Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Nanostructured Lipid Carriers (NLCs) represent a promising advancement in the treatment of breast cancer, addressing the significant challenges posed by conventional chemotherapy, such as poor drug solubility, short half-lives, and high toxicity. This review delves into the potential of NLCs to overcome these limitations, highlighting their unique structure comprising a solid and lipid liquid core stabilized by surfactants. By examining diverse lipid blends used in the preparation of NLCs, the article emphasizes their suitability for targeted drug delivery. Various facets of NLC configuration, categorization, composition, and formulation approaches are systematically explored to provide a comprehensive understanding of their attributes. The findings reveal that NLCs possess a high capacity for lipophilic drugs and offer advantages over traditional lipid-based nanocarriers. The review underscores the pivotal role of NLCs in enhancing drug delivery efficiency for breast cancer therapy while minimizing systemic toxicity. Conclusively, this review positions NLCs as a key player in the evolution of drug delivery systems for breast cancer treatment, providing a detailed outlook on their transformative potential and contributing to a nuanced understanding of their significance in advancing the field of breast cancer treatment.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878313086241031154146
2024-12-09
2025-10-24
Loading full text...

Full text loading...

References

  1. HarwanshR.K. BahadurS. DeshmukhR. RahmanM.A. Exciting potential of nanoparticlized lipidic system for effective treatment of breast cancer and clinical updates: A translational prospective.Curr. Pharm. Des.202026111191120510.2174/1381612826666200131101156 32003686
    [Google Scholar]
  2. GadagS. SinhaS. NayakY. GargS. NayakU.Y. Combination therapy and nanoparticulate systems: Smart approaches for the effective treatment of breast cancer.Pharmaceutics202012652410.3390/pharmaceutics12060524 32521684
    [Google Scholar]
  3. KumarM. RajnikanthP.S. A mini-review on HER2 positive breast cancer and its metastasis: Resistance and treatment strategies.Curr. Nanomed.2020101364710.2174/2468187310666191223141038
    [Google Scholar]
  4. NurgaliK. JagoeR.T. AbaloR. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae?Front. Pharmacol.20189MAR24510.3389/fphar.2018.00245 29623040
    [Google Scholar]
  5. NarangJ.K. KhanS. BabootaS. AliJ. KhanS. NarangR. Nanostructured lipid carriers: An emerging platform for improving oral bioavailability of lipophilic drugs.Int. J. Pharm. Investig.20155418219110.4103/2230‑973X.167661 26682188
    [Google Scholar]
  6. SledgeG.W. MamounasE.P. HortobagyiG.N. BursteinH.J. GoodwinP.J. WolffA.C. Past, present, and future challenges in breast cancer treatment.J. Clin. Oncol.201432191979198610.1200/JCO.2014.55.4139 24888802
    [Google Scholar]
  7. DeVitaV.T.Jr ChuE. A history of cancer chemotherapy.Cancer Res.200868218643865310.1158/0008‑5472.CAN‑07‑6611 18974103
    [Google Scholar]
  8. ChabnerB.A. RobertsT.G.Jr Chemotherapy and the war on cancer.Nat. Rev. Cancer200551657210.1038/nrc1529 15630416
    [Google Scholar]
  9. BelachewS.A. ErkuD.A. MekuriaA.B. GebresillassieB.M. Pattern of chemotherapy-related adverse effects among adult cancer patients treated at Gondar University Referral Hospital, Ethiopia: A cross-sectional study.Drug Healthc. Patient Saf.20168839010.2147/DHPS.S116924 27994485
    [Google Scholar]
  10. MehnertW. MaderK. Advances in the cognitive neuroscience of neurodevelopmental disorders: Views from child psychiatry and medical genetics.Neurodev Disord202047165196
    [Google Scholar]
  11. de JongW.H. BormP.J.A. Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine20083213314910.2147/IJN.S596 18686775
    [Google Scholar]
  12. ShidhayeS. VaidyaR. SutarS. PatwardhanA. KadamV. Solid lipid nanoparticles and nanostructured lipid carriers--innovative generations of solid lipid carriers.Curr. Drug Deliv.20085432433110.2174/156720108785915087 18855604
    [Google Scholar]
  13. MugundhanS.L. MohanM. Nanoscale strides: Exploring innovative therapies for breast cancer treatment.RSC Advances20241420140171404010.1039/D4RA02639J 38686289
    [Google Scholar]
  14. BarenholzY.C. Doxil® — The first FDA-approved nano-drug: Lessons learned.J. Control. Release2012160211713410.1016/j.jconrel.2012.03.020 22484195
    [Google Scholar]
  15. A study of BIND-014 given to patients with advanced or metastatic cancerPatent NCT013005332016
    [Google Scholar]
  16. CarpinL.B. BickfordL.R. AgollahG. Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells.Breast Cancer Res. Treat.20111251273410.1007/s10549‑010‑0811‑5 20217215
    [Google Scholar]
  17. ChadarR. AfzalO. AlqahtaniS.M. KesharwaniP. Carbon nanotubes as an emerging nanocarrier for the delivery of doxorubicin for improved chemotherapy.Colloids Surf. B Biointerfaces2021208May11204410.1016/j.colsurfb.2021.112044 34419810
    [Google Scholar]
  18. OddoneN. LecotN. FernándezM. In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer.J. Nanobiotechnology20161414510.1186/s12951‑016‑0197‑6 27297021
    [Google Scholar]
  19. TyagiN. GuptaP. KhanZ. Superparamagnetic iron-oxide nanoparticles synthesized via green chemistry for the potential treatment of breast Cancer.Molecules2023285234310.3390/molecules28052343 36903587
    [Google Scholar]
  20. OmidianH. WilsonR.L. CubedduL.X. Quantum dot research in breast cancer: Challenges and prospects.Materials (Basel)2024179215210.3390/ma17092152 38730959
    [Google Scholar]
  21. MozafariniaM. KarimiS. FarrokhniaM. EsfandiariJ. In vitro breast cancer targeting using Trastuzumab-conjugated mesoporous silica nanoparticles: Towards the new strategy for decreasing size and high drug loading capacity for drug delivery purposes in MSN synthesis.Microporous Mesoporous Mater.2021316January110950[Internet]10.1016/j.micromeso.2021.110950
    [Google Scholar]
  22. YuanS.J. XuY.H. WangC. Doxorubicin-polyglycerol-nanodiamond conjugate is a cytostatic agent that evades chemoresistance and reverses cancer-induced immunosuppression in triple-negative breast cancer.J. Nanobiotechnology201917111010.1186/s12951‑019‑0541‑8 31623629
    [Google Scholar]
  23. KristiL. Stringer, Bulent Turan, Lisa McCormick, Modupeoluwa Durojaiye, Laura Nyblade, Mirjam-Colette Kempf, Bronwen Lichtenstein and JMT. A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity.Physiol. Behav.20171763139148
    [Google Scholar]
  24. ChenS. LiuW. WanJ. Preparation of Coenzyme Q10 nanostructured lipid carriers for epidermal targeting with high-pressure microfluidics technique.Drug Dev. Ind. Pharm.2013391202810.3109/03639045.2011.650648 23116283
    [Google Scholar]
  25. JavedS. ManglaB. AlmoshariY. SultanM.H. AhsanW. Nanostructured lipid carrier system: A compendium of their formulation development approaches, optimization strategies by quality by design, and recent applications in drug delivery.Nanotechnol. Rev.20221111744177710.1515/ntrev‑2022‑0109
    [Google Scholar]
  26. JounI. NixdorfS. Advances in lipid-based nanocarriers for breast cancer metastasis treatment.Front Med Technol20204893056
    [Google Scholar]
  27. MüllerR.H. RadtkeM. WissingS.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations.Adv. Drug Deliv. Rev.200254Suppl. 1S131S15510.1016/S0169‑409X(02)00118‑7 12460720
    [Google Scholar]
  28. KasongoK.W. JanschM. MüllerR.H. WalkerR.B. Evaluation of the in vitro differential protein adsorption patterns of didanosine-loaded nanostructured lipid carriers (NLCs) for potential targeting to the brain.J. Liposome Res.201121324525410.3109/08982104.2010.539186 21174528
    [Google Scholar]
  29. NairR. KumarK.S.A. PriyaK.V. SevukarajanM. Recent advances in solid lipid nanoparticle based drug delivery systems.J Biomed Sci Res201132368384
    [Google Scholar]
  30. RadtkeM. SoutoE.B. MüllerR.H. Nanostructured lipid carriers: A novel generation of solid lipid drug carriers.Pharm Technol Eur20051744550
    [Google Scholar]
  31. SpP.A. Nanostructured lipid carriers as a drug carrier.J Pharm Nanotechnol201646874
    [Google Scholar]
  32. DubeyA. PrabhuP. KamathJ.V. Nano structured lipid carriers: A novel topical drug delivery system.Int. J. Pharm. Tech. Res.201242705714
    [Google Scholar]
  33. PurohitD.K. NandgudeT.D. PoddarS.S. Nano-lipid carriers for topical application: Current scenario.Asian J. Pharm.2016101S1S9
    [Google Scholar]
  34. SharmaA. BaldiA. Nanostructured lipid carriers : A review journal.J. Dev. Drugs201872112
    [Google Scholar]
  35. CharcossetC. El-HaratiA. FessiH. Preparation of solid lipid nanoparticles using a membrane contactor.J. Control. Release2005108111212010.1016/j.jconrel.2005.07.023 16169111
    [Google Scholar]
  36. HaiderM. AbdinS.M. KamalL. OriveG. Nanostructured lipid carriers for delivery of chemotherapeutics: A review.Pharmaceutics202012328810.3390/pharmaceutics12030288 32210127
    [Google Scholar]
  37. WaheedI. AliA. TabassumH. KhatoonN. LaiW.F. ZhouX. Lipid-based nanoparticles as drug delivery carriers for cancer therapy.Front. Oncol.202414129609110.3389/fonc.2024.1296091 38660132
    [Google Scholar]
  38. MüllerR.H. RadtkeM. WissingS.A. Nanostructured lipid matrices for improved microencapsulation of drugs.Int. J. Pharm.20022421-212112810.1016/S0378‑5173(02)00180‑1 12176234
    [Google Scholar]
  39. JenningV. GohlaS.H. Encapsulation of retinoids in solid lipid nanoparticles (SLN).J. Microencapsul.200118214915810.1080/02652040010000361 11253932
    [Google Scholar]
  40. KhosaA. ReddiS. SahaR.N. Nanostructured lipid carriers for site-specific drug delivery.Biomed. Pharmacother.2018103February59861310.1016/j.biopha.2018.04.055 29677547
    [Google Scholar]
  41. AbdelbaryG. HaiderM. In vitro characterization and growth inhibition effect of nanostructured lipid carriers for controlled delivery of methotrexate.Pharm. Dev. Technol.20131851159116810.3109/10837450.2011.614251 21958084
    [Google Scholar]
  42. LiuD. LiuZ. WangL. ZhangC. ZhangN. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel.Colloids Surf. B Biointerfaces201185226226910.1016/j.colsurfb.2011.02.038 21435845
    [Google Scholar]
  43. DingX. XuX. ZhaoY. Tumor targeted nanostructured lipid carrier co-delivering paclitaxel and indocyanine green for laser triggered synergetic therapy of cancer.RSC Advances20177563508635095[Internet]10.1039/C7RA06119F
    [Google Scholar]
  44. ZhangX.G. MiaoJ. DaiY.Q. DuY.Z. YuanH. HuF.Q. Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells.Int. J. Pharm.20083611-223924410.1016/j.ijpharm.2008.06.002 18586075
    [Google Scholar]
  45. SunM. NieS. PanX. ZhangR. FanZ. WangS. Quercetin-nanostructured lipid carriers: Characteristics and anti-breast cancer activities in vitro.Colloids Surf. B Biointerfaces2014113152410.1016/j.colsurfb.2013.08.032 24060926
    [Google Scholar]
  46. ChenY. PanL. JiangM. LiD. JinL. Nanostructured lipid carriers enhance the bioavailability and brain cancer inhibitory efficacy of curcumin both in vitro and in vivo.Drug Deliv.20162341383139210.3109/10717544.2015.1049719 26066035
    [Google Scholar]
  47. BondML DianaP MartoranaA CirrincioneG Nanostructured lipid carriers-containing anticancer compounds: Preparation, characterization, and cytotoxicity studies200714617
    [Google Scholar]
  48. WangY. ZhangH. HaoJ. LiB. LiM. XiuwenW. Lung cancer combination therapy: Co-delivery of paclitaxel and doxorubicin by nanostructured lipid carriers for synergistic effect.Drug Deliv.20162341398140310.3109/10717544.2015.1055619 26079530
    [Google Scholar]
  49. FangY.P. LinY.K. SuY.H. FangJ.Y. Tryptanthrin-loaded nanoparticles for delivery into cultured human breast cancer cells, MCF7: The effects of solid lipid/liquid lipid ratios in the inner core.Chem. Pharm. Bull. (Tokyo)201159226627110.1248/cpb.59.266 21297310
    [Google Scholar]
  50. SabzichiM. SamadiN. MohammadianJ. HamishehkarH. AkbarzadehM. MolaviO. Sustained release of melatonin: A novel approach in elevating efficacy of tamoxifen in breast cancer treatment.Colloids Surf. B Biointerfaces2016145647110.1016/j.colsurfb.2016.04.042 27137804
    [Google Scholar]
  51. AbdolahpourS. ToliyatT. OmidfarK. Targeted delivery of doxorubicin into tumor cells by nanostructured lipid carriers conjugated to anti-EGFRvIII monoclonal antibody.Artif. Cells Nanomed. Biotechnol.2018461899410.1080/21691401.2017.1296847 28296511
    [Google Scholar]
  52. SjöströmB. WestesenK. BergenståhlB. Preparation of submicron drug particles in lecithin-stabilized o/w emulsions.Int. J. Pharm.1993941-38910110.1016/0378‑5173(93)90013‑6
    [Google Scholar]
  53. SoutoE.B. MüllerR.H. Investigation of the factors influencing the incorporation of clotrimazole in SLN and NLC prepared by hot high-pressure homogenization.J. Microencapsul.200623437738810.1080/02652040500435295 16854814
    [Google Scholar]
  54. CirriM. MaestriniL. MaestrelliF. Design, characterization and in vivo evaluation of nanostructured lipid carriers (NLC) as a new drug delivery system for hydrochlorothiazide oral administration in pediatric therapy.Drug Deliv.20182511910192110.1080/10717544.2018.1529209 30451015
    [Google Scholar]
  55. Carvajal-VidalP. FábregaM.J. EspinaM. CalpenaA.C. GarcíaM.L. Development of Halobetasol-loaded nanostructured lipid carrier for dermal administration: Optimization, physicochemical and biopharmaceutical behavior, and therapeutic efficacy.Nanomedicine2019102026
    [Google Scholar]
  56. FangJ.Y. FangC.L. LiuC.H. SuY.H. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC).Eur. J. Pharm. Biopharm.200870263364010.1016/j.ejpb.2008.05.008 18577447
    [Google Scholar]
  57. CirriM. BragagniM. MenniniN. MuraP. Development of a new delivery system consisting in drug – in cyclodextrin – in nanostructured lipid carriers for ketoprofen topical delivery.Eur. J. Pharm. Biopharm.2012801465310.1016/j.ejpb.2011.07.015 21839833
    [Google Scholar]
  58. BeloquiA. SolinísM.Á. Rodríguez-GascónA. AlmeidaA.J. PréatV. Nanostructured lipid carriers: Promising drug delivery systems for future clinics.Nanomedicine201612114316110.1016/j.nano.2015.09.004 26410277
    [Google Scholar]
  59. FangC.L. Al-SuwayehS.A. FangJ.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting.Recent Pat. Nanotechnol.201371415510.2174/187221013804484827 22946628
    [Google Scholar]
  60. DasS. ChaudhuryA. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery.AAPS PharmSciTech2011121627610.1208/s12249‑010‑9563‑0 21174180
    [Google Scholar]
  61. LimW. RajinikanthP.S. MallikarjunC. KangY.B. Formulation and delivery of itraconazole to the brain using a nanolipid carrier system.Int. J. Nanomedicine2014912117212610.2147/IJN.S57565 24833900
    [Google Scholar]
  62. LiuY. WangL. ZhaoY. Nanostructured lipid carriers versus microemulsions for delivery of the poorly water-soluble drug luteolin.Int. J. Pharm.20144761-216917710.1016/j.ijpharm.2014.09.052 25280882
    [Google Scholar]
  63. El-HelwA.R. FahmyU. Improvement of fluvastatin bioavailability by loading on nanostructured lipid carriers.Int. J. Nanomedicine2015105797580410.2147/IJN.S91556 26396513
    [Google Scholar]
  64. ShahN.V. SethA.K. BalaramanR. AundhiaC.J. MaheshwariR.A. ParmarG.R. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: Design and in vivo study.J. Adv. Res.20167342343410.1016/j.jare.2016.03.002 27222747
    [Google Scholar]
  65. IqbalM.A. MdS. SahniJ.K. BabootaS. DangS. AliJ. Nanostructured lipid carriers system: Recent advances in drug delivery.J. Drug Target.2012201081383010.3109/1061186X.2012.716845 22931500
    [Google Scholar]
  66. ZhangK. LvS. LiX. Preparation, characterization, and in vivo pharmacokinetics of nanostructured lipid carriers loaded with oleanolic acid and gentiopicrin.Int. J. Nanomedicine201383227323910.2147/IJN.S45031 24009420
    [Google Scholar]
  67. JoshiM. PatravaleV. Formulation and evaluation of nanostructured lipid carrier (NLC)-based gel of Valdecoxib.Drug Dev. Ind. Pharm.200632891191810.1080/03639040600814676 16954103
    [Google Scholar]
  68. BhagurkarA.M. RepkaM.A. MurthyS.N. A novel approach for the development of a nanostructured lipid carrier formulation by Hot-Melt extrusion technology.J. Pharm. Sci.201710641085109110.1016/j.xphs.2016.12.015 28040458
    [Google Scholar]
  69. KaurP. MishraV. ShunmugaperumalT. GoyalA.K. GhoshG. RathG. Inhalable spray dried lipidnanoparticles for the co-delivery of paclitaxel and doxorubicin in lung cancer.J. Drug Deliv. Sci. Technol.202056101502[Internet10.1016/j.jddst.2020.101502
    [Google Scholar]
  70. ZhangX. PanW. GanL. ZhuC. GanY. NieS. Preparation of a dispersible PEGylate nanostructured lipid carriers (NLC) loaded with 10-hydroxycamptothecin by spray-drying.Chem. Pharm. Bull. (Tokyo)200856121645165010.1248/cpb.56.1645 19043233
    [Google Scholar]
  71. XiaD. ShresthaN. van de StreekJ. MuH. YangM. Spray drying of fenofibrate loaded nanostructured lipid carriers.Asian J Pharm Sci201611450751510.1016/j.ajps.2016.01.001
    [Google Scholar]
  72. ZhongQ. ZhangL. Nanoparticles fabricated from bulk solid lipids: Preparation, properties, and potential food applications.Adv. Colloid Interface Sci.201927310203310.1016/j.cis.2019.102033 31614266
    [Google Scholar]
  73. LababidiN. SigalV. KoennekeA. SchwarzkopfK. ManzA. SchneiderM. Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration.Beilstein J. Nanotechnol.2019102280229310.3762/bjnano.10.220 31807413
    [Google Scholar]
  74. GargS. HeuckG. IpS. RamsayE. Microfluidics: A transformational tool for nanomedicine development and production.J. Drug Target.201624982183510.1080/1061186X.2016.1198354 27492254
    [Google Scholar]
  75. AliofkhazraeiM. Handbook of nanoparticles.ChamSpringer20151142610.1007/978‑3‑319‑13188‑7
    [Google Scholar]
  76. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.387 18654426
    [Google Scholar]
  77. DanhierF. FeronO. PréatV. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery.J. Control. Release2010148213514610.1016/j.jconrel.2010.08.027 20797419
    [Google Scholar]
  78. TeeranachaideekulV. SoutoE.B. JunyaprasertV.B. MüllerR.H. Cetyl palmitate-based NLC for topical delivery of Coenzyme Q10 – Development, physicochemical characterization and in vitro release studies.Eur. J. Pharm. Biopharm.200767114114810.1016/j.ejpb.2007.01.015 17346953
    [Google Scholar]
  79. MoghimiS.M. HunterA.C. AndresenT.L. Factors controlling nanoparticle pharmacokinetics: An integrated analysis and perspective.Annu. Rev. Pharmacol. Toxicol.201252148150310.1146/annurev‑pharmtox‑010611‑134623 22035254
    [Google Scholar]
  80. TruongN.P. WhittakerM.R. MakC.W. DavisT.P. The importance of nanoparticle shape in cancer drug delivery.Expert Opin. Drug Deliv.201512112914210.1517/17425247.2014.950564 25138827
    [Google Scholar]
  81. TamjidiF. ShahediM. VarshosazJ. NasirpourA. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules In: Innovative Food Science and Emerging Technologies.Elsevier201319294310.1016/j.ifset.2013.03.002
    [Google Scholar]
  82. XuR. Progress in nanoparticles characterization: Sizing and zeta potential measurement.Particuology20086211211510.1016/j.partic.2007.12.002
    [Google Scholar]
  83. Gonzalez-MiraE. EgeaM.A. SoutoE.B. CalpenaA.C. GarcíaM.L. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery.Nanotechnology201122404510110.1088/0957‑4484/22/4/045101 21169662
    [Google Scholar]
  84. ParveenS. SahooS.K. Polymeric nanoparticles for cancer therapy.J. Drug Target.200816210812310.1080/10611860701794353 18274932
    [Google Scholar]
  85. HowC.W. RasedeeA. ManickamS. RosliR. Tamoxifen-loaded nanostructured lipid carrier as a drug delivery system: Characterization, stability assessment and cytotoxicity.Colloids Surf. B Biointerfaces201311239339910.1016/j.colsurfb.2013.08.009 24036474
    [Google Scholar]
  86. HuF.Q. JiangS.P. DuY.Z. YuanH. YeY.Q. ZengS. Preparation and characteristics of monostearin nanostructured lipid carriers.Int. J. Pharm.20063141838910.1016/j.ijpharm.2006.01.040 16563671
    [Google Scholar]
  87. HanF. LiS. YinR. LiuH. XuL. Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: Nanostructured lipid carriers.Colloids Surf. A Physicochem. Eng. Asp.20083151-321021610.1016/j.colsurfa.2007.08.005
    [Google Scholar]
  88. BunjesH. WestesenK. KochM.H.J. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles.Int. J. Pharm.19961291-215917310.1016/0378‑5173(95)04286‑5
    [Google Scholar]
  89. SanjulaB. ShahF.M. JavedA. AlkaA. Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement.J. Drug Target.200917324925610.1080/10611860902718672 19255893
    [Google Scholar]
  90. JenningV. GohlaS. Comparison of wax and glyceride solid lipid nanoparticles (SLN®).Int. J. Pharm.2000196221922210.1016/S0378‑5173(99)00426‑3 10699722
    [Google Scholar]
  91. TeeranachaideekulV. MüllerR. JunyaprasertV. Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)—Effects of formulation parameters on physicochemical stability.Int. J. Pharm.20073401-219820610.1016/j.ijpharm.2007.03.022 17482778
    [Google Scholar]
  92. JiangH. PeiL. LiuN. LiJ. LiZ. ZhangS. Etoposide-loaded nanostructured lipid carriers for gastric cancer therapy.Drug Deliv.20162341379138210.3109/10717544.2015.1048491 26162024
    [Google Scholar]
  93. EmamiJ. YousefianH. SadeghiH. Targeted nanostructured lipid carrier for brain delivery of artemisinin: Design, preparation, characterization, optimization and cell toxicity.J. Pharm. Pharm. Sci.2018211s225s241s10.18433/jpps30117 30266137
    [Google Scholar]
  94. Sue LeeC. KooJ. A review of acitretin, a systemic retinoid for the treatment of psoriasis.Expert Opin. Pharmacother.20056101725173410.1517/14656566.6.10.1725 16086658
    [Google Scholar]
  95. LiuD. LiuF. LiuZ. WangL. ZhangN. Tumor specific delivery and therapy by double-targeted nanostructured lipid carriers with anti-VEGFR-2 antibody.Mol. Pharm.2011862291230110.1021/mp200402e 21923159
    [Google Scholar]
  96. CastelliF. PugliaC. SarpietroM.G. RizzaL. BoninaF. Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry.Int. J. Pharm.20053041-223123810.1016/j.ijpharm.2005.08.011 16188405
    [Google Scholar]
  97. zur MühlenA. SchwarzC. MehnertW. Solid lipid nanoparticles (SLN) for controlled drug delivery – Drug release and release mechanism.Eur. J. Pharm. Biopharm.199845214915510.1016/S0939‑6411(97)00150‑1 9704911
    [Google Scholar]
  98. InoueK. YuasaH. Molecular basis for pharmacokinetics and pharmacodynamics of methotrexate in rheumatoid arthritis therapy.Drug Metab. Pharmacokinet.2014291121910.2133/dmpk.DMPK‑13‑RV‑119 24284432
    [Google Scholar]
  99. CallenJ.P. Kulp-ShortenC.L. MethotrexateIn: Comprehensive Dermatologic Drug Therapy. Amsterdam, The Netherlands: Elsevier2021e5156168
    [Google Scholar]
  100. ChandP. KumarH. BadduriN. Design and evaluation of cabazitaxel loaded NLCs against breast cancer cell lines.Colloids Surf. B Biointerfaces2021199December11153510.1016/j.colsurfb.2020.111535 33360926
    [Google Scholar]
  101. ChenJ. ChenH. CuiS. Glucosamine derivative modified nanostructured lipid carriers for targeted tumor delivery.J. Mater. Chem.201222125770578310.1039/c2jm15830b
    [Google Scholar]
  102. UcarE. TeksozS. IchedefC. Synthesis, characterization and radiolabeling of folic acid modified nanostructured lipid carriers as a contrast agent and drug delivery system.Appl. Radiat. Isot.2017119727910.1016/j.apradiso.2016.11.002 27866122
    [Google Scholar]
  103. GaoX. ZhangJ. XuQ. HuangZ. WangY. ShenQ. Hyaluronic acid-coated cationic nanostructured lipid carriers for oral vincristine sulfate delivery.Drug Dev. Ind. Pharm.201743466166710.1080/03639045.2016.1275671 28043185
    [Google Scholar]
  104. MussiS.V. SawantR. PercheF. Novel nanostructured lipid carrier co-loaded with doxorubicin and docosahexaenoic acid demonstrates enhanced in vitro activity and overcomes drug resistance in MCF-7/Adr cells.Pharm. Res.20143181882189210.1007/s11095‑013‑1290‑2 24522814
    [Google Scholar]
  105. FernandesR.S. SilvaJ.O. MonteiroL.O.F. Doxorubicin-loaded nanocarriers: A comparative study of liposome and nanostructured lipid carrier as alternatives for cancer therapy.Biomed. Pharmacother.20168425225710.1016/j.biopha.2016.09.032 27664949
    [Google Scholar]
  106. FernandesR.S. SilvaJ.O. MussiS.V. Nanostructured lipid carrier co-loaded with doxorubicin and docosahexaenoic acid as a theranostic agent: Evaluation of biodistribution and antitumor activity in experimental model.Mol. Imaging Biol.201820343744710.1007/s11307‑017‑1133‑3 29043471
    [Google Scholar]
  107. FernandesR.S. SilvaJ.O. SeabraH.A. α- Tocopherol succinate loaded nano-structed lipid carriers improves antitumor activity of doxorubicin in breast cancer models in vivo.Biomed. Pharmacother.2018103April1348135410.1016/j.biopha.2018.04.139 29864917
    [Google Scholar]
  108. LiW. FuJ. DingY. Low density lipoprotein-inspired nanostructured lipid nanoparticles containing pro-doxorubicin to enhance tumor-targeted therapeutic efficiency.Acta Biomater.20199645646710.1016/j.actbio.2019.06.051 31260821
    [Google Scholar]
  109. LagesE.B. FernandesR.S. SilvaJ.O. Co-delivery of doxorubicin, docosahexaenoic acid, and α-tocopherol succinate by nanostructured lipid carriers has a synergistic effect to enhance antitumor activity and reduce toxicity.Biomed. Pharmacother.2020132October11087610.1016/j.biopha.2020.110876 33113428
    [Google Scholar]
  110. DengC. JiaM. WeiG. Inducing optimal antitumor immune response through Coadministering iRGD with Pirarubicin loaded nanostructured lipid carriers for breast cancer therapy.Mol. Pharm.201714129630910.1021/acs.molpharmaceut.6b00932 27936775
    [Google Scholar]
  111. DiH. WuH. GaoY. LiW. ZouD. DongC. Doxorubicin- and cisplatin-loaded nanostructured lipid carriers for breast cancer combination chemotherapy.Drug Dev. Ind. Pharm.201642122038204310.1080/03639045.2016.1190743 27184819
    [Google Scholar]
  112. LiuQ. LiJ. PuG. ZhangF. LiuH. ZhangY. Co-delivery of baicalein and doxorubicin by hyaluronic acid decorated nanostructured lipid carriers for breast cancer therapy.Drug Deliv.20162341364136810.3109/10717544.2015.1031295 25874959
    [Google Scholar]
  113. BorgesG.S.M. SilvaJ.O. FernandesR.S. Sclareol is a potent enhancer of doxorubicin: Evaluation of the free combination and co-loaded nanostructured lipid carriers against breast cancer.Life Sci.2019232July11667810.1016/j.lfs.2019.116678 31344429
    [Google Scholar]
  114. LiX. JiaX. NiuH. Nanostructured lipid carriers co-delivering lapachone and doxorubicin for overcoming multidrug resistance in breast cancer therapy.Int. J. Nanomedicine2018134107411910.2147/IJN.S163929 30034236
    [Google Scholar]
  115. WangK. ZhangJ. de Sousa JúniorW.T. A xanthene derivative, free or associated to nanoparticles, as a new potential agent for anticancer photodynamic therapy.J. Biomater. Sci. Polym. Ed.202031151977199310.1080/09205063.2020.1788370 32589525
    [Google Scholar]
  116. Oshiro-JuniorJ.A. SatoM.R. BoniF.I. SantosK.L.M. de OliveiraK.T. de FreitasL.M. Phthalocyanine-loaded nanostructured lipid carriers functionalized with folic acid for photodynamic therapy.Mater. Sci. Eng. C Mater Biol Appl202010811046210.1016/j.msec.2019.110462
    [Google Scholar]
  117. LiH. WangK. YangX. Dual-function nanostructured lipid carriers to deliver IR780 for breast cancer treatment: Anti-metastatic and photothermal anti-tumor therapy.Acta Biomater.20175339941310.1016/j.actbio.2017.01.070 28159715
    [Google Scholar]
  118. ZhangQ. ZhaoJ. HuH. Construction and in vitro and in vivo evaluation of folic acid-modified nanostructured lipid carriers loaded with paclitaxel and chlorin e6.Int. J. Pharm.201956911859510.1016/j.ijpharm.2019.118595 31394189
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878313086241031154146
Loading
/content/journals/raddf/10.2174/0126673878313086241031154146
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test