Skip to content
2000
image of Advancements in Enteric-coated Microspheres Formulation Development and Mangiferin Drug Delivery for the Treatment of Ulcerative Colitis

Abstract

Introduction

Ulcerative colitis, an inflammatory disease of the colon, is prone to recurrence. Research into novel therapies for this condition is urgently required. The current investigation aims to ascertain the protective impact of microspheres loaded with mangiferin in acetic acid-induced ulcerative colitis (UC).

Methods

The formulation significantly reduced inflammatory alterations, ulcer activity scores, and oxidative stress. Colitis was induced by injecting 1 mL of a 4% acetic acid solution. In addition to a macroscopical and gross evaluation, colon samples were tested for catalase and glutathione (GSH) activity.

Results

Microspheres loaded with mangiferin reduced the severity of ulcerative colitis caused by acetic acid, as indicated by improvements in weight loss, macroscopic score, ulcer area, and histological score.

Discussion

This work emphasizes the use of dual-polymer microspheres to deliver mangiferin to the colon, allowing for pH-dependent and prolonged drug release. By increasing stability and site-specific activity, this method may be used to treat ulcerative colitis.

Conclusion

These findings suggest that enteric-coated microspheres loaded with mangiferin exhibit a protective effect against colon ulcers in rats and offer delayed-release properties compared to plain mangiferin.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878362674250630062020
2025-08-01
2025-09-09
Loading full text...

Full text loading...

References

  1. Cai Z. Wang S. Li J. Treatment of inflammatory bowel disease: A comprehensive review. Front. Med. 2021 8 765474 10.3389/fmed.2021.765474 34988090
    [Google Scholar]
  2. Chen Y. Wang P. Zhang Y. Du X.Y. Zhang Y.J. Comparison of effects of aminosalicylic acid, glucocorticoids and immunosuppressive agents on the expression of multidrug-resistant genes in ulcerative colitis. Sci. Rep. 2022 12 1 20656 10.1038/s41598‑022‑19612‑8 36450761
    [Google Scholar]
  3. El Menyiy N. El Allam A. Aboulaghras S. Inflammatory auto-immune diseases of the intestine and their management by natural bioactive compounds. Biomed. Pharmacother. 2022 151 113158 10.1016/j.biopha.2022.113158 35644116
    [Google Scholar]
  4. Davila M.M. Papada E. The role of plant-derived natural products in the management of inflammatory bowel disease—what is the clinical evidence so far? Life 2023 13 8 1703 10.3390/life13081703 37629560
    [Google Scholar]
  5. Ashique S. Mishra N. Garg A. Recent updates on correlation between reactive oxygen species and synbiotics for effective management of ulcerative colitis. Front. Nutr. 2023 10 1126579 10.3389/fnut.2023.1126579 37545572
    [Google Scholar]
  6. Alanazi A.S. Alanazi M.M. Elekhnawy E. Attallah N.G.M. Negm W.A. El-Kadem A.H. Plausible protective role of encephalartos villosus extract in acetic-acid-induced ulcerative colitis in rats. Pharmaceuticals 2023 16 10 1431 10.3390/ph16101431 37895902
    [Google Scholar]
  7. Sahoo D.K. Heilmann R.M. Paital B. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front. Endocrinol. 2023 14 1217165 10.3389/fendo.2023.1217165 37701897
    [Google Scholar]
  8. Teruel A.H. Gonzalez-Alvarez I. Bermejo M. New insights of oral colonic drug delivery systems for inflammatory bowel disease therapy. Int. J. Mol. Sci. 2020 21 18 6502 10.3390/ijms21186502 32899548
    [Google Scholar]
  9. Patel S. Vaziri H. Inflammatory bowel disease BT- pocket handbook of GI pharmacotherapeutics. Mavilia M.G. Wu G.Y. Cham Springer International Publishing 2021 63 90
    [Google Scholar]
  10. Nidhi Dadwal A. Hallan S.S. Sharma S. Mishra N. Development of enteric-coated microspheres of embelin for their beneficial pharmacological potential in ulcerative colitis. Artif. Cells Nanomed. Biotechnol. 2017 45 6 1092 1100 10.1080/21691401.2016.1202258 27388946
    [Google Scholar]
  11. Márquez L. Pérez-Nievas B.G. Gárate I. Anti-inflammatory effects of Mangifera indica L. extract in a model of colitis. World J. Gastroenterol. 2010 16 39 4922 4931 10.3748/wjg.v16.i39.4922 20954278
    [Google Scholar]
  12. Procopio A. Lagreca E. Jamaledin R. Recent fabrication methods to produce polymer-based drug delivery matrices (experimental and in silico approaches). Pharmaceutics 2022 14 4 872 10.3390/pharmaceutics14040872 35456704
    [Google Scholar]
  13. Nikam A. Sahoo P.R. Musale S. Pagar R.R. Paiva-Santos A.C. Giram P.S. A systematic overview of eudragit ® based copolymer for smart healthcare. Pharmaceutics 2023 15 2 587 36839910
    [Google Scholar]
  14. Singh J. Nayak P. pH‐responsive polymers for drug delivery: Trends and opportunities. J Polym Sci 2023 61 22 2828 2850 10.1002/pol.20230403
    [Google Scholar]
  15. Lee S.H. Bajracharya R. Min J.Y. Han J.W. Park B.J. Han H.K. Strategic approaches for colon targeted drug delivery: An overview of recent advancements. Pharmaceutics 2020 12 1 68 10.3390/pharmaceutics12010068 31952340
    [Google Scholar]
  16. Lukova P. Katsarov P. Pilicheva B. Application of starch, cellulose, and their derivatives in the development of microparticle drug-delivery systems. Polymers 2023 15 17 3615 10.3390/polym15173615 37688241
    [Google Scholar]
  17. Adeleke O.A. Premium ethylcellulose polymer based architectures at work in drug delivery. Int. J. Pharm. X 2019 1 100023 10.1016/j.ijpx.2019.100023 31517288
    [Google Scholar]
  18. Liu H. Lv H. Duan X. Du Y. Tang Y. Xu W. Advancements in macrophage-targeted drug delivery for effective disease management. Int. J. Nanomedicine 2023 18 6915 6940 10.2147/IJN.S430877 38026516
    [Google Scholar]
  19. Lengyel M. Kállai-Szabó N. Antal V. Laki A.J. Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci. Pharm. 2019 87 3 20 10.3390/scipharm87030020
    [Google Scholar]
  20. Asif H.M. Kumar R.A. Tadikonda R. Anjum M. Preparation and evaluation of ethylcellulose microspheres prepared by solvent evaporation technique. Int. J. Pharm. Pharm. Sci. 2014 6 264 266
    [Google Scholar]
  21. Owusu G. Obiri D.D. Ainooson G.K. Acetic acid-induced ulcerative colitis in sprague dawley rats is suppressed by hydroethanolic extract of cordia vignei leaves through reduced serum levels of TNF- α and IL-6. Int. J. Chronic Dis. 2020 2020 1 11 10.1155/2020/8785497 32090060
    [Google Scholar]
  22. DeRoche T.C. Xiao S.Y. Liu X. Histological evaluation in ulcerative colitis. Gastroenterol. Rep. 2014 2 3 178 192 10.1093/gastro/gou031 24942757
    [Google Scholar]
  23. Hadwan M.H. Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochem. 2018 19 1 7 10.1186/s12858‑018‑0097‑5 30075706
    [Google Scholar]
  24. Salbitani G. Bottone C. Carfagna S. Determination of reduced and total glutathione content in extremophilic microalga galdieria phlegrea. Bio Protoc. 2017 7 13 e2372 10.21769/BioProtoc.2372 34541114
    [Google Scholar]
  25. Ellman G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959 82 1 70 77 10.1016/0003‑9861(59)90090‑6 13650640
    [Google Scholar]
  26. Thippeswamy B.S. Mahendran S. Biradar M.I. Protective effect of embelin against acetic acid induced ulcerative colitis in rats. Eur. J. Pharmacol. 2011 654 1 100 105 10.1016/j.ejphar.2010.12.012 21185828
    [Google Scholar]
  27. Patel S. Vaziri H. Inflammatory bowel disease: A comprehensive review. In: Pocket Handbook of GI Pharmacotherapeutics. Springer International Publishing 2021 63 90
    [Google Scholar]
  28. Buhrmann C. Shayan P. Banik K. Targeting NF-κB signaling by calebin A, a compound of turmeric, in multicellular tumor microenvironment: Potential role of apoptosis induction in CRC cells. Biomedicines 2020 8 8 236 10.3390/biomedicines8080236 32708030
    [Google Scholar]
  29. Spite M. Summers L. Porter T.F. Srivastava S. Bhatnagar A. Serhan C.N. Resolvin D1 controls inflammation initiated by glutathione‐lipid conjugates formed during oxidative stress. Br. J. Pharmacol. 2009 158 4 1062 1073 10.1111/j.1476‑5381.2009.00234.x 19422383
    [Google Scholar]
  30. Ohkawa H. Ohishi N. Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979 95 2 351 358 10.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  31. Biswas P. Dellanoce C. Vezzoli A. Antioxidant activity with increased endogenous levels of vitamin C, E and a following dietary supplementation with a combination of glutathione and resveratrol precursors. Nutrients 2020 12 11 3224 10.3390/nu12113224 33105552
    [Google Scholar]
  32. Gupta G.S. The lactate and the lactate dehydrogenase in inflammatory diseases and major risk factors in COVID-19 patients. Inflammation 2022 45 6 2091 2123 10.1007/s10753‑022‑01680‑7 35588340
    [Google Scholar]
  33. Ghorbanzadeh B. Mansouri M.T. Hemmati A.A. Naghizadeh B. Mard S.A. Rezaie A. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats. Indian J. Pharmacol. 2015 47 3 292 298 10.4103/0253‑7613.157127 26069367
    [Google Scholar]
  34. Moukette Moukette B. Constant Anatole P. Nya Biapa C.P. Njimou J.R. Ngogang J.Y. Free radicals quenching potential, protective properties against oxidative mediated ion toxicity and HPLC phenolic profile of a Cameroonian spice: Piper guineensis. Toxicol. Rep. 2015 2 792 805 10.1016/j.toxrep.2015.02.007 28962415
    [Google Scholar]
  35. Karan S. Choudhury H. Chakra B.K. Chatterjee T.K. Polymeric microsphere formulation for colon targeted delivery of 5-fluorouracil using biocompatible natural gum katira. Asian Pac. J. Cancer Prev. 2019 20 7 2181 2194 10.31557/APJCP.2019.20.7.2181 31350983
    [Google Scholar]
  36. Singh J. Solanki A. Sikarwar G.S. Singh N.K. Advances in colon-targeted drug delivery systems: Innovative strategies for treating colonic disorders and prospects for the future. Curr. Pharm. Biotechnol. 2024 26 10.2174/0113892010323922240924053921 39377403
    [Google Scholar]
  37. Yang X. Yang Y. Yu H. Zhou Y. Self-assembled polymers for gastrointestinal tract targeted delivery through the oral route: An update. Polymers 2023 15 17 3538 10.3390/polym15173538 37688164
    [Google Scholar]
  38. Jain A. Parihar D.K. Tiwary B. Kushwaha M. Evaluation of antibacterial activity of silver nanoparticle loaded curcuma extract collected from sarguja district of chhattisgarh. Prob Sci 2024 1 2 58 64 10.5281/zenodo.14640610
    [Google Scholar]
  39. Karim M.M. Paswan S. Bhairam M. Mishra S. Understanding gut microbiota and antibiotics complex interplay and clinical implications. Prob Sci 2024 1 2 46 57 10.5281/zenodo.14635348
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878362674250630062020
Loading
/content/journals/raddf/10.2174/0126673878362674250630062020
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: ulcer ; glutathione (GSH) ; colon ; inflammation ; acetic acid ; Mangiferin ; catalase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test