Skip to content
2000
image of Advancements and Challenges in Gastroretentive Drug Delivery Systems: A Comprehensive Review of Research Innovation, Technologies, and Clinical Applications

Abstract

Gastroretentive drug delivery systems (GRDDS) have emerged as a focal point of research and development, attracting substantial attention due to their potential to revolutionize oral drug administration. Their ability to enhance the bioavailability and therapeutic effectiveness of orally administered medications, particularly those with narrow absorption windows or susceptible to gastrointestinal degradation, has spurred considerable interest. By extending gastric residence time, GRDDS offers a pathway to optimize drug absorption while minimizing dosing frequency, thereby improving patient compliance and therapeutic outcomes. This comprehensive review delves into the diverse array of gastroretentive drug delivery approaches, providing in-depth insights into their classification, mechanisms of retention, recent innovations with patented technologies, and existing marketed formulations of the domain. Furthermore, it meticulously examines the challenges inherent in GRDDS implementation and elucidates effective strategies to surmount them. From novel formulation techniques to ingenious drug-carrier systems, this review explores the multifaceted landscape of GRDDS development, shedding light on promising avenues for future research and development. By advancing current knowledge and anticipating future trends, this review serves as a valuable resource for researchers, clinicians, and pharmaceutical professionals navigating the dynamic terrain of gastroretentive drug delivery.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878342430250414114531
2025-04-28
2025-09-29
Loading full text...

Full text loading...

References

  1. Vllasaliu D. Thanou M. Stolnik S. Fowler R. Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery. Expert Opin. Drug Deliv. 2018 15 8 759 770 10.1080/17425247.2018.1504017 30033780
    [Google Scholar]
  2. Thapa P. Jeong S.H. Effects of formulation and process variables on gastroretentive floating tablets with a high-dose soluble drug and experimental design approach. Pharmaceutics 2018 10 3 161 10.3390/pharmaceutics10030161 30227678
    [Google Scholar]
  3. Yadav A.J. Deshmukh G. A comprehensive review on gastro-retentive drug delivery system. Int. J. Res. Pharm. Alli. Sci. 2016 3 5 99 114
    [Google Scholar]
  4. Streubel A. Siepmann J. Bodmeier R. Gastroretentive drug delivery systems. Expert Opin. Drug Deliv. 2006 3 2 217 233 10.1517/17425247.3.2.217 16506949
    [Google Scholar]
  5. Liu Y. Yang T. Wei S. Zhou C. Lan Y. Cao A. Yang J. Wang W. Mucus adhesion- and penetration-enhanced liposomes for paclitaxel oral delivery. Int. J. Pharm. 2018 537 1-2 245 256 10.1016/j.ijpharm.2017.12.044 29288808
    [Google Scholar]
  6. Singh B. Kim K.H. Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. J. Cont. Rel. 2000 63 3 235 259 10.1016/S0168‑3659(99)00204‑7 10601721
    [Google Scholar]
  7. Tripathi J. Thapa P. Maharjan R. Jeong S.H. Current state and future perspectives on gastroretentive drug delivery systems. Pharmaceutics 2019 11 4 193 10.3390/pharmaceutics11040193 31010054
    [Google Scholar]
  8. Fukuda M. Peppas N.A. McGinity J.W. Floating hot-melt extruded tablets for gastroretentive controlled drug release system. J. Cont. Rel. 2006 115 2 121 129 10.1016/j.jconrel.2006.07.018 16959356
    [Google Scholar]
  9. Wurster D.E. Alkhamis K.A. Matheson L.E. Prediction of the adsorption of diazepam by activated carbon in aqueous media. J. Pharm. Sci. 2003 92 10 2008 2016 10.1002/jps.10454 14502540
    [Google Scholar]
  10. Garg R. Gupta G.D. Progress in controlled gastroretentive delivery systems. Trop. J. Pharm. Res. 2008 7 3 1055 1066 10.4314/tjpr.v7i3.14691
    [Google Scholar]
  11. Kumar R. Philip A. Gastroretentive dosage forms for prolonging gastric residence time. Int. J. Pharm. Med. 2007 21 2 157 171 10.2165/00124363‑200721020‑00005
    [Google Scholar]
  12. Siraj S. Molvi K. Nazim S. Various perspectives of gastroretentive drug delivery system: a review. Am. J. Adv. Drug Deliv. 2013 1 4 443 451
    [Google Scholar]
  13. Rouge N. Buri P. Doelker E. Drug absorption sites in the gastrointestinal tract and dosage forms for site-specific delivery. Int. J. Pharm. 1996 136 1-2 117 139 10.1016/0378‑5173(96)85200‑8
    [Google Scholar]
  14. Kotreka U. Adeyeye M.C. Gastroretentive floating drug-delivery systems: a critical review. Crit. Rev. Ther. Drug Carrier. Syst. 2011 28 1 47 99 10.1615/CritRevTherDrugCarrierSyst.v28.i1.20 21395515
    [Google Scholar]
  15. Chen N. Niu J. Li Q. Li J. chen X. Ren Y. Wu G. Liu Y. Shi Y. Development and evaluation of a new gastroretentive drug delivery system: Nanomicelles-loaded floating mucoadhesive beads. J. Drug Deliv. Sci. Technol. 2019 51 485 492 10.1016/j.jddst.2019.03.024
    [Google Scholar]
  16. Patil H. Tiwari R.V. Repka M.A. Recent advancements in mucoadhesive floating drug delivery systems: A mini-review. J. Drug Deliv. Sci. Technol. 2016 31 65 71 10.1016/j.jddst.2015.12.002
    [Google Scholar]
  17. Uboldi M. Chiappa A. Rossi M. Briatico-Vangosa F. Melocchi A. Zema L. Development of a multi-component gastroretentive expandable drug delivery system (GREDDS) for personalized administration of metformin. Expert Opin. Drug Deliv. 2024 21 1 131 149 10.1080/17425247.2023.2294884 38088371
    [Google Scholar]
  18. Prinderre P. Sauzet C. Fuxen C. Advances in gastro retentive drug-delivery systems. Expert Opin. Drug Deliv. 2011 8 9 1189 1203 10.1517/17425247.2011.592828 21671821
    [Google Scholar]
  19. Liu Y. Zhang J. Gao Y. Zhu J. Preparation and evaluation of glyceryl monooleate-coated hollow-bioadhesive microspheres for gastroretentive drug delivery. Int. J. Pharm. 2011 413 1-2 103 109 10.1016/j.ijpharm.2011.04.030 21540088
    [Google Scholar]
  20. Raghu Kiran C.V.S. Gopinath C. Development and evaluation of interpenetrating polymer network based superporous hydrogel gastroretentive drug delivery systems (SPH IPN-GRDDS). Mater. Today Proc. 2021 46 3056 3061 10.1016/j.matpr.2021.02.381
    [Google Scholar]
  21. Prajapati V.D. Jani G.K. Khutliwala T.A. Zala B.S. Raft forming system: An upcoming approach of gastroretentive drug delivery system. J. Cont. Rel. 2013 168 2 151 165 10.1016/j.jconrel.2013.02.028 23500062
    [Google Scholar]
  22. Guo X. Chang R.K. Hussain M.A. Ion-exchange resins as drug delivery carriers. J. Pharm. Sci. 2009 98 11 3886 3902 10.1002/jps.21706 19226637
    [Google Scholar]
  23. Rahamathulla M. Saisivam S. Gangadharappa H.V. Development of valsartan floating matrix tablets using low density polypropylene foam powder: In vitro and in vivo evaluation. AAPS Pharm. Sci. Tech. 2019 20 1 35 10.1208/s12249‑018‑1265‑z 30604045
    [Google Scholar]
  24. Amidon G.L. Lennernäs H. Shah V.P. Crison J.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 1995 12 3 413 420 10.1023/A:1016212804288 7617530
    [Google Scholar]
  25. Sen O. Manna S. Nandi G. Jana S. Jana S. Recent advances in alginate based gastroretentive technologies for drug delivery applications. Medi. Nov. Technol. Devi. 2023 18 100236 10.1016/j.medntd.2023.100236
    [Google Scholar]
  26. Gavhane Y.N. Yadav A.V. Loss of orally administered drugs in GI tract. Saudi Pharm. J. 2012 20 4 331 344 10.1016/j.jsps.2012.03.005 23960808
    [Google Scholar]
  27. Hua S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol. 2020 11 524 10.3389/fphar.2020.00524 32425781
    [Google Scholar]
  28. Vinchurkar K. Sainy J. Khan M.A. Mane S. Mishra D.K. Dixit P. Features and facts of a gastroretentive drug delivery system: A review. Turk. J. Pharma. Sci. 2022 19 4 476 487 10.4274/tjps.galenos.2021.44959 36047602
    [Google Scholar]
  29. Ahmed W. El-Gogary R.I. Nasr M. Sammour O.A. Development and in vitro/in vivo evaluation of itopride hydrochloride expanding tablets. J. Pharm. Innov. 2023 18 3 1350 1361 10.1007/s12247‑023‑09729‑2
    [Google Scholar]
  30. Maurya S. Dubey A. Rajendiran M.O.A. Chauhan V. Ansari Z. Chaurasia A. Cerebro-spinal fluid (CSF) targeting through intra-nasal route by using nanotechnology emerging as a powerful technique for different brain diseases. Afri. J. Biolog. Sci. 2024 6 5 9261 9281 10.48047/AFJBS.6.5.2024.9261‑9281
    [Google Scholar]
  31. Porwal A. Dwivedi H. Pathak K. Decades of research in drug targeting using gastroretentive drug delivery systems for antihypertensive therapy. Braz. J. Pharm. Sci. 2017 53 3 53 10.1590/s2175‑97902017000300173
    [Google Scholar]
  32. Ovais M. Maurya S. Srivastava S. Dubey A. Rajendiran A. Tiwari M. Pterocarpus marsupium: Emerging as powerful antidiabetic phytoconstituents and different pharmacological activity. Afri. J. Biolog. Sci. 2024 6 5 9993 10022 10.48047/AFJBS.6.5.2024.9993‑10022
    [Google Scholar]
  33. Sanap S.N. Kedar A. Bisen A.C. Agrawal S. Bhatta R.S. A recent update on therapeutic potential of vesicular system against fungal keratitis. J. Drug Deliv. Sci. Technol. 2022 75 103721 10.1016/j.jddst.2022.103721
    [Google Scholar]
  34. Singh K.P. Akanksha S. Ayush D. Mohammed O. Kumar A. A comprehensive review of 1, 2, 3 & 1, 2, 4 triazoleanalogs for their versatile biological activities. Afri. J. Biolog. Sci. 2024 6 12 2492 2525
    [Google Scholar]
  35. Chhatrapati Bisen A. Nashik Sanap S. Agrawal S. Biswas A. Sankar Bhatta R. Chemical metabolite synthesis and profiling: Mimicking in vivo biotransformation reactions. Bioorg. Chem. 2023 139 106722 10.1016/j.bioorg.2023.106722
    [Google Scholar]
  36. Bisen A.C. Agrawal S. Rayiti R. Sanap S.N. Biswas A. Mishra A. Gupta N.M. Bhatta R.S. Pirfenidone: a promising drug in ocular therapeutics. Chem. Biodivers. 2024 21 3 e202301389 10.1002/cbdv.202301389 38299764
    [Google Scholar]
  37. Kumar A. Verma K. Purohit S. Bhandari A. Overview of gastro-retentive drug delivery system. J. Natu. Consci. 2011 2 3 423 436
    [Google Scholar]
  38. Sauzet C. Claeys-Bruno M. Nicolas M. Kister J. Piccerelle P. Prinderre P. An innovative floating gastro retentive dosage system: Formulation and in vitro evaluation. Int. J. Pharm. 2009 378 1-2 23 29 10.1016/j.ijpharm.2009.05.027 19465095
    [Google Scholar]
  39. Bisen A.C. Sanap S.N. Agrawal S. Biswas A. Mishra A. Verma S.K. Singh V. Bhatta R.S. Etiopathology, epidemiology, diagnosis, and treatment of fungal keratitis. ACS Infect. Dis. 2024 10 7 2356 2380 10.1021/acsinfecdis.4c00203 38847789
    [Google Scholar]
  40. Goyal R.K. Guo Y. Mashimo H. Advances in the physiology of gastric emptying. Neurogastroenterol. Motil. 2019 31 4 e13546 10.1111/nmo.13546 30740834
    [Google Scholar]
  41. Minami H. Mccallum R.W. The physiology and pathophysiology of gastric emptying in humans. Gastroenterology 1984 86 6 1592 1610 10.1016/S0016‑5085(84)80178‑X 6370777
    [Google Scholar]
  42. Bratten J. Jones M.P. New directions in the assessment of gastric function: clinical applications of physiologic measurements. Dig. Dis. 2006 24 3-4 252 259 10.1159/000092878 16849852
    [Google Scholar]
  43. Sanap S.N. Bisen A.C. Agrawal S. Kedar A. Bhatta R.S. Ophthalmic nano-bioconjugates: critical challenges and technological advances. Ther. Deliv. 2023 14 7 419 441 10.4155/tde‑2023‑0031 37535389
    [Google Scholar]
  44. Schubert M.L. Gastric physiology. Gastrointestinal Anatomy and Physiology Hoboken, New Jersey John Wiley & Sons, Ltd. 2014 58 77
    [Google Scholar]
  45. Kagan L. Hoffman A. Systems for region selective drug delivery in the gastrointestinal tract: biopharmaceutical considerations. Expert Opin. Drug Deliv. 2008 5 6 681 692 10.1517/17425247.5.6.681 18532923
    [Google Scholar]
  46. Lopes C.M. Bettencourt C. Rossi A. Buttini F. Barata P. Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int. J. Pharm. 2016 510 1 144 158 10.1016/j.ijpharm.2016.05.016 27173823
    [Google Scholar]
  47. Thakur N. Gupta B.P. Patel D. Chaturvedi S.K. Jain N.P. Banweer J. A comprehensive review on floating oral drug delivery system. Drug Invent. Today 2010 2 7 1000361
    [Google Scholar]
  48. Waterman K.C. A critical review of gastric retentive controlled drug delivery. Pharm. Dev. Technol. 2007 12 1 1 10 10.1080/10837450601168680 17484139
    [Google Scholar]
  49. Marathe P.H. Wen Y. Norton J. Greene D.S. Barbhaiya R.H. Wilding I.R. Effect of altered gastric emptying and gastrointestinal motility on metformin absorption. Br. J. Clin. Pharmacol. 2000 50 4 325 332 10.1046/j.1365‑2125.2000.00264.x 11012555
    [Google Scholar]
  50. Kumar S. Sanap S.N. Pandey P. Khopade A. Sawant K.K. Glucagon: Delivery advancements for hypoglycemia management. Int. J. Pharm. 2024 652 123785 10.1016/j.ijpharm.2024.123785 38224759
    [Google Scholar]
  51. Abduljabbar H. Badr-Eldin S. Aldawsari H. Gastroretentive ranitidine hydrochloride tablets with combined floating and bioadhesive properties: factorial design analysis, in vitro evaluation and in vivo abdominal x-ray imaging. Curr. Drug Deliv. 2015 12 5 578 590 10.2174/1567201812666150608101720 26051347
    [Google Scholar]
  52. El-Ela F.I.A. Farghali A.A. Mahmoud R.K. Mohamed N.A. Moaty S.A.A. New approach in ulcer prevention and wound healing treatment using doxycycline and amoxicillin/LDH nanocomposites. Sci. Rep. 2019 9 1 6418 10.1038/s41598‑019‑42842‑2 31015527
    [Google Scholar]
  53. Talley N.J. Vakil N. Guidelines for the management of dyspepsia. Off. J. Amer. Coll. Gastroenterol. 2005 100 10 2324 2337
    [Google Scholar]
  54. Jiménez-Martínez I. Quirino-Barreda T. Villafuerte-Robles L. Sustained delivery of captopril from floating matrix tablets. Int. J. Pharm. 2008 362 1-2 37 43 10.1016/j.ijpharm.2008.05.040 18588962
    [Google Scholar]
  55. Qin C. Wu M. Xu S. Wang X. Shi W. Dong Y. Yang L. He W. Han X. Yin L. Design and optimization of gastro-floating sustained-release tablet of pregabalin: In vitro and in vivo evaluation. Int. J. Pharm. 2018 545 1-2 37 44 10.1016/j.ijpharm.2018.04.011 29649518
    [Google Scholar]
  56. Fu J. Yin H. Yu X. Xie C. Jiang H. Jin Y. Sheng F. Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems. Int. J. Pharm. 2018 549 1-2 370 379 10.1016/j.ijpharm.2018.08.011 30107218
    [Google Scholar]
  57. Mostafavi A. Emami J. Varshosaz J. Davies N.M. Rezazadeh M. Development of a prolonged-release gastroretentive tablet formulation of ciprofloxacin hydrochloride: Pharmacokinetic characterization in healthy human volunteers. Int. J. Pharm. 2011 409 1-2 128 136 10.1016/j.ijpharm.2011.02.035 21371548
    [Google Scholar]
  58. Diós P. Nagy S. Pál S. Pernecker T. Kocsis B. Budán F. Horváth I. Szigeti K. Bölcskei K. Máthé D. Dévay A. Preformulation studies and optimization of sodium alginate based floating drug delivery system for eradication of Helicobacter pylori. Eur. J. Pharm. Biopharm. 2015 96 196 206 10.1016/j.ejpb.2015.07.020 26247118
    [Google Scholar]
  59. Odeku O.A. Aderogba A.A. Ajala T.O. Akin-Ajani O.D. Okunlola A. Formulation of floating metronidazole microspheres using cassava starch (Manihot esculenta) as polymer. J. Pharm. Investig. 2017 47 5 445 451 10.1007/s40005‑017‑0319‑7
    [Google Scholar]
  60. Sethi S. Mangla B. Kamboj S. Rana V. A QbD approach for the fabrication of immediate and prolong buoyant cinnarizine tablet using polyacrylamide-g-corn fibre gum. Int. J. Biol. Macromol. 2018 117 350 361 10.1016/j.ijbiomac.2018.05.178 29807074
    [Google Scholar]
  61. Kashyap N. Viswanad B. Sharma G. Bhardwaj V. Ramarao P. Ravi Kumar M.N.V. Design and evaluation of biodegradable, biosensitive in situ gelling system for pulsatile delivery of insulin. Biomaterials 2007 28 11 2051 2060 10.1016/j.biomaterials.2007.01.007 17240443
    [Google Scholar]
  62. Vasvári G. Haimhoffer Á. Horváth L. Budai I. Trencsényi G. Béresová M. Dobó-Nagy C. Váradi J. Bácskay I. Ujhelyi Z. Fehér P. Sinka D. Vecsernyés M. Fenyvesi F. Development and characterisation of gastroretentive solid dosage form based on melt foaming. AAPS Pharm. Sci. Tech. 2019 20 7 290 10.1208/s12249‑019‑1500‑2 31428895
    [Google Scholar]
  63. Chandel A. Chauhan K. Parashar B. Kumar H. Arora S. Floating drug delivery systems: A better approach. Int. Curr. Pharm. J. 2012 1 5 119 127 10.3329/icpj.v1i5.10283
    [Google Scholar]
  64. Rathod H. Patel V. Modasia M. Khan R. Floating drug delivery system: innovative approach of gastroretention. Int. J. Pharm. Sci. Rev. Res. 2010 4 3 183 191
    [Google Scholar]
  65. Sinha P. Bindhani S. Ishani N. Nayak A.K. Chapter 6 - Gastroretentive drug delivery approaches for oral bioavailability improvement. Novel Formulations and Future Trends Nayak A.K. Sen K.K. New York Academic Press 2024 145 174
    [Google Scholar]
  66. Pradhan R. Lee H.H. Kim J.O. Moon S.O. Choi H.M. Kim J.B. Yong C.S. Lee H-D. Kim J.O. Preparation and evaluation of gastroretentive effervescent floating drug delivery system of Samchulkunbi-tang. J. Pharm. Investig. 2015 45 5 423 431 10.1007/s40005‑015‑0187‑y
    [Google Scholar]
  67. Fernandes G.J. Rathnanand M. Formulation optimization for gastroretentive drug delivery system of carvedilol cocrystals using design of experiment. J. Pharm. Innov. 2020 15 3 455 466 10.1007/s12247‑019‑09393‑5
    [Google Scholar]
  68. He W. Li Y. Zhang R. Wu Z. Yin L. Gastro-floating bilayer tablets for the sustained release of metformin and immediate release of pioglitazone: Preparation and in vitro/in vivo evaluation. Int. J. Pharm. 2014 476 1-2 223 231 10.1016/j.ijpharm.2014.09.056 25283698
    [Google Scholar]
  69. Abebe A. Akseli I. Sprockel O. Kottala N. Cuitiño A.M. Review of bilayer tablet technology. Int. J. Pharm. 2014 461 1-2 549 558 10.1016/j.ijpharm.2013.12.028 24370841
    [Google Scholar]
  70. Maddiboyina B. Hanumanaik M. Nakkala R.K. Jhawat V. Rawat P. Alam A. Foudah A.I. Alrobaian M.M. Shukla R. Singh S. Kesharwani P. Formulation and evaluation of gastro-retentive floating bilayer tablet for the treatment of hypertension. Heliyon 2020 6 11 e05459 10.1016/j.heliyon.2020.e05459 33241144
    [Google Scholar]
  71. Dinakaran S.K. Kumar S. Banji D. Avasarala H. Rao V. Formulation and evaluation of bi-layer floating tablets of ziprasidone HCl and trihexyphenidyl HCl. Braz. J. Pharm. Sci. 2011 47 3 545 553 10.1590/S1984‑82502011000300012
    [Google Scholar]
  72. Akhtar M. Jamshaid M. Zaman M. Mirza A.Z. Bilayer tablets: A developing novel drug delivery system. J. Drug Deliv. Sci. Technol. 2020 60 102079 10.1016/j.jddst.2020.102079
    [Google Scholar]
  73. Meka L. Kesavan B. Chinnala K.M. Vobalaboina V. Yamsani M.R. Preparation of a matrix type multiple-unit gastro retentive floating drug delivery system for captopril based on gas formation technique: In vitro evaluation. AAPS Pharm. Sci. Tech. 2008 9 2 612 619 10.1208/s12249‑008‑9090‑4 18459051
    [Google Scholar]
  74. Bansal S. Beg S. Asthana A. Garg B. Asthana G.S. Kapil R. Singh B. QbD-enabled systematic development of gastroretentive multiple-unit microballoons of itopride hydrochloride. Drug Deliv. 2016 23 2 437 451 10.3109/10717544.2014.916771 24865292
    [Google Scholar]
  75. Das S. Kaur S. Rai V.K. Gastro-retentive drug delivery systems: a recent update on clinical pertinence and drug delivery. Drug Deliv. Transl. Res. 2021 11 5 1849 1877 10.1007/s13346‑020‑00875‑5 33403646
    [Google Scholar]
  76. Yeong C.H. Abdullah B.J.J. Ng K.H. Chung L.Y. Goh K.L. Sarji S.A. Perkins A.C. Production and first use of 153SmCl3-ion exchange resin capsule formulation for assessing gastrointestinal motility. Appl. Radiat. Isot. 2012 70 3 450 455 10.1016/j.apradiso.2011.11.056 22178699
    [Google Scholar]
  77. Jeong S. Park K. Development of sustained release fast-disintegrating tablets using various polymer-coated ion-exchange resin complexes. Int. J. Pharm. 2008 353 1-2 195 204 10.1016/j.ijpharm.2007.11.033 18164882
    [Google Scholar]
  78. Jain S.K. Prajapati N. Rajpoot K. Kumar A. A novel sustained release drug–resin complex-based microbeads of ciprofloxacin HCl. Artif. Cells Nanomed. Biotechnol. 2016 44 8 1891 1900 10.3109/21691401.2015.1111233 26698089
    [Google Scholar]
  79. Marmwar P.A. Modified release of metformin hydrochloride using ion exchange resin complex in floating mucoadhesive tablets. Asian J. Pharm. 2016 10 1 7 15
    [Google Scholar]
  80. Giri B. Song E. Kwon J. Lee J.H. Park J.B. Kim D. Fabrication of intragastric floating, controlled release 3d printed theophylline tablets using hot-melt extrusion and fused deposition modeling. Pharmaceutics 2020 12 1 77 10.3390/pharmaceutics12010077 31963484
    [Google Scholar]
  81. Zhao X. Wei W. Niu R. Li Q. Hu C. Jiang S. 3D printed intragastric floating and sustained-release tablets with air chambers. J. Pharm. Sci. 2022 111 1 116 123 10.1016/j.xphs.2021.07.010 34303671
    [Google Scholar]
  82. Iglesias N. Galbis E. Romero-Azogil L. Benito E. Lucas R. García-Martín M.G. de-Paz M.V. In-depth study into polymeric materials in low-density gastroretentive formulations. Pharmaceutics 2020 12 7 636 10.3390/pharmaceutics12070636 32645909
    [Google Scholar]
  83. Jeganath D.S. Recent approaches of gastroretentive drug delivery system – A review. Asian J. Pharm. 2022 16 1 31
    [Google Scholar]
  84. Arora S. Ali J. Ahuja A. Khar R.K. Baboota S. Floating drug delivery systems: A review. AAPS Pharm. Sci. Tech. 2005 6 3 E372 E390 10.1208/pt060347 16353995
    [Google Scholar]
  85. Kim B. Byun Y. Lee E.H. DoE-based design of a simple but efficient preparation method for a non-effervescent gastro-retentive floating tablet containing metformin HCl. Pharmaceutics 2021 13 8 1225 10.3390/pharmaceutics13081225 34452186
    [Google Scholar]
  86. Kim S. Hwang K.M. Park Y.S. Nguyen T.T. Park E.S. Preparation and evaluation of non-effervescent gastroretentive tablets containing pregabalin for once-daily administration and dose proportional pharmacokinetics. Int. J. Pharm. 2018 550 1-2 160 169 10.1016/j.ijpharm.2018.08.038 30138708
    [Google Scholar]
  87. Wang S. Wen H. Li P. Cui M. Sun W. Wang H. Liu H. Li S. Pan W. Yang X. Formulation and evaluation of gastric-floating controlled release tablets of Ginkgolides. J. Drug Deliv. Sci. Technol. 2019 51 7 17 10.1016/j.jddst.2019.02.011
    [Google Scholar]
  88. Iannuccelli V. Coppi G. Sansone R. Ferolla G. Air compartment multiple-unit system for prolonged gastric residence. Part II. In vivo evaluation. Int. J. Pharm. 1998 174 1-2 55 62 10.1016/S0378‑5173(98)00230‑0
    [Google Scholar]
  89. Podczeck F. Course N.C. Newton J.M. Short M.B. The influence of non-disintegrating tablet dimensions and density on their gastric emptying in fasted volunteers. J. Pharm. Pharmacol. 2007 59 1 23 27 10.1211/jpp.59.1.0004 17227617
    [Google Scholar]
  90. Clarke G. Newton J.M. Short M.B. Comparative gastrointestinal transit of pellet systems of varying density. Int. J. Pharm. 1995 114 1 1 11 10.1016/0378‑5173(94)00200‑O
    [Google Scholar]
  91. Porwal A. Rajendiran A. Alam P. Singh H. Singh K. Dubey A. Indole moiety in organic synthesis: a comprehensive review of methods and mechanisms. Int. J. Pharm. Investig. 2024 14 4 1052 1060 10.5530/ijpi.14.4.115
    [Google Scholar]
  92. Sen O. Manna S. Nandi G. Jana S. Jana S. Recent advances in alginate based gastroretentive technologies for drug delivery applications. Medi. Nov. Technol. Dev. 2023 18 100236 10.1016/j.medntd.2023.100236
    [Google Scholar]
  93. Desai N. Purohit R. Development of novel high density gastroretentive multiparticulate pulsatile tablet of clopidogrel bisulfate using quality by design approach. AAPS Pharm. Sci. Tech. 2017 18 8 3208 3218 10.1208/s12249‑017‑0805‑2 28550603
    [Google Scholar]
  94. Sharma A. Goyal A.K. Rath G. Development and characterization of gastroretentive high-density pellets lodged with zero valent iron nanoparticles. J. Pharm. Sci. 2018 107 10 2663 2673 10.1016/j.xphs.2018.06.014 29936203
    [Google Scholar]
  95. Kesav Reddy Y.S.C. Koteswara Rao G.S.N. Annapurna A. Ramana Murthy K.V. Formulation and evaluation of high-density gastro retentive drug delivery systems of norfloxacin. Int. J. Adv. Pharm. Biotechnol. 2020 6 4 24 28 10.38111/ijapb.20200604005
    [Google Scholar]
  96. Klausner E.A. Lavy E. Friedman M. Hoffman A. Expandable gastroretentive dosage forms. J. Cont. Rel. 2003 90 2 143 162 10.1016/S0168‑3659(03)00203‑7 12810298
    [Google Scholar]
  97. Blaesi A.H. Saka N. Expandable fibrous dosage forms for prolonged drug delivery. Mater. Sci. Eng. C 2021 120 110144 10.1016/j.msec.2019.110144 33545806
    [Google Scholar]
  98. Dubey A. Ovais M. Porwal A. Maurya S. Singh K. Rajendiran A. Nanotechnology-enabled curcumin formulation in cancer therapy with special emphasis on nanoemulsion. Afri. J. Biolog. Sci. 2024 6 13 3038 3085
    [Google Scholar]
  99. Boontawee R. Issarachot O. Kaewkroek K. Wiwattanapatapee R. Foldable/expandable gastro-retentive films based on starch and chitosan as a carrier for prolonged release of resveratrol. Curr. Pharm. Biotechnol. 2022 23 7 1009 1018 10.2174/1389201022666210615115553 34132179
    [Google Scholar]
  100. Neumann M. Heimhardt C. Seidlitz K. Koziolek M. Schneider F. Schiller C. Hanke U. Anschütz M. Knopke C. Donath F. Thoma R. Brätter C. Schug B. Franke H. Weitschies W. Development of a furosemide-containing expandable system for gastric retention. J. Cont. Rel. 2021 338 105 118 10.1016/j.jconrel.2021.08.026 34416321
    [Google Scholar]
  101. Zhang S. Bellinger A.M. Glettig D.L. Barman R. Lee Y.A.L. Zhu J. Cleveland C. Montgomery V.A. Gu L. Nash L.D. Maitland D.J. Langer R. Traverso G. A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nat. Mater. 2015 14 10 1065 1071 10.1038/nmat4355 26213897
    [Google Scholar]
  102. Verma S. Nagpal K. Singh S.K. Mishra D.N. Unfolding type gastroretentive film of Cinnarizine based on ethyl cellulose and hydroxypropylmethyl cellulose. Int. J. Biol. Macromol. 2014 64 347 352 10.1016/j.ijbiomac.2013.12.030 24370473
    [Google Scholar]
  103. Altreuter D.H. Kirtane A.R. Grant T. Kruger C. Traverso G. Bellinger A.M. Changing the pill: developments toward the promise of an ultra-long-acting gastroretentive dosage form. Expert Opin. Drug Deliv. 2018 15 12 1189 1198 10.1080/17425247.2018.1544615 30392404
    [Google Scholar]
  104. Rimawi I.B. Muqedi R.H. Kanaze F.I. Development of gabapentin expandable gastroretentive controlled drug delivery system. Sci. Rep. 2019 9 1 11675 10.1038/s41598‑019‑48260‑8 31406203
    [Google Scholar]
  105. Sarparanta M.P. Bimbo L.M. Mäkilä E.M. Salonen J.J. Laaksonen P.H. Helariutta A.M.K. Linder M.B. Hirvonen J.T. Laaksonen T.J. Santos H.A. Airaksinen A.J. The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials 2012 33 11 3353 3362 10.1016/j.biomaterials.2012.01.029 22285465
    [Google Scholar]
  106. Bisen A.C. Srivastava S. Mishra A. Sanap S.N. Biswas A. Choudhury A.D. Dubey A. Gupta N.M. Yadav K.S. Mugale M.N. Bhatta R.S. Pharmaceutical emulsions: a viable approach for ocular drug delivery. J. Ocul. Pharmacol. Ther. 2024 40 5 261 280 10.1089/jop.2023.0166 38654153
    [Google Scholar]
  107. Wang J. Tauchi Y. Deguchi Y. Morimoto K. Tabata Y. Ikada Y. Positively charged gelatin microspheres as gastric mucoadhesive drug delivery system for eradication of H. pylori. Drug Deliv. 2000 7 4 237 243 10.1080/107175400455173 11195431
    [Google Scholar]
  108. Bardonnet P.L. Faivre V. Pugh W.J. Piffaretti J.C. Falson F. Gastroretentive dosage forms: Overview and special case of Helicobacter pylori. J. Cont. Rel. 2006 111 1-2 1 18 10.1016/j.jconrel.2005.10.031 16403588
    [Google Scholar]
  109. Thirawong N. Thongborisute J. Takeuchi H. Sriamornsak P. Improved intestinal absorption of calcitonin by mucoadhesive delivery of novel pectin–liposome nanocomplexes. J. Cont. Rel. 2008 125 3 236 245 10.1016/j.jconrel.2007.10.023 18082282
    [Google Scholar]
  110. Köllner S. Dünnhaupt S. Waldner C. Hauptstein S. Pereira de Sousa I. Bernkop-Schnürch A. Mucus permeating thiomer nanoparticles. Eur. J. Pharm. Biopharm. 2015 97 Pt A 265 272 10.1016/j.ejpb.2015.01.004 25603199
    [Google Scholar]
  111. Bera H. Kandukuri S.G. Nayak A.K. Boddupalli S. Alginate–sterculia gum gel-coated oil-entrapped alginate beads for gastroretentive risperidone delivery. Carbohydr. Polym. 2015 120 74 84 10.1016/j.carbpol.2014.12.009 25662690
    [Google Scholar]
  112. Darandale S.S. Vavia P.R. Design of a gastroretentive mucoadhesive dosage form of furosemide for controlled release. Acta Pharm. Sin. B 2012 2 5 509 517 10.1016/j.apsb.2012.05.004
    [Google Scholar]
  113. Dey S.K. De P.K. De A. Ojha S. De R. Mukhopadhyay A.K. Samanta A. Floating mucoadhesive alginate beads of amoxicillin trihydrate: A facile approach for H. pylori eradication. Int. J. Biol. Macromol. 2016 89 622 631 10.1016/j.ijbiomac.2016.05.027 27177460
    [Google Scholar]
  114. Nappinnai M. Sivaneswari S. Formulation optimization and characterization of gastroretentive cefpodoxime proxetil mucoadhesive microspheres using 32 factorial design. J. Pharm. Res. 2013 7 4 304 309 10.1016/j.jopr.2013.04.014
    [Google Scholar]
  115. Pund S. Joshi A. Vasu K. Nivsarkar M. Shishoo C. Gastroretentive delivery of rifampicin: In vitro mucoadhesion and in vivo gamma scintigraphy. Int. J. Pharm. 2011 411 1-2 106 112 10.1016/j.ijpharm.2011.03.048 21458549
    [Google Scholar]
  116. Hwang S.-J. Park H. Park K. Gastroretentive floating drug-delivery systems: a critical review. Crit. Rev. Ther. Drug. Carri. Syst. 1998 28 1 47 99 10.1615/critrevtherdrugcarriersyst.v28.i1.20 21395515
    [Google Scholar]
  117. Bisen A.C. Dubey A. Agrawal S. Biswas A. Rawat K.S. Srivastava S. Bhatta R.S. Recent updates on ocular disease management with ophthalmic ointments. Ther. Deliv. 2024 15 6 463 480 10.1080/20415990.2024.2346047 38888757
    [Google Scholar]
  118. El-said I.A. Aboelwafa A.A. Khalil R.M. ElGazayerly O.N. Baclofen novel gastroretentive extended release gellan gum superporous hydrogel hybrid system: in vitro and in vivo evaluation. Drug Deliv. 2016 23 1 101 112 10.3109/10717544.2014.905654 24786486
    [Google Scholar]
  119. Goganian A.M. Hamishehkar H. Arsalani N. Khiabani H.K. Microwave‐promoted synthesis of smart superporous hydrogel for the development of gastroretentive drug delivery system. Adv. Polym. Technol. 2015 34 2 adv.21490 10.1002/adv.21490
    [Google Scholar]
  120. Nguyen T.T. Hwang K.M. Kim S.H. Park E.S. Development of novel bilayer gastroretentive tablets based on hydrophobic polymers. Int. J. Pharm. 2020 574 118865 10.1016/j.ijpharm.2019.118865 31765783
    [Google Scholar]
  121. Farag M.M. Louis M.M. Badawy A.A. Nessem D.I. Elmalak N.S.A. Drotaverine hydrochloride superporous hydrogel hybrid system: A gastroretentive approach for sustained drug delivery and enhanced viscoelasticity. AAPS Pharm. Sci. Tech. 2022 23 5 124 10.1208/s12249‑022‑02280‑2 35471680
    [Google Scholar]
  122. Farshforoush P. Ghanbarzadeh S. Goganian A.M. Hamishehkar H. Novel metronidazole-loaded hydrogel as a gastroretentive drug delivery system. Iran. Polym. J. 2017 26 12 895 901 10.1007/s13726‑017‑0575‑4
    [Google Scholar]
  123. Murphy C. Pillay V. Choonara Y. du Toit L. Gastroretentive drug delivery systems: current developments in novel system design and evaluation. Curr. Drug Deliv. 2009 6 5 451 460 10.2174/156720109789941687 19751198
    [Google Scholar]
  124. Awasthi R. Kulkarni G.T. Decades of research in drug targeting to the upper gastrointestinal tract using gastroretention technologies: Where do we stand? Drug Deliv. 2016 23 2 378 394 10.3109/10717544.2014.936535 25026414
    [Google Scholar]
  125. Fujimori J. Machida Y. Tanaka S. Nagai T. Effect of magnetically controlled gastric residence of sustained release tablets on bioavailability of acetaminophen. Int. J. Pharm. 1995 119 1 47 55 10.1016/0378‑5173(94)00368‑F
    [Google Scholar]
  126. Gröning R. Berntgen M. Georgarakis M. Acyclovir serum concentrations following peroral administration of magnetic depot tablets and the influence of extracorporal magnets to control gastrointestinal transit. Eur. J. Pharm. Biopharm. 1998 46 3 285 291 10.1016/S0939‑6411(98)00052‑6 9885300
    [Google Scholar]
  127. Ruel-Gariépy E. Leroux J.C. In situ-forming hydrogels—review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 2004 58 2 409 426 10.1016/j.ejpb.2004.03.019 15296964
    [Google Scholar]
  128. El Nabarawi M.A. Teaima M.H. Abd El-Monem R.A. El Nabarawy N.A. Gaber D.A. Formulation, release characteristics, and bioavailability study of gastroretentive floating matrix tablet and floating raft system of Mebeverine HCl. Drug Des. Devel. Ther. 2017 11 1081 1093 10.2147/DDDT.S131936 28435220
    [Google Scholar]
  129. Fabregas J.L. Claramunt J. Cucala J. Pous R. Siles A. “In-Vitro” testing of an antacid formulation with prolonged gastric residence time (Almagate Flot-Coat®). Drug Dev. Ind. Pharm. 1994 20 7 1199 1212 10.3109/03639049409038361
    [Google Scholar]
  130. Negi P. Gautam S. Sharma A. Rathore C. Sharma L. Upadhyay N. Tambuwala M.M. Chellappan D.K. Gupta G. Prasher P. Dua K. Agarwal S. Lal U.R. Gastric ulcer healing by chebulinic acid solid dispersion-loaded gastroretentive raft systems: preclinical evidence. Ther. Deliv. 2022 13 2 81 93 10.4155/tde‑2021‑0062 35075915
    [Google Scholar]
  131. Perry S.L. McClements D.J. Recent advances in encapsulation, protection, and oral delivery of bioactive proteins and peptides using colloidal systems. Molecules 2020 25 5 1161 10.3390/molecules25051161 32150848
    [Google Scholar]
  132. Petchsomrit A. Sermkaew N. Wiwattanapatapee R. Alginate-based composite sponges as gastroretentive carriers for curcumin-loaded self-microemulsifying drug delivery systems. Sci. Pharm. 2017 85 1 11 10.3390/scipharm85010011 28294964
    [Google Scholar]
  133. Lefler R.S. Renwick J. Modified release multi-layer tablet cannabinoid formulations. Patent AU2018233582 B2 2018
  134. Meghpara K. Sandhu H.K. Chatterji A. Shah N.H. Phuapradit W. Desai D. Vaghashiya J. Gastroretentive dosage forms for sustained drug delivery. United States patent CA03031412C 2018
  135. Bagde P.M. Gandhi A.S. Pilgaonkar P.S. Rao L.S. Rustomjee M.T. Controlled release pharmaceutical compositions with improved bioavailability. Patent EP1750717B1 2017
  136. Han C.-H. Hou H.S. Reid M.L. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic. Patent EP2262484B1 2013
  137. Navon N. Moor E. Kirmayer D. Kluev E. Carni G. Gastroretentive drug delivery for carbidopa/levodopa. Patent EP2276473B1 2016
  138. Mohammad H. Gastroretentive drug delivery system comprising an extruded hydratable polymer. Patent US8586083B2 2013
  139. Pillay V. Choonara Y. Murphy C. Moonisami S. Multi-unit gastroretentive pharmaceutical dosage form comprising microparticles. Patent US8778396B2 2014
    [Google Scholar]
  140. Gerard D.E. Schoelkopf J. Gane P.A.C. Eberle V.A. Alles R. Puchkov M. Huwyler J. Gastroretentive drug formulation and delivery systems and their method of preparation using functionalized calcium carbonate. Patent US9987230B2 2023
  141. Sommer A. Zhang C. Carter J. Arthur J. Bradbury M. Gant T. Shahbaz M. Formulations pharmacokinetics of deuterated benzoquinoline inhibitors of vesicular monoamine transporter 2. Patent AU2020205297B2 2023
  142. Nil B. Valery A. Detention device and system for in-situ release of active agents of drugs. Patent JP7291025B2 2023
  143. Masrietan S. David M. Elena K. Giora K. Nawon K.N. Zaleplon gastroretentive drug delivery system. Patent JP6104873B2 2017
  144. Chen M.-J. Hui H.-W. Shen X. Oral pharmaceutical forms of controlled release of poorly soluble drugs and their uses. Patent ES2753198T3 2020
  145. Menachem A.B. Zalit I. Expandable gastroretentive dosage form. Patent US11648198B2 2023
  146. Lapidot N. Afargan M. Kirmayer D. Kluev L. Cohen M. Moor E. Navon N. Gastro-retentive system for the delivery of macromolecules. Patent US20090304768A1 2009
  147. Menachem A.B. Zalit I. Long acting gastric residence system. Patent US11547839B2 2023
  148. Momose D. Isshiki N. Kamada N. Gastric retention-type sustained-release levodopa preparation. Patent US20100112053A1 2010
  149. Gupta A. Mishra A. Gupta V. Bansal P. Singh R. Singh A. Recent trends of fast dissolving tablet-an overview of formulation technology. Int. J. Pharm. Biol. Arch. 2010 1 1 1 10
    [Google Scholar]
  150. Rahim S.A. Carter P.A. Elkordy A.A. Design and evaluation of effervescent floating tablets based on hydroxyethyl cellulose and sodium alginate using pentoxifylline as a model drug. Drug Des. Devel. Ther. 2015 9 1843 1857 25848220
    [Google Scholar]
  151. Mohapatra S. Sahoo S.K. Kar R.K. Application of central composite design for optimization of effervescent floating Tablets Using Hydrophilic Polymers. Asian J. Pharm. Clin. Res. 2015 8 1 293 298
    [Google Scholar]
  152. Huanbutta K. Limmatvapirat S. Sungthongjeen S. Sriamornsak P. Novel strategy to fabricate floating drug delivery system based on sublimation technique. AAPS Pharm. Sci. Tech. 2016 17 3 693 699 10.1208/s12249‑015‑0398‑6 26314245
    [Google Scholar]
  153. Choiri S. Sulaiman T.N.S. Rohman A. Assessment of the effect of polymers combination and effervescent component on the drug release of swellable gastro-floating tablet formulation through compartmental modeling-based approach. Drug Dev. Ind. Pharm. 2020 46 1 146 158 10.1080/03639045.2019.1711387 31894720
    [Google Scholar]
  154. Patil P. Chavanke D. Wagh M. A review on ionotropic gelation method: novel approach for controlled gastroretentive gelispheres. Int. J. Pharm. Pharm. Sci. 2012 4 4 27 32
    [Google Scholar]
  155. Krögel I. Bodmeier R. Floating or pulsatile drug delivery systems based on coated effervescent cores. Int. J. Pharm. 1999 187 2 175 184 10.1016/S0378‑5173(99)00189‑1 10502623
    [Google Scholar]
  156. Onyishi I.V. Chime S.A. Egwu E. Application of ĸ-carrageenan as a sustained release matrix in floating tablets containing sodium salicylate. Afr. J. Pharm. Pharmacol. 2013 7 39 2667 2673
    [Google Scholar]
  157. Rahim S.A. Carter P. Elkordy A.A. Influence of calcium carbonate and sodium carbonate gassing agents on pentoxifylline floating tablets properties. Powder Technol. 2017 322 65 74 10.1016/j.powtec.2017.09.001
    [Google Scholar]
  158. Yan H.X. Zhang S.S. He J.H. Liu J.P. Application of ethyl cellulose, microcrystalline cellulose and octadecanol for wax based floating solid dispersion pellets. Carbohydr. Polym. 2016 148 143 152 10.1016/j.carbpol.2016.04.050 27185125
    [Google Scholar]
  159. Diós P. Pernecker T. Nagy S. Pál S. Dévay A. Influence of different types of low substituted hydroxypropyl cellulose on tableting, disintegration, and floating behaviour of floating drug delivery systems. Saudi Pharm. J. 2015 23 6 658 666 10.1016/j.jsps.2014.09.001 26702261
    [Google Scholar]
  160. Majithiya R. Murthy R. Chitosan-based mucoadhesive microspheres of clarithromycin as a delivery system for antibiotic to stomach. Curr. Drug Deliv. 2005 2 3 235 242 10.2174/1567201054367995 16305425
    [Google Scholar]
  161. Putri A.P. Picchioni F. Harjanto S. Chalid M. Alginate modification and lectin-conjugation approach to synthesize the mucoadhesive matrix. Appl. Sci. (Basel) 2021 11 24 11818 10.3390/app112411818
    [Google Scholar]
  162. Md S. Ahuja A. Khar R.K. Baboota S. Chuttani K. Mishra A.K. Ali J. Gastroretentive drug delivery system of acyclovir-loaded alginate mucoadhesive microspheres: Formulation and evaluation. Drug Deliv. 2011 18 4 255 264 10.3109/10717544.2010.536270 21110695
    [Google Scholar]
  163. Chahardoli A. Jamshidi N. Varvani A. Shokoohinia Y. Fattahi A. Application of micro-and nanoengineering tragacanth and its water-soluble derivative in drug delivery and tissue engineering. Micro-and nanoengineered gum-based biomaterials for drug delivery and biomedical applications. Elsevier 2022 409 450 10.1016/B978‑0‑323‑90986‑0.00005‑4
    [Google Scholar]
  164. Khutoryanskiy V.V. Advances in mucoadhesion and mucoadhesive polymers. Macromol. Biosci. 2011 11 6 748 764 10.1002/mabi.201000388 21188688
    [Google Scholar]
  165. Amin M.K. Boateng J.S. Enhancing stability and mucoadhesive properties of chitosan nanoparticles by surface modification with sodium alginate and polyethylene glycol for potential oral mucosa vaccine delivery. Mar. Drugs 2022 20 3 156 10.3390/md20030156 35323455
    [Google Scholar]
  166. Umamaheshwari R.B. Jain S. Jain N.K. A new approach in gastroretentive drug delivery system using cholestyramine. Drug Deliv. 2003 10 3 151 160 10.1080/713840399 12944135
    [Google Scholar]
  167. Dalei G. Das S. Polyacrylic acid-based drug delivery systems: A comprehensive review on the state-of-art. J. Drug Deliv. Sci. Technol. 2022 78 103988 10.1016/j.jddst.2022.103988
    [Google Scholar]
  168. Chen Y.M. Sun L. Yang S.A. Shi L. Zheng W.J. Wei Z. Hu C. Self-healing and photoluminescent carboxymethyl cellulose-based hydrogels. Eur. Polym. J. 2017 94 501 510 10.1016/j.eurpolymj.2017.06.008
    [Google Scholar]
  169. Singla A.K. Chawla M. Singh A. Potential applications of carbomer in oral mucoadhesive controlled drug delivery system: a review. Drug Dev. Ind. Pharm. 2000 26 9 913 924 10.1081/DDC‑100101318 10914315
    [Google Scholar]
  170. Voci S. Gagliardi A. Giuliano E. Salvatici M.C. Procopio A. Cosco D. In Vitro Mucoadhesive Features of Gliadin Nanoparticles Containing Thiamine Hydrochloride. Pharmaceutics 2024 16 10 1296 10.3390/pharmaceutics16101296 39458625
    [Google Scholar]
  171. Nagpal M. Singh S.K. Mishra D. Superporous hydrogels as gastroretentive devices. Acta Pharma. Sciencia. 2011 53 1 7 24
    [Google Scholar]
  172. Chen Y.C. Ho H.O. Liu D.Z. Siow W.S. Sheu M.T. Swelling/floating capability and drug release characterizations of gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose. PLoS One 2015 10 1 e0116914 10.1371/journal.pone.0116914 25617891
    [Google Scholar]
  173. Sharma N. Sharma A. Bhatnagar A. Nishad D. Karwasra R. Khanna K. Sharma D. Kumar N. Jain G.K. Novel gum acacia based macroparticles for colon delivery of Mesalazine: Development and gammascintigraphy study. J. Drug Deliv. Sci. Technol. 2019 54 101224 10.1016/j.jddst.2019.101224
    [Google Scholar]
  174. Günter E.A. Martynov V.V. Belozerov V.S. Martinson E.A. Litvinets S.G. Characterization and swelling properties of composite gel microparticles based on the pectin and κ-carrageenan. Int. J. Biol. Macromol. 2020 164 2232 2239 10.1016/j.ijbiomac.2020.08.024 32771505
    [Google Scholar]
  175. Elzoghby A.O. Abo El-Fotoh W.S. Elgindy N.A. Casein-based formulations as promising controlled release drug delivery systems. J. Cont. Rel. 2011 153 3 206 216 10.1016/j.jconrel.2011.02.010 21338636
    [Google Scholar]
  176. Kim J. Hlaing S.P. Lee J. Saparbayeva A. Kim S. Hwang D.S. Lee E.H. Yoon I.S. Yun H. Kim M.S. Moon H.R. Jung Y. Yoo J.W. Exfoliated bentonite/alginate nanocomposite hydrogel enhances intestinal delivery of probiotics by resistance to gastric pH and on-demand disintegration. Carbohydr. Polym. 2021 272 118462 10.1016/j.carbpol.2021.118462 34420722
    [Google Scholar]
  177. Joshi P. Patel P. Modi H. Patel M. Patel K. Patel N. A review on gastro retentive drug delivery system. J Pharm Sci Bio-Sci Res. 2012 2 123 128
    [Google Scholar]
  178. Palumbo F.S. Federico S. Pitarresi G. Fiorica C. Giammona G. Gellan gum-based delivery systems of therapeutic agents and cells. Carbohydr. Polym. 2020 229 115430 10.1016/j.carbpol.2019.115430 31826518
    [Google Scholar]
  179. Matharu A.S. Motto M.G. Patel M.R. Simonelli A.P. Dave R.H. Evaluation of hydroxypropyl methylcellulose matrix systems as swellable gastro-retentive drug delivery systems (GRDDS). J. Pharm. Sci. 2011 100 1 150 163 10.1002/jps.22252 20572054
    [Google Scholar]
  180. Javanbakht S. Shaabani A. Carboxymethyl cellulose-based oral delivery systems. Int. J. Biol. Macromol. 2019 133 21 29 10.1016/j.ijbiomac.2019.04.079 30986470
    [Google Scholar]
  181. Kwiecień I. Kwiecień M. Application of polysaccharide-based hydrogels as probiotic delivery systems. Gels 2018 4 2 47 10.3390/gels4020047 30674823
    [Google Scholar]
  182. Dehghan M. Kha F. Gastroretentive drug delivery systems: a patent perspective. Int. J. Heal. Res. 2010 2 1 10.4314/ijhr.v2i1.55385
    [Google Scholar]
  183. Liang L. Wang H. Li L. Lin D. Guo B. Yao M. Wei Z. Zhang H. Li J. Microparticle deposition induced asymmetric adhesive hydrogel for suture-less gastric trauma treatment. Chem. Eng. J. 2024 485 150086 10.1016/j.cej.2024.150086
    [Google Scholar]
  184. Gupta R. Tripathi P. Bhardwaj P. Mahor A. Recent advances in gastro retentive drug delivery systems and its application on treatment of H. Pylori infections. J. Anal. Pharm. Res. 2018 7 4 404 410 10.15406/japlr.2018.07.00258
    [Google Scholar]
  185. Javadzadeh Y. Hamedeyazdan S. Novel drug delivery systems for modulation of gastrointestinal transit time. Recent Advances in Novel Drug Carrier Systems London, UK IntechOpen 2012 1 50250 10.5772/50250
    [Google Scholar]
  186. Study Determining Gastric-Retentive and Modified Release Properties of Prototype Capsules in Healthy Subjects. Patent NCT03468543, 2019
  187. Hospital M.G. Treatment of Complex Regional Pain Syndrome With Once Daily Gastric-Retentive Gabapentin (Gralise) Massachusetts, United States. Patent NCT01623271, 2020
  188. The Gastric Residence Time (GRT) of Soctec Capsule After a Standardized Breakfast. Patent NCT02335515, 2015
  189. Study to Evaluate Safety/Duration in Stomach of Extended Release Capsules Containing Memantine Hydrochloride in Healthy Adults Adelaide, South Australia, Australia. Patent NCT03711825, 2018
  190. Magnetic Marker Monitoring of Furosemide-containing Gastroretentive Formulation in Healthy Male Subjects (Fasting and Fed Conditions) Berlin, Germany. Patent NCT01887379, 2013
  191. Phase 1b Study Evaluating OPomD in Relapsed or Refractory Multiple Myeloma (INTREPID-1): Amgen. Patent NCT02939183, 2022
  192. Healthy Volunteer Study Using 3 Different Formulations of Firategrast Randwick, New South Wales, Australia. Patent NCT01416363, 2011
  193. Evaluation of the Pharmacokinetics and Pharmacodynamics of AP09004 in Patients With Parkinson's Disease Israel. Patent NCT00918177, 2014
  194. Gastric Retentive Carbidopa/ Levodopa in Parkinson's Patients; a One Year, Open Label, Safety Extension Study Israel. Patent NCT00947037, 2012
  195. A Polysomnographic Study to Compare the Efficacy of Gastric Retentive Zaleplon Accordion Pill to Placebo in Subjects With Insomnia United States. Patent NCT01277107, 2011
  196. Malonne H. Coffiner M. Fontaine D. Sonet B. Sereno A. Peretz A. Vanderbist F. Long-term tolerability of tramadol LP, a new once-daily formulation, in patients with osteoarthritis or low back pain. J. Clin. Pharm. Ther. 2005 30 2 113 120 10.1111/j.1365‑2710.2004.00624.x 15811163
    [Google Scholar]
  197. Saleem T. Zamir A. Rasool M.F. Imran I. Saeed H. Alqahtani F. Exploring the pharmacokinetics of second-generation cephalosporin, cefaclor: a systematic review in healthy and diseased populations. Xenobiotica 2024 54 4 171 181 10.1080/00498254.2024.2333009 38517680
    [Google Scholar]
  198. Bhowmik S.S. Sampat N.G. Kulkarni R.V. Sase N. Joshi N.H. Vora P.B. Bhattacharya A.K. Lakhani J.D. Once daily baclofen sustained release or gastro-retentive system are acceptable alternatives to thrice daily baclofen immediate release at same daily dosage in patients. Neurol. India 2009 57 3 295 299 10.4103/0028‑3886.53284 19587470
    [Google Scholar]
  199. Laustsen G. Glumetza offers once-a-day dosing for type 2 diabetes patients. Nurse Pract. 2005 30 11 68 69 10.1097/00006205‑200511000‑00020 16276309
    [Google Scholar]
  200. Vrettos N.N. Roberts C.J. Zhu Z. Gastroretentive technologies in tandem with controlled-release strategies: a potent answer to oral drug bioavailability and patient compliance implications. Pharmaceutics 2021 13 10 1591 10.3390/pharmaceutics13101591 34683884
    [Google Scholar]
  201. Koo H.L. DuPont H.L. Rifaximin: a unique gastrointestinal-selective antibiotic for enteric diseases. Curr. Opin. Gastroenterol. 2010 26 1 17 25 10.1097/MOG.0b013e328333dc8d 19881343
    [Google Scholar]
  202. Mandal U.K. Chatterjee B. Senjoti F.G. Gastro-retentive drug delivery systems and their in vivo success: A recent update. Asi. J. Pharma. Sci. 2016 11 5 575 584 10.1016/j.ajps.2016.04.007
    [Google Scholar]
  203. Hashemzadeh M. Movahed M.R. Russu W.A. Soroush L. Hill D.N. Novel design and synthesis of modified structure of carvedilol. Recent Pat. Cardiovasc. Drug Discov. 2011 6 3 175 179 10.2174/157489011797376988 21834769
    [Google Scholar]
  204. Suh S. A stalled revolution? misoprostol and the pharmaceuticalization of reproductive health in francophone Africa. Frontiers in Sociology 2021 6 590556 10.3389/fsoc.2021.590556 33954164
    [Google Scholar]
  205. Bahadur M.M. Aggarwal V.D. Mali M. Thamba A. Novel therapeutic option in hypertensive crisis: sildenafil augments nitroprusside-induced hypotension. Nephrol. Dial. Transplant. 2005 20 6 1254 1256 10.1093/ndt/gfh780 15784637
    [Google Scholar]
  206. Chordiya M. Gangurde H. Borkar V. Technologies, optimization and analytical parameters in gastroretentive drug delivery systems. Curr. Sci. 2017 112 5 946 953 10.18520/cs/v112/i05/946‑953
    [Google Scholar]
  207. Janczura M. Sip S. Cielecka-Piontek J. The development of innovative dosage forms of the fixed-dose combination of active pharmaceutical ingredients. Pharmaceutics 2022 14 4 834 10.3390/pharmaceutics14040834 35456668
    [Google Scholar]
  208. Gasser U.E. Fischer A. Timmermans J.P. Arnet I. Pharmaceutical quality of seven generic levodopa/benserazide products compared with original madopar® / prolopa®. BMC Pharmacol. Toxicol. 2013 14 1 24 10.1186/2050‑6511‑14‑24 23617953
    [Google Scholar]
  209. Swearingen D. Aronoff G.M. Ciric S. Lal R. Pharmacokinetics of immediate release, extended release, and gastric retentive gabapentin formulations in healthy adults. Int. J. Clin. Pharmacol. Ther. 2018 56 5 231 238 10.5414/CP203166 29633699
    [Google Scholar]
  210. Rusu A. Munteanu A.C. Arbănași E.M. Uivarosi V. Overview of side-effects of antibacterial fluoroquinolones: new drugs versus old drugs, a step forward in the safety profile? Pharmaceutics 2023 15 3 804 10.3390/pharmaceutics15030804 36986665
    [Google Scholar]
  211. Navon N. The accordion pill®: unique oral delivery to enhance pharmacokinetics and therapeutic benefit of challenging drugs. Ther. Deliv. 2019 10 7 433 442 10.4155/tde‑2018‑0067 31203723
    [Google Scholar]
  212. Strugala V. Dettmar P.W. Thomas E.C.M. Evaluation of an innovative over-the-counter treatment for symptoms of reflux disease: quick-dissolving alginate granules. ISRN Pharm. 2012 2012 1 7 10.5402/2012/950162 23320198
    [Google Scholar]
  213. Garbati P. Picco C. Magrassi R. Signorello P. Cacopardo L. Dalla Serra M. Faticato M.G. De Luca M. Balestra F. Scavo M.P. Viti F. Targeting the gut: a systematic review of specific drug nanocarriers. Pharmaceutics 2024 16 3 431 10.3390/pharmaceutics16030431 38543324
    [Google Scholar]
  214. Li S. Wu T. Wu J. Chen W. Zhang D. Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics. Drug Deliv. 2024 31 1 2415580 10.1080/10717544.2024.2415580 39404464
    [Google Scholar]
  215. Al Ani I.H. Al Saadi N.T. Al Saadi M.T. Daya A.A. Al-Zaben M. Almasarwa H. Advancements in mucoadhesive delivery systems for gastroenterology. J. Hun. Univer. Nat. Sci. 2024 51 9 46 59
    [Google Scholar]
  216. Bisen A.C. Biswas A. Dubey A. Sanap S.N. Agrawal S. Yadav K.S. Singh V. Rawat P. Sagar S. Mugale M.N. Bhatta R.S. A review on polymers in ocular drug delivery systems. MedComm – Biomater. Applica. 2024 3 2 e77 10.1002/mba2.77
    [Google Scholar]
  217. Tan X. Liu Y. Wu X. Geng M. Teng F. Layer-by-layer self-assembled liposomes prepared using sodium alginate and chitosan: Insights into vesicle characteristics and physicochemical stability. Food Hydrocoll. 2024 149 109606 10.1016/j.foodhyd.2023.109606
    [Google Scholar]
  218. Mardani M. Siahtiri S. Besati M. Baghani M. Baniassadi M. Nejad A.M. Microencapsulation of natural products using spray drying; an overview. J. Microencapsul. 2024 41 7 649 678 10.1080/02652048.2024.2389136 39133055
    [Google Scholar]
  219. Huang H.L. Lai C.H. Tsai W.H. Chen K.W. Peng S.L. Lin J.H. Lin Y.H. Nanoparticle-enhanced postbiotics: Revolutionizing cancer therapy through effective delivery. Life Sci. 2024 337 122379 10.1016/j.lfs.2023.122379 38145711
    [Google Scholar]
  220. Waqar M.A. Mubarak N. Khan A.M. Khan R. Shaheen F. Shabbir A. Advanced polymers and recent advancements on gastroretentive drug delivery system; a comprehensive review. J. Drug Target. 2024 32 6 655 671 10.1080/1061186X.2024.2347366 38652465
    [Google Scholar]
  221. Joshi P. Rao G.S.N.K. Chatterjee B. Scope and application of hot melt extrusion in the development of controlled and sustained release drug delivery systems. Curr. Pharm. Des. 2024 30 32 2513 2523 10.2174/0113816128299356240626114734 39108005
    [Google Scholar]
  222. Liu H. Liang X. Peng Y. Liu G. Cheng H. Supercritical fluids: an innovative strategy for drug development. Bioengineering (Basel) 2024 11 8 788 10.3390/bioengineering11080788 39199746
    [Google Scholar]
  223. Zhu T. Liang D. Zhang Q. Sun W. Shen X. Curcumin-encapsulated fish gelatin-based microparticles from microfluidic electrospray for postoperative gastric cancer treatment. Int. J. Biol. Macromol. 2024 254 Pt 1 127763 10.1016/j.ijbiomac.2023.127763 37924901
    [Google Scholar]
  224. Bei H. Zhao P. Shen L. Yang Q. Yang Y. Assembled pH-responsive gastric drug delivery systems based on 3D-printed shells. Pharmaceutics 2024 16 6 717 10.3390/pharmaceutics16060717 38931841
    [Google Scholar]
  225. Wang Y.T. Mohammed S.D. Farmer A.D. Wang D. Zarate N. Hobson A.R. Hellström P.M. Semler J.R. Kuo B. Rao S.S. Hasler W.L. Camilleri M. Scott S.M. Regional gastrointestinal transit and pH studied in 215 healthy volunteers using the wireless motility capsule: influence of age, gender, study country and testing protocol. Aliment. Pharmacol. Ther. 2015 42 6 761 772 10.1111/apt.13329 26223837
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878342430250414114531
Loading
/content/journals/raddf/10.2174/0126673878342430250414114531
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test