Skip to content
2000
image of Polymeric Nanocarriers with pH-Dependent Release for Tumor-Specific Delivery

Abstract

The acidic nature of tumor microenvironments presents a unique opportunity for the targeted delivery of therapeutics using pH-responsive polymeric nanocarriers. These smart nanocarriers are designed to release their payload specifically in response to the low pH found in tumor tissues, thereby enhancing drug accumulation at the tumor site while minimizing systemic side effects. This review provides a comprehensive overview of the design principles, fabrication methods, and applications of pH-responsive polymeric nanocarriers for targeted drug delivery in tumor microenvironments. Key topics include the mechanisms of pH-responsive drug release, engineering strategies for developing pH-sensitive polymers, and recent advancements in exploiting tumor acidity for improved therapeutic outcomes. Additionally, the review discusses the clinical potential and the challenges associated with the translation of these nanocarriers from bench to bedside.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878366151250815012551
2025-08-21
2025-11-16
Loading full text...

Full text loading...

References

  1. El-Tanani M. Rabbani S.A. Babiker R. Unraveling the tumor microenvironment: Insights into cancer metastasis and therapeutic strategies. Cancer Lett. 2024 591 216894 10.1016/j.canlet.2024.216894 38626856
    [Google Scholar]
  2. Sanegre S. Lucantoni F. Burgos-Panadero R. de La Cruz-Merino L. Noguera R. Álvaro Naranjo T. Integrating the tumor microenvironment into cancer therapy. Cancers 2020 12 6 1677 10.3390/cancers12061677 32599891
    [Google Scholar]
  3. Burgos-Panadero R. Lucantoni F. Gamero-Sandemetrio E. Cruz-Merino L. Álvaro T. Noguera R. The tumour microenvironment as an integrated framework to understand cancer biology. Cancer Lett. 2019 461 112 122 10.1016/j.canlet.2019.07.010 31325528
    [Google Scholar]
  4. Ghaffari K. Moradi-Hasanabad A. Sobhani-Nasab A. Javaheri J. Ghasemi A. Application of cell-derived exosomes in the hematological malignancies therapy. Front. Pharmacol. 2023 14 1263834 10.3389/fphar.2023.1263834 37745073
    [Google Scholar]
  5. Mao X. Xu J. Wang W. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol. Cancer 2021 20 1 131 10.1186/s12943‑021‑01428‑1 34635121
    [Google Scholar]
  6. Shiga K. Hara M. Nagasaki T. Sato T. Takahashi H. Takeyama H. Cancer-associated fibroblasts: Their characteristics and their roles in tumor growth. Cancers 2015 7 4 2443 2458 10.3390/cancers7040902 26690480
    [Google Scholar]
  7. Leber M.F. Efferth T. Molecular principles of cancer invasion and metastasis (review). Int. J. Oncol. 2009 34 4 881 895 19287945
    [Google Scholar]
  8. Dysthe M. Parihar R. Myeloid-derived suppressor cells in the tumor microenvironment. Adv. Exp. Med. Biol. 2020 1244 117 140 10.1007/978‑3‑030‑35723‑8_8
    [Google Scholar]
  9. Nakamura K. Smyth M.J. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell. Mol. Immunol. 2020 17 1 1 12 10.1038/s41423‑019‑0306‑1 31611651
    [Google Scholar]
  10. Hida K. Maishi N. Ryo Takeda D. Hida Y. The roles of tumor endothelial cells in cancer metastasis. Brisbane, Australia Exon Publications 2022 137 148 10.36255/exon‑publications.metastasis.endothelial‑cells
    [Google Scholar]
  11. Dudley A.C. Tumor endothelial cells. Cold Spring Harb. Perspect. Med. 2012 2 3 a006536 10.1101/cshperspect.a006536 22393533
    [Google Scholar]
  12. Armulik A. Genové G. Betsholtz C. Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 2011 21 2 193 215 10.1016/j.devcel.2011.07.001 21839917
    [Google Scholar]
  13. Zhou H. Wang M. Zhang Y. Functions and clinical significance of mechanical tumor microenvironment: Cancer cell sensing, mechanobiology and metastasis. Cancer Commun. 2022 42 5 374 400 10.1002/cac2.12294 35470988
    [Google Scholar]
  14. Eble J.A. Niland S. The extracellular matrix in tumor progression and metastasis. Clin. Exp. Metastasis 2019 36 3 171 198 10.1007/s10585‑019‑09966‑1 30972526
    [Google Scholar]
  15. Gu Y. Wu X. Zhang J. The evolving landscape of N6-methyladenosine modification in the tumor microenvironment. Mol. Ther. 2021 29 5 1703 1715 10.1016/j.ymthe.2021.04.009 33839323
    [Google Scholar]
  16. Danhier P. Bański P. Payen V.L. Cancer metabolism in space and time: Beyond the Warburg effect. Biochim. Biophys. Acta Bioenerg. 2017 1858 8 556 572 10.1016/j.bbabio.2017.02.001 28167100
    [Google Scholar]
  17. Lu J. The Warburg metabolism fuels tumor metastasis. Cancer Metastasis Rev. 2019 38 1-2 157 164 10.1007/s10555‑019‑09794‑5 30997670
    [Google Scholar]
  18. Schiliro C. Firestein B.L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells 2021 10 5 1056 10.3390/cells10051056 33946927
    [Google Scholar]
  19. Pérez-Tomás R. Pérez-Guillén I. Lactate in the tumor microenvironment: An essential molecule in cancer progression and treatment. Cancers 2020 12 11 3244 10.3390/cancers12113244 33153193
    [Google Scholar]
  20. Marchiq I. Pouysségur J. Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H+ symporters. J. Mol. Med. 2016 94 2 155 171 10.1007/s00109‑015‑1307‑x 26099350
    [Google Scholar]
  21. Kraus M. Wolf B. Implications of acidic tumor microenvironment for neoplastic growth and cancer treatment: A computer analysis. Tumour Biol. 1996 17 3 133 154 10.1159/000217977 8638088
    [Google Scholar]
  22. Hapke R.Y. Haake S.M. Hypoxia-induced epithelial to mesenchymal transition in cancer. Cancer Lett. 2020 487 10 20 10.1016/j.canlet.2020.05.012 32470488
    [Google Scholar]
  23. Jing X. Yang F. Shao C. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 2019 18 1 157 10.1186/s12943‑019‑1089‑9 31711497
    [Google Scholar]
  24. Chen Z. Han F. Du Y. Shi H. Zhou W. Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2023 8 1 70 10.1038/s41392‑023‑01332‑8 36797231
    [Google Scholar]
  25. Unsoy G. Gunduz U. Smart drug delivery systems in cancer therapy. Curr. Drug Targets 2018 19 3 202 212 27033191
    [Google Scholar]
  26. Luqmani Y.A. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract. 2005 14 Suppl. 1 35 48 10.1159/000086183 16103712
    [Google Scholar]
  27. Hu C.M. Zhang L. Therapeutic nanoparticles to combat cancer drug resistance. Curr. Drug Metab. 2009 10 8 836 841 10.2174/138920009790274540 20214578
    [Google Scholar]
  28. Wojtkowiak J.W. Verduzco D. Schramm K.J. Gillies R.J. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol. Pharm. 2011 8 6 2032 2038 10.1021/mp200292c 21981633
    [Google Scholar]
  29. Sauvant C. Nowak M. Wirth C. Acidosis induces multi‐drug resistance in rat prostate cancer cells (AT1) in vitro and in vivo by increasing the activity of the p‐glycoprotein via activation of p38. Int. J. Cancer 2008 123 11 2532 2542 10.1002/ijc.23818 18729196
    [Google Scholar]
  30. Uthaman S. Huh K.M. Park I.K. Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications. Biomater. Res. 2018 22 1 22 10.1186/s40824‑018‑0132‑z 30155269
    [Google Scholar]
  31. Mai B.T. Fernandes S. Balakrishnan P.B. Pellegrino T. Nanosystems based on magnetic nanoparticles and thermo-or pH-responsive polymers: An update and future perspectives. Acc. Chem. Res. 2018 51 5 999 1013 10.1021/acs.accounts.7b00549 29733199
    [Google Scholar]
  32. Lale S.V. Kumar A. Naz F. Bharti A.C. Koul V. Multifunctional ATRP based pH responsive polymeric nanoparticles for improved doxorubicin chemotherapy in breast cancer by proton sponge effect/endo-lysosomal escape. Polym. Chem. 2015 6 11 2115 2132 10.1039/C4PY01698J
    [Google Scholar]
  33. Du C. Liang Y. Ma Q. Intracellular tracking of drug release from pH-sensitive polymeric nanoparticles via FRET for synergistic chemo-photodynamic therapy. J. Nanobiotechnology 2019 17 1 113 10.1186/s12951‑019‑0547‑2 31699100
    [Google Scholar]
  34. Yan Y. Ding H. pH-responsive nanoparticles for cancer immunotherapy: A brief review. Nanomaterials 2020 10 8 1613 10.3390/nano10081613 32824578
    [Google Scholar]
  35. Kim H. Sehgal D. Kucaba T.A. Ferguson D.M. Griffith T.S. Panyam J. Acidic pH-responsive polymer nanoparticles as a TLR7/8 agonist delivery platform for cancer immunotherapy. Nanoscale 2018 10 44 20851 20862 10.1039/C8NR07201A 30403212
    [Google Scholar]
  36. Pérez-Herrero E. Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015 93 52 79 10.1016/j.ejpb.2015.03.018 25813885
    [Google Scholar]
  37. Danhier F. Feron O. Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010 148 2 135 146 10.1016/j.jconrel.2010.08.027 20797419
    [Google Scholar]
  38. Kumari P. Ghosh B. Biswas S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target. 2016 24 3 179 191 10.3109/1061186X.2015.1051049 26061298
    [Google Scholar]
  39. Yazbeck V. Alesi E. Myers J. Hackney M.H. Cuttino L. Gewirtz D.A. An overview of chemotoxicity and radiation toxicity in cancer therapy. Adv. Cancer Res. 2022 155 1 27 10.1016/bs.acr.2022.03.007 35779872
    [Google Scholar]
  40. Anand U. Dey A. Chandel A.K.S. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  41. Wang X. Zhang H. Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019 2 2 141 160 10.20517/cdr.2019.10 34322663
    [Google Scholar]
  42. Sui X. Chen R. Wang Z. Huang Z. Kong N. Zhang M. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis. 2013 4 10 e838 10.1038/cddis.2013.350
    [Google Scholar]
  43. Takakura Y. Hashida M. Macromolecular carrier systems for targeted drug delivery: Pharmacokinetic considerations on biodistribution. Pharm. Res. 1996 13 6 820 831 10.1023/A:1016084508097 8792417
    [Google Scholar]
  44. Mishra D. Hubenak J.R. Mathur A.B. Nanoparticle systems as tools to improve drug delivery and therapeutic efficacy. J. Biomed. Mater. Res. A 2013 101 12 3646 3660 10.1002/jbm.a.34642 23878102
    [Google Scholar]
  45. Mbugua S.N. Targeting tumor microenvironment by metal peroxide nanoparticles in cancer therapy. Bioinorg. Chem. Appl. 2022 2022 1 5041399 10.1155/2022/5041399 36568636
    [Google Scholar]
  46. He J. Li C. Ding L. Tumor targeting strategies of smart fluorescent nanoparticles and their applications in cancer diagnosis and treatment. Adv. Mater. 2019 31 40 1902409 10.1002/adma.201902409 31369176
    [Google Scholar]
  47. Singh J. Nayak P. pH ‐responsive polymers for drug delivery: Trends and opportunities. J Polym Sci 2023 61 22 2828 2850 10.1002/pol.20230403
    [Google Scholar]
  48. Dai Y. Xu C. Sun X. Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem. Soc. Rev. 2017 46 12 3830 3852 10.1039/C6CS00592F 28516983
    [Google Scholar]
  49. Ofridam F. Tarhini M. Lebaz N. Gagnière É. Mangin D. Elaissari A. pH ‐sensitive polymers: Classification and some fine potential applications. Polym. Adv. Technol. 2021 32 4 1455 1484 10.1002/pat.5230
    [Google Scholar]
  50. Kanamala M. Wilson W.R. Yang M. Palmer B.D. Wu Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 2016 85 152 167 10.1016/j.biomaterials.2016.01.061 26871891
    [Google Scholar]
  51. Kocak G. Tuncer C. Bütün V. pH-Responsive polymers. Polym. Chem. 2017 8 1 144 176 10.1039/C6PY01872F
    [Google Scholar]
  52. Felber A.E. Dufresne M.H. Leroux J.C. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv. Drug Deliv. Rev. 2012 64 11 979 992 10.1016/j.addr.2011.09.006 21996056
    [Google Scholar]
  53. Li Y. Yang H.Y. Thambi T. Park J.H. Lee D.S. Charge-convertible polymers for improved tumor targeting and enhanced therapy. Biomaterials 2019 217 119299 10.1016/j.biomaterials.2019.119299 31254932
    [Google Scholar]
  54. Ding H. Tan P. Fu S. Preparation and application of pH-responsive drug delivery systems. J. Control. Release 2022 348 206 238 10.1016/j.jconrel.2022.05.056 35660634
    [Google Scholar]
  55. Samal S.K. Dash M. Van Vlierberghe S. Cationic polymers and their therapeutic potential. Chem. Soc. Rev. 2012 41 21 7147 7194 10.1039/c2cs35094g 22885409
    [Google Scholar]
  56. Bazban-Shotorbani S. Hasani-Sadrabadi M.M. Karkhaneh A. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J. Control. Release 2017 253 46 63 10.1016/j.jconrel.2017.02.021 28242418
    [Google Scholar]
  57. Yang L. Alexandridis P. Physicochemical aspects of drug delivery and release from polymer-based colloids. Curr. Opin. Colloid Interface Sci. 2000 5 1-2 132 143 10.1016/S1359‑0294(00)00046‑7
    [Google Scholar]
  58. Kamaly N. Yameen B. Wu J. Farokhzad O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016 116 4 2602 2663 10.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  59. Wang J Wang X Yan G Fu S Tang R. pH-sensitive nanogels with ortho ester linkages prepared via thiol-ene click chemistry for efficient intracellular drug release. J Colloid Interface Sci 2017 508 282 290 10.1016/j.jcis.2017.08.051
    [Google Scholar]
  60. Hou M. Liu S. Recent progress of pH-responsive peptides, polypeptides, and their supramolecular assemblies for biomedical applications. Biomacromolecules 2024 25 9 5402 5416 10.1021/acs.biomac.4c00688 39105715
    [Google Scholar]
  61. Ge Z. Liu S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 2013 42 17 7289 7325 10.1039/c3cs60048c 23549663
    [Google Scholar]
  62. Tonge S.R. Tighe B.J. Responsive hydrophobically associating polymers: A review of structure and properties. Adv. Drug Deliv. Rev. 2001 53 1 109 122 10.1016/S0169‑409X(01)00223‑X 11733120
    [Google Scholar]
  63. Bajpai A.K. Shukla S.K. Bhanu S. Kankane S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 2008 33 11 1088 1118 10.1016/j.progpolymsci.2008.07.005
    [Google Scholar]
  64. Grund S. Bauer M. Fischer D. Polymers in drug delivery—state of the art and future trends. Adv. Eng. Mater. 2011 13 3 B61 B87 10.1002/adem.201080088
    [Google Scholar]
  65. He Q. Chen J. Yan J. Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci 2020 15 4 416 448 32952667
    [Google Scholar]
  66. Tang H. Zhao W. Yu J. Li Y. Zhao C. Recent development of pH-responsive polymers for cancer nanomedicine. Molecules 2018 24 1 4 10.3390/molecules24010004 30577475
    [Google Scholar]
  67. Ratemi E. pH-responsive polymers for drug delivery applications. Stimuli Resp Poly Nanocar Drug Del Applicati 2018 1 121 141 10.1016/B978‑0‑08‑101997‑9.00005‑9
    [Google Scholar]
  68. Patra D. Basheer B. Shunmugam R. pH-Responsive materials: Properties, design, and applications. Stimuli Respon Mater Biomed Applicat 2023 1436 145 179
    [Google Scholar]
  69. Hu X. Jazani A.M. Oh J.K. Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. Polymer 2021 230 124024 10.1016/j.polymer.2021.124024
    [Google Scholar]
  70. Sonawane S.J. Kalhapure R.S. Govender T. Hydrazone linkages in pH responsive drug delivery systems. Eur. J. Pharm. Sci. 2017 99 45 65 10.1016/j.ejps.2016.12.011 27979586
    [Google Scholar]
  71. Raczuk E. Dmochowska B. Samaszko-Fiertek J. Madaj J. Different Schiff bases—structure, importance and classification. Molecules 2022 27 3 787 10.3390/molecules27030787 35164049
    [Google Scholar]
  72. Hosseini S.H. Zohreh N. Karimi N. Magnetic nanoparticles double wrapped into cross-linked salep/PEGylated carboxymethyl cellulose; a biocompatible nanocarrier for pH-triggered release of doxorubicin. Int. J. Biol. Macromol. 2020 158 994 1006 10.1016/j.ijbiomac.2020.05.040 32434748
    [Google Scholar]
  73. Shahi S. Roghani-Mamaqani H. Talebi S. Mardani H. Chemical stimuli-induced reversible bond cleavage in covalently crosslinked hydrogels. Coord. Chem. Rev. 2022 455 214368 10.1016/j.ccr.2021.214368
    [Google Scholar]
  74. Dai L. Zhang Q. Shen X. A pH-responsive nanocontainer based on hydrazone-bearing hollow silica nanoparticles for targeted tumor therapy. J. Mater. Chem. B Mater. Biol. Med. 2016 4 26 4594 4604 10.1039/C6TB01050D 32263402
    [Google Scholar]
  75. Ding X. Liu Y. Li J. Hydrazone-bearing PMMA-functionalized magnetic nanocubes as pH-responsive drug carriers for remotely targeted cancer therapy in vitro and in vivo. ACS Appl. Mater. Interfaces 2014 6 10 7395 7407 10.1021/am500818m 24749476
    [Google Scholar]
  76. Zhou W. Jia Y. Liu Y. Chen Y. Zhao P. Tumor microenvironment-based stimuli-responsive nanoparticles for controlled release of drugs in cancer therapy. Pharmaceutics 2022 14 11 2346 10.3390/pharmaceutics14112346 36365164
    [Google Scholar]
  77. Gannimani R. Walvekar P. Naidu V.R. Aminabhavi T.M. Govender T. Acetal containing polymers as pH-responsive nano-drug delivery systems. J. Control. Release 2020 328 736 761 10.1016/j.jconrel.2020.09.044 32980419
    [Google Scholar]
  78. Wang J. Wang X. Yan G. Fu S. Tang R. pH-sensitive nanogels with ortho ester linkages prepared via thiol-ene click chemistry for efficient intracellular drug release. J. Colloid Interface Sci. 2017 508 282 290 10.1016/j.jcis.2017.08.051 28843107
    [Google Scholar]
  79. Mohammadzadeh A. Javanbakht S. Mohammadi R. Magnetic alginate core-shell nanoparticles based on Schiff-base imine bonding for pH-responsive doxorubicin delivery system. Colloids Surf. A Physicochem. Eng. Asp. 2024 697 134473 10.1016/j.colsurfa.2024.134473
    [Google Scholar]
  80. Peng S. Yuan X. Lin W. Cai C. Zhang L. pH-responsive controlled release of mesoporous silica nanoparticles capped with Schiff base copolymer gatekeepers: Experiment and molecular dynamics simulation. Colloids Surf. B Biointerfaces 2019 176 394 403 10.1016/j.colsurfb.2019.01.024 30660963
    [Google Scholar]
  81. Xin Y. Yuan J. Schiff’s base as a stimuli-responsive linker in polymer chemistry. Polym. Chem. 2012 3 11 3045 3055 10.1039/c2py20290e
    [Google Scholar]
  82. Cheng C. Meng Y. Zhang Z. Chen J. Zhang Q. Imine bond-and coordinate bond-linked pH-sensitive cisplatin complex nanoparticles for active targeting to tumor cells. J. Nanosci. Nanotechnol. 2019 19 6 3277 3287 10.1166/jnn.2019.16314 30744754
    [Google Scholar]
  83. Deirram N. Zhang C. Kermaniyan S.S. Johnston A.P.R. Such G.K. pH‐responsive polymer nanoparticles for drug delivery. Macromol. Rapid Commun. 2019 40 10 1800917 10.1002/marc.201800917 30835923
    [Google Scholar]
  84. Zhao S. Yu N. Han H. Guo S. Murthy N. Advances in acid-degradable and enzyme-cleavable linkers for drug delivery. Curr. Opin. Chem. Biol. 2025 84 102552 10.1016/j.cbpa.2024.102552 39642424
    [Google Scholar]
  85. Xiao N. Liang H. Lu J. Degradable and biocompatible aldehyde-functionalized glycopolymer conjugated with doxorubicin via acid-labile Schiff base linkage for pH-triggered drug release. Soft Matter 2011 7 22 10834 10840 10.1039/c1sm06181j
    [Google Scholar]
  86. Anju S. Prajitha N. Sukanya V.S. Mohanan P.V. Complicity of degradable polymers in health-care applications. Mater. Today Chem. 2020 16 100236 10.1016/j.mtchem.2019.100236
    [Google Scholar]
  87. Zhao C. Nie S. Tang M. Sun S. Polymeric pH-sensitive membranes—A review. Prog. Polym. Sci. 2011 36 11 1499 1520 10.1016/j.progpolymsci.2011.05.004
    [Google Scholar]
  88. Reyes-Ortega F. pH-responsive polymers: properties, synthesis and applications. Smart Polymers And Their Applications. Amsterdam, Netherlands: Elsevier 2014 45 92
    [Google Scholar]
  89. Kyrychenko A. Blazhynska M.M. Slavgorodska M.V. Kalugin O.N. Stimuli-responsive adsorption of poly(acrylic acid) onto silver nanoparticles: Role of polymer chain length and degree of ionization. J. Mol. Liq. 2019 276 243 254 10.1016/j.molliq.2018.11.130
    [Google Scholar]
  90. Qu Z. Xu H. Gu H. Synthesis and biomedical applications of poly((meth)acrylic acid) brushes. ACS Appl. Mater. Interfaces 2015 7 27 14537 14551 10.1021/acsami.5b02912 26067846
    [Google Scholar]
  91. Herzig M. Knoche W. Kinetics of protonation of polymethacrylic acid in aqueous solution. J. Phys. Chem. A 1998 102 8 1304 1308 10.1021/jp972804f
    [Google Scholar]
  92. Bratek-Skicki A. Towards a new class of stimuli-responsive polymer-based materials – Recent advances and challenges. Appl Surf Sci Adv 2021 4 100068 10.1016/j.apsadv.2021.100068
    [Google Scholar]
  93. Rizwan M. Yahya R. Hassan A. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 2017 9 4 137 10.3390/polym9040137 30970818
    [Google Scholar]
  94. Slaughter BV Blanchard AT Maass KF Peppas NA Dynamic swelling behavior of interpenetrating polymer networks in response to temperature and pH. J Appl Polym Sci 2015 132 24 app.42076 10.1002/app.42076 26405349
    [Google Scholar]
  95. Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 2006 58 15 1655 1670 10.1016/j.addr.2006.09.020 17125884
    [Google Scholar]
  96. Abd Ellah N.H. Abouelmagd S.A. Surface functionalization of polymeric nanoparticles for tumor drug delivery: Approaches and challenges. Expert Opin. Drug Deliv. 2017 14 2 201 214 10.1080/17425247.2016.1213238 27426638
    [Google Scholar]
  97. Liu J. Li M. Luo Z. Dai L. Guo X. Cai K. Design of nanocarriers based on complex biological barriers in vivo for tumor therapy. Nano Today 2017 15 56 90 10.1016/j.nantod.2017.06.010
    [Google Scholar]
  98. Yang Y. Zeng W. Huang P. Zeng X. Mei L. Smart materials for drug delivery and cancer therapy. VIEW 2021 2 2 20200042 10.1002/VIW.20200042
    [Google Scholar]
  99. Majumder J. Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin. Drug Deliv. 2021 18 2 205 227 10.1080/17425247.2021.1828339 32969740
    [Google Scholar]
  100. Imtiyaz Z. He J. Leng Q. Agrawal A.K. Mixson A.J. pH-sensitive targeting of tumors with chemotherapy-laden nanoparticles: Progress and challenges. Pharmaceutics 2022 14 11 2427 10.3390/pharmaceutics14112427 36365245
    [Google Scholar]
  101. Li F. Xing Q. Han Y. Ultrasonically assisted preparation of poly(acrylic acid)/calcium phosphate hybrid nanogels as pH-responsive drug carriers. Mater. Sci. Eng. C 2017 80 688 697 10.1016/j.msec.2017.07.022 28866216
    [Google Scholar]
  102. Bhattacharya S. Prajapati B.G. Singh S. A critical review on the dissemination of PH and stimuli-responsive polymeric nanoparticular systems to improve drug delivery in cancer therapy. Crit. Rev. Oncol. Hematol. 2023 185 103961 10.1016/j.critrevonc.2023.103961 36921781
    [Google Scholar]
  103. Wang M. Li W. Tang G. Garciamendez-Mijares C.E. Zhang Y.S. Engineering (bio) materials through shrinkage and expansion. Adv. Healthc. Mater. 2021 10 14 2100380 10.1002/adhm.202100380 34137213
    [Google Scholar]
  104. Elliott J.E. Macdonald M. Nie J. Bowman C.N. Structure and swelling of poly(acrylic acid) hydrogels: Effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 2004 45 5 1503 1510 10.1016/j.polymer.2003.12.040
    [Google Scholar]
  105. Xue Y.N. Huang Z.Z. Zhang J.T. Synthesis and self-assembly of amphiphilic poly(acrylic acid-b-dl-lactide) to form micelles for pH-responsive drug delivery. Polymer 2009 50 15 3706 3713 10.1016/j.polymer.2009.05.033
    [Google Scholar]
  106. Zhu Y.J. Chen F. pH-responsive drug-delivery systems. Chem. Asian J. 2015 10 2 284 305 10.1002/asia.201402715 25303435
    [Google Scholar]
  107. Hu H. Wang H. Du Q. Preparation of pH-sensitive polyacrylic acid hollow microspheres and their release properties. Soft Matter 2012 8 25 6816 6822 10.1039/c2sm25135c
    [Google Scholar]
  108. Sheng W. Liu T. Liu S. Wang Q. Li X. Guang N. Temperature and pH responsive hydrogels based on polyethylene glycol analogues and poly(methacrylic acid) via click chemistry. Polym. Int. 2015 64 10 1415 1424 10.1002/pi.4934
    [Google Scholar]
  109. Kozlovskaya V. Kharlampieva E. Mansfield M.L. Sukhishvili S.A. Poly (methacrylic acid) hydrogel films and capsules: Response to pH and ionic strength, and encapsulation of macromolecules. Chem. Mater. 2006 18 2 328 336 10.1021/cm0517364
    [Google Scholar]
  110. Wang B. Ma R. Liu G. Glucose-responsive micelles from self-assembly of poly(ethylene glycol)- b -poly(acrylic acid- co -acrylamidophenylboronic acid) and the controlled release of insulin. Langmuir 2009 25 21 12522 12528 10.1021/la901776a 19810675
    [Google Scholar]
  111. Salmaso S. Caliceti P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J. Drug Deliv. 2013 2013 1 1 19 10.1155/2013/374252 23533769
    [Google Scholar]
  112. Li S.D. Huang L. Stealth nanoparticles: High density but sheddable PEG is a key for tumor targeting. J. Control. Release 2010 145 3 178 181 10.1016/j.jconrel.2010.03.016 20338200
    [Google Scholar]
  113. Peng S. Xiao F. Chen M. Gao H. Tumor‐microenvironment‐responsive nanomedicine for enhanced cancer immunotherapy. Adv. Sci. 2022 9 1 2103836 10.1002/advs.202103836 34796689
    [Google Scholar]
  114. Zhang M. Zhang S. Zhang K. Self-assembly of polymer-doxorubicin conjugates to form polyprodrug micelles for pH/enzyme dual-responsive drug delivery. Colloids Surf. A Physicochem. Eng. Asp. 2021 622 126669 10.1016/j.colsurfa.2021.126669
    [Google Scholar]
  115. An L. Wang Y. Liu X. Block ionomer complex micelles based on the self-assembly of poly(ethylene glycol)-block-poly(acrylic acid) and CdCl2 for anti-tumor drug delivery. Chem. Pharm. Bull. 2011 59 5 559 563 10.1248/cpb.59.559 21532192
    [Google Scholar]
  116. Huang H. Li J. Liao L. Poly(l-glutamic acid)-based star-block copolymers as pH-responsive nanocarriers for cationic drugs. Eur. Polym. J. 2012 48 4 696 704 10.1016/j.eurpolymj.2012.01.011
    [Google Scholar]
  117. Woraphatphadung T. Sajomsang W. Rojanarata T. Ngawhirunpat T. Tonglairoum P. Opanasopit P. Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery. AAPS PharmSciTech 2018 19 3 991 1000 10.1208/s12249‑017‑0906‑y 29110292
    [Google Scholar]
  118. Yin X. Hoffman A.S. Stayton P.S. Poly(N -isopropylacrylamide- c o -propylacrylic acid) Copolymers That Respond Sharply to Temperature and pH. Biomacromolecules 2006 7 5 1381 1385 10.1021/bm0507812 16677016
    [Google Scholar]
  119. Luo C. Liu Y. Li Z. Thermo-and pH-responsive polymer derived from methacrylamide and aspartic acid. Macromolecules 2010 43 19 8101 8108 10.1021/ma1015227
    [Google Scholar]
  120. Li Y. Zhang X. Zhang J. Synthesis of a biodegradable branched copolymer mPEG-b-PLGA-g-OCol and its pH-sensitive micelle. Mater. Sci. Eng. C 2020 108 110455 10.1016/j.msec.2019.110455 31924042
    [Google Scholar]
  121. Pardini F.M. Faccia P.A. Pardini O.R. Amalvy J.I. Thermal and pH dual responsive polyurethane/2-(diisopropylamino)ethyl methacrylate hybrids: Synthesis, characterization, and swelling behavior. IJPAC Int. J. Polym. Anal. Charact. 2018 23 3 207 225 10.1080/1023666X.2017.1416998
    [Google Scholar]
  122. Liu R. Li D. He B. Anti-tumor drug delivery of pH-sensitive poly(ethylene glycol)-poly(L-histidine-)-poly(L-lactide) nanoparticles. J. Control. Release 2011 152 1 49 56 10.1016/j.jconrel.2011.02.031 21397642
    [Google Scholar]
  123. Heller J. Chang A.C. Rood G. Grodsky G.M. Release of insulin from pH-sensitive poly(ortho esters). J. Control. Release 1990 13 2-3 295 302 10.1016/0168‑3659(90)90019‑P
    [Google Scholar]
  124. Piñón-Segundo E. Nava-Arzaluz M.G. Lechuga-Ballesteros D. Pharmaceutical polymeric nanoparticles prepared by the double emulsion- solvent evaporation technique. Recent Pat. Drug Deliv. Formul. 2012 6 3 224 235 10.2174/187221112802652606 22734870
    [Google Scholar]
  125. Nava-Arzaluz M.G. Piñón-Segundo E. Ganem-Rondero A. Lechuga-Ballesteros D. Single emulsion-solvent evaporation technique and modifications for the preparation of pharmaceutical polymeric nanoparticles. Recent Pat. Drug Deliv. Formul. 2012 6 3 209 223 10.2174/187221112802652633 22734869
    [Google Scholar]
  126. Chaudhary S.A. Patel D.M. Patel J.K. Patel D.H. Solvent emulsification evaporation and solvent emulsification diffusion techniques for nanoparticles Emerging Technologies for Nanoparticle Manufacturing. Cham Springer 2021 287 300
    [Google Scholar]
  127. Nilkumhang S. Basit A.W. The robustness and flexibility of an emulsion solvent evaporation method to prepare pH-responsive microparticles. Int. J. Pharm. 2009 377 1-2 135 141 10.1016/j.ijpharm.2009.03.024 19515519
    [Google Scholar]
  128. Chen T. Peng Y. Qiu M. Yi C. Xu Z. Recent advances in mixing-induced nanoprecipitation: From creating complex nanostructures to emerging applications beyond biomedicine. Nanoscale 2023 15 8 3594 3609 10.1039/D3NR00280B 36727557
    [Google Scholar]
  129. Miladi K. Sfar S. Fessi H. Elaissari A. Nanoprecipitation process: From particle preparation to in vivo applications Polymer Nanoparticles for Nanomedicines: A Guide for their Design. Cham Springer 2016 17 53 10.1007/978‑3‑319‑41421‑8_2
    [Google Scholar]
  130. Martínez Rivas C.J. Tarhini M. Badri W. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm. 2017 532 1 66 81 10.1016/j.ijpharm.2017.08.064 28801107
    [Google Scholar]
  131. Truong-Dinh Tran T. Ha-Lien Tran P. Tu Nguyen K. Tran V.T. Nano-precipitation: Preparation and application in the field of pharmacy. Curr. Pharm. Des. 2016 22 20 2997 3006 10.2174/1381612822666160408151702 27055935
    [Google Scholar]
  132. Liu Y. Yang G. Zou D. Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery. Ind. Eng. Chem. Res. 2020 59 9 4134 4149 10.1021/acs.iecr.9b04747
    [Google Scholar]
  133. Gröschel A.H. Müller A.H.E. Self-assembly concepts for multicompartment nanostructures. Nanoscale 2015 7 28 11841 11876 10.1039/C5NR02448J 26123217
    [Google Scholar]
  134. Karayianni M. Pispas S. Block copolymer solution self‐assembly: Recent advances, emerging trends, and applications. J Polym Sci 2021 59 17 1874 1898 10.1002/pol.20210430
    [Google Scholar]
  135. Zhang Z. Chen Y. Zhang Y. Self‐assembly of upconversion nanoparticles based materials and their emerging applications. Small 2022 18 9 2103241 10.1002/smll.202103241 34850560
    [Google Scholar]
  136. Sosnik A. Seremeta K.P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci. 2015 223 40 54 10.1016/j.cis.2015.05.003 26043877
    [Google Scholar]
  137. Arpagaus C. Collenberg A. Rütti D. Assadpour E. Jafari S.M. Nano spray drying for encapsulation of pharmaceuticals. Int. J. Pharm. 2018 546 1-2 194 214 10.1016/j.ijpharm.2018.05.037 29778825
    [Google Scholar]
  138. Belbekhouche S. Poostforooshan J. Shaban M. Fabrication of large pore mesoporous silica microspheres by salt-assisted spray-drying method for enhanced antibacterial activity and pancreatic cancer treatment. Int. J. Pharm. 2020 590 119930 10.1016/j.ijpharm.2020.119930 33010394
    [Google Scholar]
  139. Gao W. Chan J.M. Farokhzad O.C. pH-Responsive nanoparticles for drug delivery. Mol. Pharm. 2010 7 6 1913 1920 10.1021/mp100253e 20836539
    [Google Scholar]
  140. Lim E.K. Chung B.H. Chung S.J. Recent advances in pH-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Curr. Drug Targets 2018 19 4 300 317 10.2174/1389450117666160602202339 27262486
    [Google Scholar]
  141. Manchun S. Dass C.R. Sriamornsak P. Targeted therapy for cancer using pH-responsive nanocarrier systems. Life Sci. 2012 90 11-12 381 387 10.1016/j.lfs.2012.01.008 22326503
    [Google Scholar]
  142. Naujokat C. Monoclonal antibodies against human cancer stem cells. Immunotherapy 2014 6 3 290 308 10.2217/imt.14.4 24762074
    [Google Scholar]
  143. Marques A.C. Costa P.J. Velho S. Amaral M.H. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J. Control. Release 2020 320 180 200 10.1016/j.jconrel.2020.01.035 31978444
    [Google Scholar]
  144. Singha S. Shao K. Ellestad K.K. Yang Y. Santamaria P. Nanoparticles for immune stimulation against infection, cancer, and autoimmunity. ACS Nano 2018 12 11 10621 10635 10.1021/acsnano.8b05950 30481968
    [Google Scholar]
  145. Zang X. Zhao X. Hu H. Qiao M. Deng Y. Chen D. Nanoparticles for tumor immunotherapy. Eur. J. Pharm. Biopharm. 2017 115 243 256 10.1016/j.ejpb.2017.03.013 28323111
    [Google Scholar]
  146. Chen K. Chen X. Integrin targeted delivery of chemotherapeutics. Theranostics 2011 1 189 200 10.7150/thno/v01p0189 21547159
    [Google Scholar]
  147. Sapsford K.E. Algar W.R. Berti L. Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chem. Rev. 2013 113 3 1904 2074 10.1021/cr300143v 23432378
    [Google Scholar]
  148. Jurczyk M. Jelonek K. Musiał-Kulik M. Beberok A. Wrześniok D. Kasperczyk J. Single-versus dual-targeted nanoparticles with folic acid and biotin for anticancer drug delivery. Pharmaceutics 2021 13 3 326 10.3390/pharmaceutics13030326 33802531
    [Google Scholar]
  149. Liu M. Wang B. Guo C. Hou X. Cheng Z. Chen D. Novel multifunctional triple folic acid, biotin and CD44 targeting pH-sensitive nano-actiniaes for breast cancer combinational therapy. Drug Deliv. 2019 26 1 1002 1016 10.1080/10717544.2019.1669734 31571501
    [Google Scholar]
  150. Wu W. Luo L. Wang Y. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 2018 8 11 3038 3058 10.7150/thno.23459 29896301
    [Google Scholar]
  151. Bachelet M. Design of pH-responsive gold nanoparticles in oncology. Mater. Sci. Technol. 2016 32 8 794 804 10.1179/1743284715Y.0000000090
    [Google Scholar]
  152. García K.P. Zarschler K. Barbaro L. Zwitterionic-coated “stealth” nanoparticles for biomedical applications: Recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 2014 10 13 2516 2529 10.1002/smll.201303540 24687857
    [Google Scholar]
  153. Zhang Y. Liu Y. Ren B. Fundamentals and applications of zwitterionic antifouling polymers. J. Phys. D Appl. Phys. 2019 52 40 403001 10.1088/1361‑6463/ab2cbc
    [Google Scholar]
  154. Parbat D. Manna U. Responsive and reactive layer-by-layer coatings for deriving functional interfaces. Mater Adv 2023 4 1 35 51 10.1039/D2MA00791F
    [Google Scholar]
  155. Zhang Z. Sun H. Giannino J. Wu Y. Cheng C. Biodegradable zwitterionic polymers as PEG alternatives for drug delivery. J Polym Sci 2024 62 10 2231 2250 10.1002/pol.20230916 39247254
    [Google Scholar]
  156. Cao Z. Jiang S. Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today 2012 7 5 404 413 10.1016/j.nantod.2012.08.001
    [Google Scholar]
  157. Milewska S. Niemirowicz-Laskowska K. Siemiaszko G. Nowicki P. Wilczewska A.Z. Car H. Current trends and challenges in pharmacoeconomic aspects of nanocarriers as drug delivery systems for cancer treatment. Int. J. Nanomedicine 2021 16 6593 6644 10.2147/IJN.S323831 34611400
    [Google Scholar]
  158. Khan M.I. Hossain M.I. Hossain M.K. Recent progress in nanostructured smart drug delivery systems for cancer therapy: A review. ACS Appl. Bio Mater. 2022 5 3 971 1012 10.1021/acsabm.2c00002 35226465
    [Google Scholar]
  159. Liu Y. Qiao L. Zhang S. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomater. 2018 66 310 324 10.1016/j.actbio.2017.11.010 29129789
    [Google Scholar]
  160. Shen Y. Tang H. Radosz M. Van Kirk E. Murdoch W.J. pH-responsive nanoparticles for cancer drug delivery. Methods Mol. Biol. 2008 437 183 216 10.1007/978‑1‑59745‑210‑6_10 18369970
    [Google Scholar]
  161. Pan J. Lei S. Chang L. Wan D. Smart pH-responsive nanoparticles in a model tumor microenvironment for enhanced cellular uptake. J. Mater. Sci. 2019 54 2 1692 1702 10.1007/s10853‑018‑2931‑y
    [Google Scholar]
  162. Jia N. Li W. Liu D. Tumor microenvironment stimuli-responsive nanoparticles for programmed anticancer drug delivery. Mol. Pharm. 2020 17 5 1516 1526 10.1021/acs.molpharmaceut.9b01189 32243181
    [Google Scholar]
  163. Wang R. Xu X. Li D. Smart pH-responsive polyhydralazine/bortezomib nanoparticles for remodeling tumor microenvironment and enhancing chemotherapy. Biomaterials 2022 288 121737 10.1016/j.biomaterials.2022.121737 36031455
    [Google Scholar]
  164. Liang J. Huang Q. Hua C. pH‐responsive nanoparticles loaded with graphene quantum dots and doxorubicin for intracellular imaging, drug delivery and efficient cancer therapy. ChemistrySelect 2019 4 20 6004 6012 10.1002/slct.201803807
    [Google Scholar]
  165. Zhou Z. Song J. Nie L. Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016 45 23 6597 6626 10.1039/C6CS00271D 27722328
    [Google Scholar]
  166. Dąbrowski J.M. Reactive oxygen species in photodynamic therapy: Mechanisms of their generation and potentiation Advances in inorganic chemistry 70. Amsterdam, Netherlands Elsevier 2017 343 394
    [Google Scholar]
  167. Solban N. Rizvi I. Hasan T. Targeted photodynamic therapy. Lasers Surg. Med. 2006 38 5 522 531 10.1002/lsm.20345 16671102
    [Google Scholar]
  168. Pucelik B. Sułek A. Barzowska A. Dąbrowski J.M. Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer. Cancer Lett. 2020 492 116 135 10.1016/j.canlet.2020.07.007 32693200
    [Google Scholar]
  169. Lucky S.S. Soo K.C. Zhang Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015 115 4 1990 2042 10.1021/cr5004198 25602130
    [Google Scholar]
  170. Vannostrum C. Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv. Drug Deliv. Rev. 2004 56 1 9 16 10.1016/j.addr.2003.07.013 14706442
    [Google Scholar]
  171. Le Garrec D. Taillefer J. Van Lier J.E. Lenaerts V. Leroux J.C. Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model. J. Drug Target. 2002 10 5 429 437 10.1080/1061186021000001887 12442814
    [Google Scholar]
  172. Lee L. Gupta M. Sahasranaman S. Immune Checkpoint inhibitors: An introduction to the next‐generation cancer immunotherapy. J. Clin. Pharmacol. 2016 56 2 157 169 10.1002/jcph.591 26183909
    [Google Scholar]
  173. Marin-Acevedo J.A. Soyano A.E. Dholaria B. Knutson K.L. Lou Y. Cancer immunotherapy beyond immune checkpoint inhibitors. J. Hematol. Oncol. 2018 11 1 8 10.1186/s13045‑017‑0552‑6 29329556
    [Google Scholar]
  174. Martin J.D. Cabral H. Stylianopoulos T. Jain R.K. Improving cancer immunotherapy using nanomedicines: Progress, opportunities and challenges. Nat. Rev. Clin. Oncol. 2020 17 4 251 266 10.1038/s41571‑019‑0308‑z 32034288
    [Google Scholar]
  175. Li L. Yu R. Cai T. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int. Immunopharmacol. 2020 88 106939 10.1016/j.intimp.2020.106939 33182039
    [Google Scholar]
  176. Dong Z. Feng L. Zhu W. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials 2016 110 60 70 10.1016/j.biomaterials.2016.09.025 27710833
    [Google Scholar]
  177. Guo Z. Sui J. Ma M. pH-Responsive charge switchable PEGylated ε-poly-l-lysine polymeric nanoparticles-assisted combination therapy for improving breast cancer treatment. J. Control. Release 2020 326 350 364 10.1016/j.jconrel.2020.07.030 32707209
    [Google Scholar]
  178. Wu J.M. Liu Y. Han H.Y. Song Z.Y. Recent advances in endogenous and exogenous stimuli-responsive nanoplatforms for bacterial infection treatment. Biomed Eng Communicat 2023 2 1 2 23 10.53388/BMEC2023002
    [Google Scholar]
  179. Wu S. Yan M.M. Zhou J. Supramolecular polymeric materials based on macrocyclic hosts for cancer therapy. Biomed Eng Communicat 2023 2 3 15 10.53388/BMEC2023015
    [Google Scholar]
  180. Ewii U.E. Onugwu A.L. Nwokpor V.C. Akpaso I-a. Ogbulie T.E. Aharanwa B. Novel drug delivery systems: Insight into self-powered and nano-enabled drug delivery systems. Nano TransMed 2024 3 6 100042 10.1016/j.ntm.2024.100042
    [Google Scholar]
  181. Grewal A.K. Salar R.K. Chitosan nanoparticle delivery systems: An effective approach to enhancing efficacy and safety of anticancer drugs. Nano TransMed 2024 3 100040 10.1016/j.ntm.2024.100040
    [Google Scholar]
  182. Balamuralidhara V. Pramodkumar T.M. Srujana N. Venkatesh M.P. Gupta N.V. Krishna K.L. pH Sensitive drug delivery systems: A review. American J Drug Dis Develop 2011 1 28 48 10.3923/ajdd.2011.24.48
    [Google Scholar]
  183. Sun H. Li X. Liu Q. Sheng H. Zhu L. pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery. J. Drug Target. 2024 32 6 672 706 10.1080/1061186X.2024.2349124 38682299
    [Google Scholar]
  184. Liu L. Yao W. Rao Y. Lu X. Gao J. pH-Responsive carriers for oral drug delivery: Challenges and opportunities of current platforms. Drug Deliv. 2017 24 1 569 581 10.1080/10717544.2017.1279238 28195032
    [Google Scholar]
  185. Kongkatigumjorn N. Crespy D. Strategies to prepare polymers with cleavable linkages releasing active agents in acidic media. Polym. Chem. 2024 15 44 4491 4518 10.1039/D4PY00854E
    [Google Scholar]
  186. Jia Y. Jiang Y. He Y. Approved nanomedicine against diseases. Pharmaceutics 2023 15 3 774 10.3390/pharmaceutics15030774 36986635
    [Google Scholar]
  187. Miguel R.A. Hirata A.S. Jimenez P.C. Lopes L.B. Costa-Lotufo L.V. Hirata A.S. Jimenez P.C. Lopes L.B. Costa-Lotufo L.V. Beyond formulation: Contributions of nanotechnology for translation of anticancer natural products into new drugs. Pharmaceutics 2022 14 8 1722 10.3390/pharmaceutics14081722 36015347
    [Google Scholar]
  188. Lee J. Choi M.K. Song I.S. Recent advances in doxorubicin formulation to enhance pharmacokinetics and tumor targeting. Pharmaceuticals 2023 16 6 802 10.3390/ph16060802 37375753
    [Google Scholar]
  189. Pandey V. Pandey T. Mechanistic understanding of pH as a driving force in cancer therapeutics. J. Mater. Chem. B Mater. Biol. Med. 2025 13 8 2640 2657 10.1039/D4TB02083A 39878033
    [Google Scholar]
  190. Kumar R. Dutt S. Tripathi A.D. Singh A.K. Chaturvedi V.K. Singh S.K. Navigating Safety and Toxicity Challenges in Nanomedicine: Strategies, Assessment, and Mitigation Nanomedicine. Cham Springer 2024 15 37
    [Google Scholar]
  191. Patel D.M. Patel N.N. Patel J.K. Nanomedicine scale-up technologies: Feasibilities and challenges Emerging technologies for nanoparticle manufacturing. Cham Springer 2021 511 539
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878366151250815012551
Loading
/content/journals/raddf/10.2174/0126673878366151250815012551
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test