a stabilizer with effect of statistical optimization. Res J Pharma Tech 2020 13 9 4491 4498 10.5958/0974‑360X.2020.00792.1
    [Google Scholar]
  45. Allahyari S. Valizadeh H. Roshangar L. Preparation and characterization of cyclodextrin nanosponges for bortezomib delivery. Expert Opin. Drug Deliv. 2020 17 12 1807 1816 10.1080/17425247.2020.1800637 32729739
    [Google Scholar]
  46. Rao M.R. Sonawane A. Sapate S. Paul G. Rohom S. Nanosponges: A multifunctional drug delivery system. Inter J Res Educat Scient Meth 2021 1 5
    [Google Scholar]
  47. Gulati S. Nigam A. Kumar S. Different types of nanosponges used in environmental remediation. Nanosponges for Environmental Remediation. Cham Springer Nature Switzerland 2023 31 47 10.1007/978‑3‑031‑41077‑2_2
    [Google Scholar]
  48. Mor S. Nain N. Das A. Kumari A. Swarup V. Scope of nanoencapsulation for delivery of functional food ingredients. Food Process Engineering and Technology: Safety, Packaging, Nanotechnologies and Human Health. Singapore Springer Nature Singapore 2024 303 317
    [Google Scholar]
  49. Weisany W. Yousefi S. Tahir N.A. Targeted delivery and controlled released of essential oils using nanoencapsulation: A review. Adv. Colloid Interface Sci. 2022 303 102655 10.1016/j.cis.2022.102655 35364434
    [Google Scholar]
  50. Hemanth N.R. Mohili R.D. Patel M. Jadhav A.H. Lee K. Chaudhari N.K. Metallic nanosponges for energy storage and conversion applications. J. Mater. Chem. A Mater. Energy Sustain. 2022 10 27 14221 14246 10.1039/D2TA02057B
    [Google Scholar]
  51. Rodrigues K. Nadaf S. Rarokar N. QBD approach for the development of hesperetin loaded colloidal nanosponges for sustained delivery: In-vitro, ex-vivo, and in-vivo assessment. OpenNano 2022 7 100045 10.1016/j.onano.2022.100045
    [Google Scholar]
  52. Guineo-Alvarado J. Quilaqueo M. Hermosilla J. Degree of crosslinking in β-cyclodextrin-based nanosponges and their effect on piperine encapsulation. Food Chem. 2021 340 128132 10.1016/j.foodchem.2020.128132 33011468
    [Google Scholar]
  53. Pyrak B. Rogacka-Pyrak K. Gubica T. Szeleszczuk &#321. Exploring cyclodextrin-based nanosponges as drug delivery systems: Understanding the physicochemical factors influencing drug loading and release kinetics. Int. J. Mol. Sci. 2024 25 6 3527 10.3390/ijms25063527 38542499
    [Google Scholar]
  54. Gaber D.A. Radwan M.A. Alzughaibi D.A. Formulation and evaluation of Piroxicam nanosponge for improved internal solubility and analgesic activity. Drug Deliv. 2023 30 1 2174208 10.1080/10717544.2023.2174208 36744372
    [Google Scholar]
  55. Peimanfard S. Zarrabi A. Trotta F. Matencio A. Cecone C. Caldera F. Developing novel hydroxypropyl-β-cyclodextrin-based nanosponges as carriers for anticancer hydrophobic agents: Overcoming limitations of host–guest complexes in a comparative evaluation. Pharmaceutics 2022 14 5 1059 10.3390/pharmaceutics14051059 35631645
    [Google Scholar]
  56. Wang S. Wang D. Duan Y. Zhou Z. Gao W. Zhang L. Cellular nanosponges for biological neutralization. Adv. Mater. 2022 34 13 2107719 10.1002/adma.202107719 34783078
    [Google Scholar]
  57. Argenziano M. Gigliotti C.L. Clemente N. Improvement in the anti-tumor efficacy of doxorubicin nanosponges in in vitro and in mice bearing breast tumor models. Cancers 2020 12 1 162 10.3390/cancers12010162 31936526
    [Google Scholar]
  58. J A, Girigoswami A, Girigoswami K. Versatile applications of nanosponges in biomedical field: A glimpse on SARS-CoV-2 management. Bionanoscience 2022 12 3 1018 1031 10.1007/s12668‑022‑01000‑1 35755139
    [Google Scholar]
  59. Banjare N. Gautam L. Behera C. Gupta P.N. Vyas S. Vyas S.P. Cyclodextrin nanosponges based site-retentive controlled release system for treatment of rheumatic arthritis. J. Drug Deliv. Sci. Technol. 2020 60 101973 10.1016/j.jddst.2020.101973
    [Google Scholar]
  60. Zhang Y. Hao F. Liu Y. Recent advances of copper-based metal phenolic networks in biomedical applications. Colloids Surf. B Biointerfaces 2024 244 114163 10.1016/j.colsurfb.2024.114163 39154599
    [Google Scholar]
  61. Corsi I. Venditti I. Trotta F. Punta C. Environmental safety of nanotechnologies: The eco-design of manufactured nanomaterials for environmental remediation. Sci. Total Environ. 2023 864 161181 10.1016/j.scitotenv.2022.161181 36581299
    [Google Scholar]
  62. Tannous M. Caldera F. Hoti G. Dianzani U. Cavalli R. Trotta F. Drug-encapsulated cyclodextrin nanosponges. Methods Mol. Biol. 2021 2207 247 283 10.1007/978‑1‑0716‑0920‑0_19
    [Google Scholar]
  63. Sengupta P. Das A. Datta D. Dewanjee S. Khanam J. Ghosal K. Novel super porous nanosponge-based drug delivery system synthesized from cyclodextrin/polymer for anti-fungal medication. React. Funct. Polym. 2024 196 105830 10.1016/j.reactfunctpolym.2024.105830
    [Google Scholar]
  64. Wang S Wang D Kai M Design strategies for cellular nanosponges as medical countermeasures. BME Front 2023 4 0018 10.34133/bmef.0018
    [Google Scholar]
  65. Golubeva O.Y. Alikina Y.A. Khamova T.V. Vladimirova E.V. Shamova O.V. Aluminosilicate nanosponges: Synthesis, properties, and application prospects. Inorg. Chem. 2021 60 22 17008 17018 10.1021/acs.inorgchem.1c02122 34723488
    [Google Scholar]
  66. Cataldo S. Lo Meo P. Conte P. Di Vincenzo A. Milea D. Pettignano A. Evaluation of adsorption ability of cyclodextrin-calixarene nanosponges towards Pb2+ ion in aqueous solution. Carbohydr. Polym. 2021 267 118151 10.1016/j.carbpol.2021.118151 34119126
    [Google Scholar]
  67. Martwong E. Chuetor S. Junthip J. Adsorption of Paraquat by Poly(Vinyl Alcohol)-Cyclodextrin Nanosponges. Polymers 2021 13 23 4110 10.3390/polym13234110 34883612
    [Google Scholar]
  68. Mane P.T. Wakure B.S. Wakte P.S. Cyclodextrin based nanosponges: A multidimensional drug delivery system and its biomedical applications. Curr. Drug Deliv. 2021 18 10 1467 1493 10.2174/1567201818666210423091250 33902410
    [Google Scholar]
  69. Wang D. Ai X. Duan Y. Neuronal cellular nanosponges for effective detoxification of neurotoxins. ACS Nano 2022 16 11 19145 19154 10.1021/acsnano.2c08319 36354967
    [Google Scholar]
  70. Lv Q. Lin J. Huang H. Nanosponge for iron chelation and efflux: A ferroptosis-inhibiting approach for myocardial infarction therapy. Adv. Sci. 2024 11 25 2305895 10.1002/advs.202305895 38671590
    [Google Scholar]
  71. Liao X. Gong G. Dai M. Systemic tumor suppression via macrophage-driven automated homing of metal-phenolic-gated nanosponges for metastatic melanoma. Adv. Sci. 2023 10 18 2207488 10.1002/advs.202207488 37072673
    [Google Scholar]
  72. Nandi S. Karati D. Mukherjee S. Nanosponges–Road Less Explored Changing Drug Delivery Approach: An Explicative Review. Curr. Pharm. Biotechnol. 2025 1 8 38982926
    [Google Scholar]
  73. Muthukrishnan L. Nanonutraceuticals—challenges and novel nano-based carriers for effective delivery and enhanced bioavailability. Food Bioprocess Technol. 2022 15 10 2155 2184 10.1007/s11947‑022‑02807‑2
    [Google Scholar]
  74. Kapoor D.U. Garg R. Saini P.K. Gaur M. Prajapati B.G. Nanomedicine breakthrough: Cyclodextrin-based nano sponges revolutionizing cancer treatment. Nano Struct Nano Obj 2024 40 101358 10.1016/j.nanoso.2024.101358
    [Google Scholar]
  75. Daga M. de Graaf I.A.M. Argenziano M. Glutathione-responsive cyclodextrin-nanosponges as drug delivery systems for doxorubicin: Evaluation of toxicity and transport mechanisms in the liver. Toxicol. In Vitro 2020 65 104800 10.1016/j.tiv.2020.104800 32084521
    [Google Scholar]
  76. Prabhu P.P. Mehta C.H. Nayak U.Y. Nanosponges-revolutionary approach: A review. Res J Pharma Tech 2020 13 7 3536 3544 10.5958/0974‑360X.2020.00626.5
    [Google Scholar]
  77. Zou S. He Q. Wang Q. Injectable Nanosponge-loaded Pluronic F127 hydrogel for pore-forming toxin neutralization. Int. J. Nanomedicine 2021 16 4239 4250 10.2147/IJN.S315062 34194227
    [Google Scholar]
  78. Martwong E. Chuetor S. Junthip J. Adsorption of cationic contaminants by cyclodextrin nanosponges cross-linked with 1, 2, 3, 4-butanetetracarboxylic acid and poly (vinyl alcohol). Polymers 2022 14 2 342 10.3390/polym14020342 35054747
    [Google Scholar]
  79. Singh K. Sai Nandhini R. Palanivelu J. Nanosponges: In perspective to therapeutic medicine. Nanotechnology in Medicine. Cham Springer 2021 87 104
    [Google Scholar]
  80. Gliszczyńska A, Sánchez-López E. Dexibuprofen therapeutic advances: Prodrugs and nanotechnological formulations. Pharmaceutics 2021 13 3 414 10.3390/pharmaceutics13030414 33808908
    [Google Scholar]
  81. France C.P. Ahern G.P. Averick S. Countermeasures for preventing and treating opioid overdose. Clin. Pharmacol. Ther. 2021 109 3 578 590 10.1002/cpt.2098 33113208
    [Google Scholar]
  82. Yang J. Li H. Zou H. Ding J. Polymer nanoantidotes. Chemistry 2023 29 42 202301107 10.1002/chem.202301107 37335074
    [Google Scholar]
  83. Kumar J.P. Ismail Y. Reddy K.T.K. Panigrahy U.P. Shanmugasundaram P. Babu M.K. Paclitaxel nanosponges’formula and in vitro evaluation. J. Pharm. Negat. Results 2022 13 7 2733 2740
    [Google Scholar]
  84. Lee J.S. Hwang Y. Oh H. Sung D. Tae G. Choi W.I. All-in-one nanosponge with pluronic shell for synergistic anticancer therapy through effectively overcoming multidrug resistance in cancer. Nanomedicine 2022 40 102486 10.1016/j.nano.2021.102486 34748960
    [Google Scholar]
  85. Mohite P. Munde S. Pawar A. Singh S. Unleashing the potential of cyclodextrin-based nanosponges in management of colon cancer: A review. Nanofabrication 2024 9 9 10.37819/nanofab.9.1823
    [Google Scholar]
  86. Deinavizadeh M. Kiasat A.R. Hooshmand N. Near-infrared/pH dual-responsive nanosponges encapsulating gold nanorods for synergistic chemo-phototherapy of lung cancer. ACS Appl. Nano Mater. 2023 6 18 16332 16342 10.1021/acsanm.3c02464
    [Google Scholar]
  87. Patra S. Pareek D. Gupta P.S. Progress in treatment and diagnostics of infectious disease with polymers. ACS Infect. Dis. 2024 10 2 287 316 10.1021/acsinfecdis.3c00528 38237146
    [Google Scholar]
  88. Khunger S. Antiviral biomaterials. Viral Infections and Antiviral Therapies. Academic Press 2023 519 536 10.1016/B978‑0‑323‑91814‑5.00002‑7
    [Google Scholar]
  89. Boczar D. Michalska K. Cyclodextrin inclusion complexes with antibiotics and antibacterial agents as drug-delivery systems—A pharmaceutical perspective. Pharmaceutics 2022 14 7 1389 10.3390/pharmaceutics14071389 35890285
    [Google Scholar]
  90. Topuz F. Uyar T. Recent advances in cyclodextrin-based nanoscale drug delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024 16 6 1995 10.1002/wnan.1995 39480078
    [Google Scholar]
  91. Fiorati A. Grassi G. Graziano A. Eco-design of nanostructured cellulose sponges for sea-water decontamination from heavy metal ions. J. Clean. Prod. 2020 246 119009 10.1016/j.jclepro.2019.119009
    [Google Scholar]
  92. Leudjo Taka A. Fosso-Kankeu E. Pillay K. Yangkou Mbianda X. Metal nanoparticles decorated phosphorylated carbon nanotube/cyclodextrin nanosponge for trichloroethylene and Congo red dye adsorption from wastewater. J. Environ. Chem. Eng. 2020 8 3 103602 10.1016/j.jece.2019.103602
    [Google Scholar]
  93. Yamini R. Environmental applications of nanosponges (NSPs) to clean up oil spills. Nanosponges for Environmental Remediation. Cham: pringer Nature Switzerland 2023 425 447
    [Google Scholar]
  94. Jain A. Prajapati S.K. Kumari A. Mody N. Bajpai M. Engineered nanosponges as versatile biodegradable carriers: An insight. J. Drug Deliv. Sci. Technol. 2020 57 101643 10.1016/j.jddst.2020.101643
    [Google Scholar]
  95. Shams G. Fahmy E.M. Adeeb E. Abed I. Helal A. Khamis T. The potential implication of botanicals in mitigating mycotoxin detrimental effects: A comprehensive review. Zagazig Vet. J. 2024 52 3 282 299 10.21608/zvjz.2024.302311.1252
    [Google Scholar]
  96. Sairam A.B. Sanmugam A. Pushparaj A. Toxicity of polymeric nanodrugs as drug carriers. J. Chem. Health Saf. 2023 30 5 236 250 10.1021/acs.chas.3c00008
    [Google Scholar]
  97. Mostafavi E. Iravani S. Varma R.S. Nanosponges: An overlooked promising strategy to combat SARS-CoV-2. Drug Discov. Today 2022 27 10 103330 10.1016/j.drudis.2022.07.015 35908684
    [Google Scholar]
  98. Federico I. Federico F. Rojas F. Zapf J. Esmaeli-Azad B. A Medical countermeasure against drugs of abuse with detoxifying biomimetic “Nanosponge” decoy receptors directed against opioid drugs and methamphetamines. FASEB J. 2020 34 S1 1 1 10.1096/fasebj.2020.34.s1.04493
    [Google Scholar]
  99. Xuan J. Wang Z. Huang Y. DNA response element-based smart drug delivery systems for precise drug release. Biomater. Sci. 2024 12 14 3550 3564 10.1039/D4BM00138A 38832670
    [Google Scholar]
  100. Qi X.W. Tan M. Zhang F.Z. Chlorella vulgaris -inspired versatile theranostic nanoparticles for specific recognition and detoxification to copper (II) in vitro and in vivo. Adv. Funct. Mater. 2024 34 45 2407241 10.1002/adfm.202407241
    [Google Scholar]
  101. Feng S. Wang L. Shao P. Sun P. Yang C.S. A review on chemical and physical modifications of phytosterols and their influence on bioavailability and safety. Crit. Rev. Food Sci. Nutr. 2022 62 20 5638 5657 10.1080/10408398.2021.1888692 33612007
    [Google Scholar]
  102. Laeeq Z. Muqadas J.N. A mini review on drugs toxicity and antidots. Foren Insig Health Sci Bull 2024 2 1 18 22
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878375572250629214237
Loading
/content/journals/raddf/10.2174/0126673878375572250629214237
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: environment ; drug delivery ; polymeric material ; detoxification ; Nanosponges ; biocompatibility ; toxin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test