Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

The Blood-Brain Barrier (BBB) makes it extremely difficult to get drugs to the brain, yet highly branching macromolecules known as dendrimers show a lot of promise in this regard. This review delves into the current and future prospects of dendrimers in facilitating brain-specific drug delivery within the framework of cerebroanoreach. The unique structural features of dendrimers allow for precise regulation of surface function, size, and shape, which are critical for targeting specific cell types in the brain and increasing blood-brain barrier permeability. Second, they can be conjugated with imaging agents, peptides, or pharmaceuticals thanks to their versatile surface chemistry, which enhances diagnostic capabilities and treatment efficacy. Recent advances in nanoformulations based on dendrimers have demonstrated promising improvements in the solubility, stability, and bioavailability of medications, suggesting their possible use in therapeutic contexts. Various obstacles, such as toxicity profiles and production bottlenecks that require scaling up are also addressed, with a focus on ongoing research projects and potential remedies. One potential solution to the problems with cerebroanoreach is the use of dendrimers for brain-specific drug delivery; this could revolutionize the treatment of neurological diseases and the precision of neurology diagnostics. By synthesizing current knowledge and future directions, this review urges the continuance of interdisciplinary collaboration, which is crucial for fully realizing the potential of dendrimers in neuroscience and therapeutic innovation.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878303735240906065735
2024-09-20
2025-10-24
Loading full text...

Full text loading...

References

  1. VögtleF RichardtG WernerN. Dendrimer chemistry: Concepts, syntheses, properties, applications.John Wiley & Sons200910.1002/9783527626953
    [Google Scholar]
  2. BuhleierE. WehnerW. VögtleF. Cascade-and nonskid-chain- like syntheses of molecular cavity topologies.Synthesis19781978215515810.1055/s‑1978‑24702
    [Google Scholar]
  3. TomaliaD.A. BakerH. DewaldJ. HallM. KallosG. MartinS. RoeckJ. RyderJ. SmithP. A new class of polymers: Starburst-dendritic macromolecules.Polym. J.198517111713210.1295/polymj.17.117
    [Google Scholar]
  4. TomaliaD.A. FréchetJ.M.J. Discovery of dendrimers and dendritic polymers: A brief historical perspective.J. Polym. Sci. A Polym. Chem.200240162719272810.1002/pola.10301
    [Google Scholar]
  5. FlonjaL. FrançoisH. EduardoF.M. Dendrimers as innovative radiopharmaceuticals in cancer radionanotherapy.Biomacromolecules2016171031033114
    [Google Scholar]
  6. MintzerM.A. GrinstaffM.W. Biomedical applications of dendrimers: A tutorial.Chem. Soc. Rev.201140117319010.1039/B901839P20877875
    [Google Scholar]
  7. RosenB.M. WilsonC.J. WilsonD.A. PetercaM. ImamM.R. PercecV. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems.Chem. Rev.2009109116275654010.1021/cr900157q19877614
    [Google Scholar]
  8. WangD. AstrucD. Dendritic catalysis—Basic concepts and recent trends.Coord. Chem. Rev.201325715-162317233410.1016/j.ccr.2013.03.032
    [Google Scholar]
  9. EsfandR. TomaliaD.A. Poly(amidoamine) (PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications.Drug Discov. Today20016842743610.1016/S1359‑6446(01)01757‑311301287
    [Google Scholar]
  10. IdrisA.O. MambaB. FeleniU. Poly (propylene imine) dendrimer: A potential nanomaterial for electrochemical application.Mater. Chem. Phys.202024412264110.1016/j.matchemphys.2020.122641
    [Google Scholar]
  11. CaminadeA.M. MajoralJ.P. Nanomaterials based on phosphorus dendrimers.Acc. Chem. Res.200437634134810.1021/ar020077n15196043
    [Google Scholar]
  12. de Brabander-van den BergE.M.M. MeijerE.W. Poly (propylene imine) dendrimers: large-scale synthesis by hetereogeneously catalyzed hydrogenations.Angew. Chem. Int. Ed. Engl.19933291308131110.1002/anie.199313081
    [Google Scholar]
  13. DenkewalterR.G. KolcJ. LukasavageW.J. Macromolecular highly branched homogeneous compound based on lysine units.patent US 4,289,872, 1981.
  14. GilliesE.R. FréchetJ.M.J. Designing macromolecules for therapeutic applications: polyester dendrimer-poly(ethylene oxide) bow-tie hybrids with tunable molecular weight and architecture.J. Am. Chem. Soc.200212447141371414610.1021/ja028100n12440912
    [Google Scholar]
  15. LaunayN. CaminadeA.M. LahanaR. MajoralJ.P. A general synthetic strategy for neutral phosphorus-containing dendrimers.Angew. Chem. Int. Ed. Engl.19943315-161589159210.1002/anie.199415891
    [Google Scholar]
  16. ArseneaultM. WaferC. MorinJ.F. Recent advances in click chemistry applied to dendrimer synthesis.Molecules20152059263929410.3390/molecules2005926326007183
    [Google Scholar]
  17. DengX.X. DuF.S. LiZ.C. Combination of orthogonal ABB and ABC multicomponent reactions toward efficient divergent synthesis of dendrimers with structural diversity.ACS Macro Lett.20143766767010.1021/mz500207z35590765
    [Google Scholar]
  18. FanX. HuZ. WangG. Facile synthesis of polyester dendrimer via combining thio-bromo Click chemistry and ATNRC.J. Polym. Sci. A Polym. Chem.201553151762176810.1002/pola.27618
    [Google Scholar]
  19. JeeJ.A. SpagnuoloL.A. RudickJ.G. Convergent synthesis of dendrimers via the Passerini three-component reaction.Org. Lett.201214133292329510.1021/ol301263v22702475
    [Google Scholar]
  20. TomaliaD.A. HedstrandD.M. FerrittoM.S. Comb-burst dendrimer topology: New macromolecular architecture derived from dendritic grafting.Macromolecules19912461435143810.1021/ma00006a039
    [Google Scholar]
  21. AbbasiE. AvalS.F. AkbarzadehA. MilaniM. NasrabadiH.T. JooS.W. HanifehpourY. Nejati-KoshkiK. Pashaei-AslR. Dendrimers: Synthesis, applications, and properties.Nanoscale Res. Lett.20149124710.1186/1556‑276X‑9‑24724994950
    [Google Scholar]
  22. AgrawalA. KulkarniS. Dendrimers: A new generation carrier.International Journal of Research and Development in Pharmacy & Life Sciences.20154517001712
    [Google Scholar]
  23. MekuriaS.L. DebeleT.A. TsaiH.C. PAMAM dendrimer based targeted nano-carrier for bio-imaging and therapeutic agents.RSC Advances2016668637616377210.1039/C6RA12895E
    [Google Scholar]
  24. DasB. PatraS. Antimicrobials: Meeting the challenges of antibiotic resistance through nanotechnology.Nanostructures for antimicrobial therapyElsevier2017
    [Google Scholar]
  25. GoudarziM. NavidiniaM. Overview perspective of bacterial strategies of resistance to biocides and antibiotics.Arch. Clin. Infect. Dis.2019142
    [Google Scholar]
  26. GumustasM. Sengel-TurkC.T. GumustasA. OzkanS.A. UsluB. Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery systems.Multifunctional systems for combined delivery, biosensing and diagnosticsElsevier201710.1016/B978‑0‑323‑52725‑5.00005‑8
    [Google Scholar]
  27. FoxL.J. RichardsonR.M. BriscoeW.H. PAMAM dendrimer - cell membrane interactions.Adv. Colloid Interface Sci.201825711810.1016/j.cis.2018.06.00530008347
    [Google Scholar]
  28. SvensonS. TomaliaD.A. Dendrimers in biomedical applications—reflections on the field.Adv. Drug Deliv. Rev.20126410211510.1016/j.addr.2012.09.03016305813
    [Google Scholar]
  29. KaurD. JainK. MehraN.K. KesharwaniP. JainN.K. A review on comparative study of PPI and PAMAM dendrimers.J. Nanopart. Res.201618614610.1007/s11051‑016‑3423‑0
    [Google Scholar]
  30. MouraL.I.F. MalfantiA. PeresC. MatosA.I. GuegainE. SainzV. ZlohM. VicentM.J. FlorindoH.F. Functionalized branched polymers: Promising immunomodulatory tools for the treatment of cancer and immune disorders.Mater. Horiz.20196101956197310.1039/C9MH00628A
    [Google Scholar]
  31. ShuklaS.K. GovenderP.P. TiwariA. Polymeric micellar structures for biosensor technology.Advances in biomembranes and lipid self-assemblyAcademic Press201610.1016/bs.abl.2016.04.005
    [Google Scholar]
  32. MoscarielloP. NgD.Y.W. JansenM. WeilT. LuhmannH.J. HedrichJ. Brain delivery of multifunctional dendrimer protein bioconjugates.Adv. Sci. (Weinh.)201855170089710.1002/advs.20170089729876217
    [Google Scholar]
  33. SrikanthM. KesslerJ.A. Nanotechnology—Novel therapeutics for CNS disorders.Nat. Rev. Neurol.20128630731810.1038/nrneurol.2012.7622526003
    [Google Scholar]
  34. AbakumovM.A. NukolovaN.V. Sokolsky-PapkovM. SheinS.A. SandalovaT.O. VishwasraoH.M. GrinenkoN.F. GubskyI.L. AbakumovA.M. KabanovA.V. ChekhoninV.P. VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor.Nanomedicine201511482583310.1016/j.nano.2014.12.01125652902
    [Google Scholar]
  35. MillsI.M. Across the divide.Nature1985317603530810.1038/317308b0
    [Google Scholar]
  36. SaeediM. EslamifarM. KhezriK. DizajS.M. Applications of nanotechnology in drug delivery to the central nervous system.Biomed. Pharmacother.201911166667510.1016/j.biopha.2018.12.13330611991
    [Google Scholar]
  37. DingW. DingL.J. LiF.F. HanY. MuL. Neurodegeneration and cognition in Parkinson’s disease: A review.Eur. Rev. Med. Pharmacol. Sci.201519122275228126166654
    [Google Scholar]
  38. MoreauC. RollandA.S. PioliE. LiQ. OdouP. BarthelemyC. LannoyD. DemaillyA. CartaN. DeramecourtV. AugerF. KuchcinskiG. LalouxC. DefebvreL. BordetR. DuceJ. DevedjianJ.C. BezardE. FisichellaM. DevosD. Intraventricular dopamine infusion alleviates motor symptoms in a primate model of Parkinson’s disease.Neurobiol. Dis.202013910484610.1016/j.nbd.2020.10484632205254
    [Google Scholar]
  39. TeleanuR.I. NiculescuA.G. RozaE. VladâcencoO. GrumezescuA.M. TeleanuD.M. Neurotransmitters—key factors in neurological and neurodegenerative disorders of the central nervous system.Int. J. Mol. Sci.20222311595410.3390/ijms2311595435682631
    [Google Scholar]
  40. AlamM.I. BegS. SamadA. BabootaS. KohliK. AliJ. AhujaA. AkbarM. Strategy for effective brain drug delivery.Eur. J. Pharm. Sci.201040538540310.1016/j.ejps.2010.05.00320497904
    [Google Scholar]
  41. JosephE. SahaR.N. Advances in brain targeted drug delivery: Nanoparticulate systems.J. Pharm. Sci. Technol.20133118
    [Google Scholar]
  42. HendricksB.K. Cohen-GadolA.A. MillerJ.C. Novel delivery methods bypassing the blood-brain and blood-tumor barriers.Neurosurg. Focus2015383E1010.3171/2015.1.FOCUS1476725727219
    [Google Scholar]
  43. RasheedA. ThejaI. SilparaniG. LavanyaY. KumarC.A. CNS targeted drug delivery: Current perspectives.JITPS201011918
    [Google Scholar]
  44. SinghS.B. Novel approaches for brain drug delivery system-review.Int. J. Pharma Res. Rev.2013263644
    [Google Scholar]
  45. GonzaloT. Muňoz-FernándezA. Dendrimeros y susaplicaciones biomédicas, monografia XXVIII: Nanotecnológia farmaceutica.MadridReal Academia Nacional de Farmácia2009
    [Google Scholar]
  46. Bravo-OsunaI. Herrero-VanrellR. Potencial de dendrímeros como vehículos de fármacos en Oftalmología.Arch. Soc. Esp. Oftalmol.2007822697010.4321/S0365‑6691200700020000217323244
    [Google Scholar]
  47. WolinskyJ. GrinstaffM. Therapeutic and diagnostic applications of dendrimers for cancer treatment.Adv. Drug Deliv. Rev.20086091037105510.1016/j.addr.2008.02.01218448187
    [Google Scholar]
  48. MishraI. Dendrimer: A novel drug delivery system.J. Drug Deliv. Ther.20111210.22270/jddt.v1i2.46
    [Google Scholar]
  49. TriesscheijnM. BaasP. SchellensJ.H.M. StewartF.A. Photodynamic therapy in oncology.Oncologist20061191034104410.1634/theoncologist.11‑9‑103417030646
    [Google Scholar]
  50. DingL. LyuZ. DhumalD. KaoC.L. BernardM. PengL. Dendrimer-based magnetic resonance contrast agents in brain tumor imaging.Sci. China Mater.2018611420144310.1007/s40843‑018‑9323‑6
    [Google Scholar]
  51. MathiasC.J. WangS. WatersD.J. TurekJ.J. LowP.S. GreenM.A. Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical.J. Nucl. Med.1998399157915859744347
    [Google Scholar]
  52. KolheP. MisraE. KannanR.M. KannanS. Lieh-LaiM. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers.Int. J. Pharm.20032591-214316010.1016/S0378‑5173(03)00225‑412787643
    [Google Scholar]
  53. TomaliaD.A. ChristensenJ.B. BoasU. Dendrimers, dendrons, and dendritic polymers: discovery, applications, and the future.Cambridge University Press201210.1017/CBO9781139048859
    [Google Scholar]
  54. WalterM.V. MalkochM. Simplifying the synthesis of dendrimers: Accelerated approaches.Chem. Soc. Rev.201241134593460910.1039/c2cs35062a22592560
    [Google Scholar]
  55. LyuZ. DingL. HuangA.Y.T. KaoC.L. PengL. Poly(amidoamine) dendrimers: Covalent and supramolecular synthesis.Mater. Today Chem.201913344810.1016/j.mtchem.2019.04.004
    [Google Scholar]
  56. ChenC. PosoccoP. LiuX. ChengQ. LauriniE. ZhouJ. LiuC. WangY. TangJ. ColV.D. YuT. GiorgioS. FermegliaM. QuF. LiangZ. RossiJ.J. LiuM. RocchiP. PriclS. PengL. Mastering dendrimer self-assembly for efficient siRNA delivery: from conceptual design to in vivo efficient gene silencing.Small201612273667367610.1002/smll.20150386627244195
    [Google Scholar]
  57. GarrigueP. TangJ. DingL. BouhlelA. TintaruA. LauriniE. HuangY. LyuZ. ZhangM. FernandezS. BalasseL. LanW. MasE. MarsonD. WengY. LiuX. GiorgioS. IovannaJ. PriclS. GuilletB. PengL. Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors.Proc. Natl. Acad. Sci. USA201811545114541145910.1073/pnas.181293811530348798
    [Google Scholar]
  58. WeiT. ChenC. LiuJ. LiuC. PosoccoP. LiuX. ChengQ. HuoS. LiangZ. FermegliaM. PriclS. LiangX.J. RocchiP. PengL. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance.Proc. Natl. Acad. Sci. USA2015112102978298310.1073/pnas.141849411225713374
    [Google Scholar]
  59. LiuX. ZhouJ. YuT. ChenC. ChengQ. SenguptaK. HuangY. LiH. LiuC. WangY. PosoccoP. WangM. CuiQ. GiorgioS. FermegliaM. QuF. PriclS. ShiY. LiangZ. RocchiP. RossiJ.J. PengL. Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems.Angew. Chem. Int. Ed.20145344118221182710.1002/anie.20140676425219970
    [Google Scholar]
  60. DingL. LyuZ. TintaruA. LauriniE. MarsonD. LouisB. BouhlelA. BalasseL. FernandezS. GarrigueP. MasE. GiorgioS. PriclS. GuilletB. PengL. A self-assembling amphiphilic dendrimer nanotracer for SPECT imaging.Chem. Commun. (Camb.)202056230130410.1039/C9CC07750B31808472
    [Google Scholar]
  61. DingL. LyuZ. LouisB. TintaruA. LauriniE. MarsonD. ZhangM. ShaoW. JiangY. BouhlelA. BalasseL. GarrigueP. MasE. GiorgioS. IovannaJ. HuangY. PriclS. GuilletB. PengL. Surface charge of supramolecular nanosystems for in vivo biodistribution: a MicroSPECT/CT imaging study.Small20201637200329010.1002/smll.20200329032794645
    [Google Scholar]
  62. YuT. LiuX. Bolcato-BelleminA.L. WangY. LiuC. ErbacherP. QuF. RocchiP. BehrJ.P. PengL. An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo.Angew. Chem. Int. Ed.201251348478848410.1002/anie.20120392022829421
    [Google Scholar]
  63. LiuX. LiuC. ZhouJ. ChenC. QuF. RossiJ.J. RocchiP. PengL. Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer.Nanoscale2015793867387510.1039/C4NR04759A25283447
    [Google Scholar]
  64. LiuX. WangY. ChenC. TintaruA. CaoY. LiuJ. ZiarelliF. TangJ. GuoH. RosasR. GiorgioS. CharlesL. RocchiP. PengL. A fluorinated bola-amphiphilic dendrimer for on-demand delivery of siRNA, via specific response to reactive oxygen species.Adv. Funct. Mater.201626478594860310.1002/adfm.201604192
    [Google Scholar]
  65. ChenJ. Ellert-MiklaszewskaA. GarofaloS. DeyA.K. TangJ. JiangY. ClémentF. MarcheP.N. LiuX. KaminskaB. SantoniA. LimatolaC. RossiJ.J. ZhouJ. PengL. Synthesis and use of an amphiphilic dendrimer for siRNA delivery into primary immune cells.Nat. Protoc.202116132735110.1038/s41596‑020‑00418‑933277630
    [Google Scholar]
  66. LehnJ.M. Toward self-organization and complex matter.Science200229555642400240310.1126/science.107106311923524
    [Google Scholar]
  67. WebberM.J. AppelE.A. MeijerE.W. LangerR. Supramolecular biomaterials.Nat. Mater.2016151132610.1038/nmat447426681596
    [Google Scholar]
  68. CaoY. LiuX. PengL. Molecular engineering of dendrimer nanovectors for siRNA delivery and gene silencing.Front. Chem. Sci. Eng.201711466367510.1007/s11705‑017‑1623‑5
    [Google Scholar]
  69. TomaliaD.A. NaylorA.M. GoddardW.A.III Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter.Angew. Chem. Int. Ed. Engl.199029213817510.1002/anie.199001381
    [Google Scholar]
  70. SchiavonO. PasutG. MoroS. OrsoliniP. GuiottoA. VeroneseF.M. PEG–Ara-C conjugates for controlled release.Eur. J. Med. Chem.200439212313310.1016/j.ejmech.2003.10.00514987821
    [Google Scholar]
  71. BranaM.F. DominguezG. SaezB. RomerdahlC. RobinsonS. BarlozzariT. Synthesis and Antitumor Activity of New Dendritic Polyamines—(Imide—DNA-Intercalator) Conjugates: Potent Lck Inhibitors.ChemInform2002334522410.1002/chin.200245224
    [Google Scholar]
  72. HawkerC.J. WooleyK.L. FréchetJ.M.J. Unimolecular micelles and globular amphiphiles: Dendritic macromolecules as novel recyclable solubilization agents.J. Chem. Soc., Perkin Trans. 11993121287129710.1039/P19930001287
    [Google Scholar]
  73. PushkarS. PhilipA. PathakK. PathakD. Dendrimers: Nanotechnology derived novel polymers in drug delivery.Indian J. Pharmaceut. Educ. Res.2006403153
    [Google Scholar]
  74. YasukawaT. OguraY. TabataY. KimuraH. WiedemannP. HondaY. Drug delivery systems for vitreoretinal diseases.Prog. Retin. Eye Res.200423325328110.1016/j.preteyeres.2004.02.00315177203
    [Google Scholar]
  75. TripathyS. DasM.K. Dendrimers and their applications as novel drug delivery carriers.J. Appl. Pharm. Sci.201339142149
    [Google Scholar]
  76. Abedi-GaballuF. DehghanG. GhaffariM. YektaR. Abbaspour-RavasjaniS. BaradaranB. Ezzati Nazhad DolatabadiJ. HamblinM.R. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy.Appl. Mater. Today20181217719010.1016/j.apmt.2018.05.00230511014
    [Google Scholar]
  77. TarachP. JanaszewskaA. Recent advances in preclinical research using PAMAM dendrimers for cancer gene therapy.Int. J. Mol. Sci.2021226291210.3390/ijms2206291233805602
    [Google Scholar]
  78. DuX. ShiB. LiangJ. BiJ. DaiS. QiaoS.Z. Developing functionalized dendrimer-like silica nanoparticles with hierarchical pores as advanced delivery nanocarriers.Adv. Mater.201325415981598510.1002/adma.20130218923955990
    [Google Scholar]
  79. SwamiR. SinghI. KulhariH. JeengarM.K. KhanW. SistlaR. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: An in vitro and in vivo evaluation.J. Nanopart. Res.201517626510.1007/s11051‑015‑3063‑9
    [Google Scholar]
  80. FlorendoM. FigaczA. SrinageshwarB. SharmaA. SwansonD. DunbarG.L. RossignolJ. Use of polyamidoamine dendrimers in brain diseases.Molecules2018239223810.3390/molecules2309223830177605
    [Google Scholar]
  81. IgartúaD.E. MartinezC.S. TempranaC.F. AlonsoS.V. PrietoM.J. PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases: A biophysical and nanotoxicological characterization.Int. J. Pharm.2018544119120210.1016/j.ijpharm.2018.04.03229678547
    [Google Scholar]
  82. Vasconcelos-FerreiraA. Carmo-SilvaS. CodêssoJ.M. SilvaP. MartinezA.R.M. FrançaM.C.Jr NóbregaC. Pereira de AlmeidaL. The autophagy-enhancing drug carbamazepine improves neuropathology and motor impairment in mouse models of Machado–Joseph disease.Neuropathol. Appl. Neurobiol.2022481e1276310.1111/nan.1276334432315
    [Google Scholar]
  83. KesharwaniP. IyerA.K. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery.Drug Discov. Today201520553654710.1016/j.drudis.2014.12.01225555748
    [Google Scholar]
  84. SiegalT. RubinsteinR. BoksteinF. SchwartzA. LossosA. ShalomE. ChisinR. GomoriJ.M. In vivo assessment of the window of barrier opening after osmotic blood—brain barrier disruption in humans.J. Neurosurg.200092459960510.3171/jns.2000.92.4.059910761648
    [Google Scholar]
  85. BennewitzM.F. SaltzmanW.M. Nanotechnology for delivery of drugs to the brain for epilepsy.Neurotherapeutics20096232333610.1016/j.nurt.2009.01.01819332327
    [Google Scholar]
  86. BoboR.H. LaskeD.W. AkbasakA. MorrisonP.F. DedrickR.L. OldfieldE.H. Convection-enhanced delivery of macromolecules in the brain.Proc. Natl. Acad. Sci. USA19949162076208010.1073/pnas.91.6.20768134351
    [Google Scholar]
  87. CarsonB.S.Sr WuQ. TylerB. SukayL. RaychaudhuriR. DiMecoF. ClatterbuckR.E. OliviA. GuarnieriM. New approach to tumor therapy for inoperable areas of the brain: Chronic intraparenchymal drug delivery.J. Neurooncol.200260215115810.1023/A:102062641926912635662
    [Google Scholar]
  88. YiX. ManickamD.S. BrynskikhA. KabanovA.V. Agile delivery of protein therapeutics to CNS.J. Control. Release201419063766310.1016/j.jconrel.2014.06.01724956489
    [Google Scholar]
  89. ZhangX. ChenG. WenL. YangF. ShaoA. LiX. LongW. MuL. Novel multiple agents loaded PLGA nanoparticles for brain delivery via inner ear administration: In vitro and in vivo evaluation.Eur. J. Pharm. Sci.2013484-559560310.1016/j.ejps.2013.01.00723354153
    [Google Scholar]
  90. FurtadoD. BjörnmalmM. AytonS. BushA.I. KempeK. CarusoF. Overcoming the blood–brain barrier: The role of nanomaterials in treating neurological diseases.Adv. Mater.20183046180136210.1002/adma.20180136230066406
    [Google Scholar]
  91. Cohen-PfefferJ.L. GururanganS. LesterT. LimD.A. ShaywitzA.J. WestphalM. SlavcI. Intracerebroventricular delivery as a safe, long-term route of drug administration.Pediatr. Neurol.201767233510.1016/j.pediatrneurol.2016.10.02228089765
    [Google Scholar]
  92. AllenS.J. WatsonJ.J. ShoemarkD.K. BaruaN.U. PatelN.K. GDNF, NGF and BDNF as therapeutic options for neurodegeneration.Pharmacol. Ther.2013138215517510.1016/j.pharmthera.2013.01.00423348013
    [Google Scholar]
  93. RaghavanR. BradyM.L. Rodríguez-PonceM.I. HartlepA. PedainC. SampsonJ.H. Convection-enhanced delivery of therapeutics for brain disease, and its optimization.Neurosurg. Focus2006204E1210.3171/foc.2006.20.4.716709017
    [Google Scholar]
  94. JahangiriA. ChinA.T. FlaniganP.M. ChenR. BankiewiczK. AghiM.K. Convection-enhanced delivery in glioblastoma: A review of preclinical and clinical studies.J. Neurosurg.2017126119120010.3171/2016.1.JNS15159127035164
    [Google Scholar]
  95. KozlovskayaL. Abou-KaoudM. StepenskyD. Quantitative analysis of drug delivery to the brain via nasal route.J. Control. Release201418913314010.1016/j.jconrel.2014.06.05324997277
    [Google Scholar]
  96. Grassin-DelyleS. BuenestadoA. NalineE. FaisyC. Blouquit-LayeS. CoudercL.J. Le GuenM. FischlerM. DevillierP. Intranasal drug delivery: An efficient and non-invasive route for systemic administration.Pharmacol. Ther.2012134336637910.1016/j.pharmthera.2012.03.00322465159
    [Google Scholar]
  97. BitterC. Suter-ZimmermannK. SurberC. Topical applications and the mucosa.Nasal drug delivery in humansKarger Publishers2011
    [Google Scholar]
  98. KimY.S. SungD.K. KimH. KongW.H. KimY.E. HahnS.K. Nose- to-brain delivery of hyaluronate – FG loop peptide conjugate for non-invasive hypoxic-ischemic encephalopathy therapy.J. Control. Release2019307768910.1016/j.jconrel.2019.06.02131229472
    [Google Scholar]
  99. SukumarU.K. BoseR.J.C. MalhotraM. BabikirH.A. AfjeiR. RobinsonE. ZengY. ChangE. HabteF. SinclairR. GambhirS.S. MassoudT.F. PaulmuruganR. Intranasal delivery of targeted polyfunctional gold–iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide.Biomaterials201921811934210.1016/j.biomaterials.2019.11934231326657
    [Google Scholar]
  100. DhuriaS.V. HansonL.R. FreyW.H.II Intranasal delivery to the central nervous system: Mechanisms and experimental considerations.J. Pharm. Sci.20109941654167310.1002/jps.2192419877171
    [Google Scholar]
  101. GuptaS. KesarlaR. OmriA. Approaches for CNS delivery of drugs – nose to brain targeting of antiretroviral agents as a potential attempt for complete elimination of major reservoir site of HIV to aid AIDS treatment.Expert Opin. Drug Deliv.201916328730010.1080/17425247.2019.158320630779602
    [Google Scholar]
  102. VitorinoC. SilvaS. BickerJ. FalcãoA. FortunaA. Antidepressants and nose-to-brain delivery: drivers, restraints, opportunities and challenges.Drug Discov. Today20192491911192310.1016/j.drudis.2019.06.00131181188
    [Google Scholar]
  103. LinT. LiuE. HeH. ShinM.C. MoonC. YangV.C. HuangY. Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides.Acta Pharm. Sin. B20166435235810.1016/j.apsb.2016.04.00127471676
    [Google Scholar]
  104. ZhangT.T. LiW. MengG. WangP. LiaoW. Strategies for transporting nanoparticles across the blood–brain barrier.Biomater. Sci.20164221922910.1039/C5BM00383K26646694
    [Google Scholar]
  105. Palmerston MendesL. PanJ. TorchilinV. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy.Molecules2017229140110.3390/molecules2209140128832535
    [Google Scholar]
  106. BarrettT. RavizziniG. ChoykeP.L. KobayashiH. Dendrimers application related to bioimaging. IEEE engineering in medicine and biology magazine: the quarterly magazine of the Engineering in Medicine &.Biol. Soc.200928112
    [Google Scholar]
  107. McMahonM.T. BulteJ.W.M. Two decades of dendrimers as versatile MRI agents: A tale with and without metals.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2018103e149610.1002/wnan.149628895298
    [Google Scholar]
  108. ZhuY. LiuC. PangZ. Dendrimer-based drug delivery systems for brain targeting.Biomolecules201991279010.3390/biom912079031783573
    [Google Scholar]
  109. KauravM. RuhiS. Al-GoshaeH.A. JeppuA.K. RamachandranD. SahuR.K. SarkarA.K. KhanJ. Ashif IkbalA.M. Dendrimer: An update on recent developments and future opportunities for the brain tumors diagnosis and treatment.Front. Pharmacol.202314115913110.3389/fphar.2023.115913137006997
    [Google Scholar]
  110. PoustforooshA. NematollahiM.H. HashemipourH. PardakhtyA. Recent advances in Bio-conjugated nanocarriers for crossing the Blood-Brain Barrier in (pre-)clinical studies with an emphasis on vesicles.J. Control. Release202234377779710.1016/j.jconrel.2022.02.01535183653
    [Google Scholar]
  111. RajizadehM.A. MotamedyS. MirY. AkhgarandouzF. NematollahiM.H. NezhadiA. A comprehensive and updated review on the applications of vesicular drug delivery systems in treatment of brain disorders: A shelter against storms.J. Drug Deliv. Sci. Technol.20238910501110.1016/j.jddst.2023.105011
    [Google Scholar]
  112. PoustforooshA. FarmarzS. NematollahiM.H. HashemipourH. PardakhtyA. Construction of Bio-conjugated nano-vesicles using non-ionic surfactants for targeted drug delivery: A computational supported experimental study.J. Mol. Liq.202236712058810.1016/j.molliq.2022.120588
    [Google Scholar]
  113. AsadikaramG. PoustforooshA. PardakhtyA. Torkzadeh-MahaniM. NematollahiM.H. Niosomal virosome derived by vesicular stomatitis virus glycoprotein as a new gene carrier.Biochem. Biophys. Res. Commun.202153498098710.1016/j.bbrc.2020.10.05433131770
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878303735240906065735
Loading
/content/journals/raddf/10.2174/0126673878303735240906065735
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): blood-brain barrier; Dendrimer; invasive; noninvasive; PAMAN; polypropyleneimine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test