Pharmaceutical Nanotechnology - Volume 11, Issue 3, 2023
Volume 11, Issue 3, 2023
-
-
Phytoconstituents Based Nanomedicines for the Management of Diabetes: A Review
Authors: Shailaja Jadhav and Adhikarao YadavDiabetes mellitus (DM) is a life-threatening multifactorial metabolic syndrome that is still one of the most difficult unsolved health concerns. Different herbal drugs have been proposed to be useful in treating diabetes and its associated complications. Two major obstacles in plant extracts are their limited solubility and bioavailability of lipophilic bioactive components. Applying nanotechnology has opened new avenues to improve solubility, bioavailability, compliance, and efficacy by overcoming the pharmacokinetic and biopharmaceutical obstacles associated with herbal extracts and phytochemicals. Herbal nanomedicines can overcome the drawbacks of conventional therapy of DM, its complications like delayed wound healing, and also decrease the side effects of synthetic drugs. The targeted delivery of herbal nanoparticles employing nano-pumps, nanorobots, smart cells, and nanosized herbal medications is recognized today as one of the most far-reaching discoveries in the therapy of DM. This paper focuses on using nanotechnology and herbal therapies to manage diabetes effectively. The review provides a detailed and up-to-date overview of phytonanoformulations in treating diabetes and its consequences.
-
-
-
Self-micro Emulsifying Drug Delivery via Intestinal Lymphatics: A Lucrative Approach to Drug Targeting
Authors: Darshan P. Ramachandra and Preethi SudheerThe intestinal lymphatics are considered one of the most specialized pathways, which promote the absorption of various agents such as vitamins, lipids, xenobiotics, and lipophilic substances. The intestinal lymphatics have provided various advantages like bypassing first-pass effects, and improved bioavailability. The oral delivery of poor hydrophilic drugs can be improved by employing a lipid-based formulation strategy. Self-micro emulsifying drug delivery systems (SMEDDS) are one of the vivacious strategies based on lipid-based drug delivery that have shown their effects by improving the solubility and bioavailability of the therapeutic agents. This review is an insight into the functions, targets, mechanisms, and carriers involved in intestinal lymphatics. Also, the review illustrates the types, formulation requirements, and mechanism of action of SMEDDS in detail. In addition, it describes the targeting, types, physicochemical properties, biological barriers, and benefits of lymphatic targeting in therapy. Finally, the marketed formulations and future aspects of SMEDDS formulations are addressed.
-
-
-
Chemistry Characterization and Application of Nanocrystals-based Drug Delivery System: Present to Future Perspective
Authors: Manami Dhibar, Santanu Chakraborty, Abhijeet Kundu and Payel LahaWith the development of new technologies, various drugs with higher efficacy have been found, but their therapeutic use is still limited owing to poor water solubility, which leads to poor systemic bioavailability. Currently, about 40% of newly discovered drugs have a solubility issue. It is a major challenge for formulation scientists to overcome this problem and make a robust and effective formulation. One such unique approach is to formulate the drug as nanocrystals which alter the physical characteristics of the drug, resulting in the development of a novel formulation strategy for poorly soluble drugs. Nanocrystals are produced by various techniques such as top-down, bottom-up, or combination methods. Nanocrystals improve the clinical application of problematic drug molecules by decreasing the particle size, enhancing the dissolution rate and reducing the dose requirement, etc. This approach is not only improving the bioavailability of the drug but also facilitates the drug targeting to specific sites due to its feasibility of surface modification and all administration routes. This article deals with the various aspects of nanocrystals including chemistry, production, stabilization, characterization, and application in the field of pharmacy.
-
-
-
Nanostructured Etodolac Carriers in Transdermal Gel: Optimization and Characterization
Authors: Poonam Patil and Atul ShirkhedkarAims: To optimize, formulate, and evaluate a Nanostructured Lipid Carrier (NLC) based transdermal gel of Etodolac (ETD). Objective: To avoid issues of conventional route ETD administration like first pass metabolism, gastric ulceration, hemorrhage, and being a class-II drug with less solubility. A transdermal gel of nanostructured lipid carrier for ETD has been developed. Formulation will execute faster onset of action, increased penetration, permeation with extended release of the drug for a longer duration. Methods: A central composite 32 factorial design is used to plan experiments. NLCs are prepared by the method of melt emulsification and ultrasonication. Compritol 888ATO and Miglyol are used as solid and liquid lipid phases. Surfactant Pluronic F68 showed a significant effect on particle size, entrapment efficiency, and drug release. Particle size characterized using photon correlation spectroscopy and scanning electron microscopy. Cumulative drug release studied using an artificial diffusion cell and a dialysis membrane. A skin permeation study was performed using goat skin at 32°C ± 0.5°C. The efficacy of the NLC gel was verified using a pharmacodynamic study followed by stability study for 3 and 6 months. Results: The optimized batch of ETD NLC found spherical with a 241.3 nm particle size with 0.392 PDI,-29 mV zeta potential. Entrapment efficiency and cumulative drug release were found to be 64.21 ± 1.23% and 70.12 ± 2.10% (after 12 hours), respectively. All batches followed zeroorder drug release kinetics and non-Fickian (Super Case II transport) with 0.1619 mg/cm2/hr transdermal flux. The NLC gel of ETD showed a quick onset and lengthened therapeutic activity until 24 hours compared to the micellar ETD gel. Conclusion: Etodolac NLC batch successfully optimized using central composite design. The relationships between the components of the NLC-total lipid:drug and surfactant-and the outcomes- particle size,%entrapment and% drug release-were better understood by examining several contour plots. The results of the experimental and predicted formulations were found to be in good agreement with slight bias, demonstrating the reliability of the optimization process.
-
-
-
In vitro/In vivo Evaluation of Elastic Nano-lipid Carriers of Aztreonam for Pneumonic Lungs
More LessBackground: The liposomal inhalation of drugs has been extensively researched for the invasion of biofilms and macrophages in the infected lungs. Objective: The present study aimed to explore the in vitro and in vivo effects of elastic nano-lipid vesicles of aztreonam for pulmonary delivery. Methods: Elastic nano lipid vesicles of the drug were successfully prepared with the commonly abundant lung phospholipids (LIPOID S PC-3, LIPOID PC 16:0/16:0), cholesterol, and span 20. Four such formulations were evaluated for their physicochemical properties, in vitro diffusion, and cytotoxicity. The best formulation was subjected to stability, in vivo drug deposition on the pneumonic lungs, and histopathological studies. Results: The characterization of the lipid vesicles in terms of particle size, zeta potential, and surface morphology confirmed the formation of stable nanolipid vesicles of the drug. The presence of surfactant in the lipid vesicles exhibited high bilayer stability, entrapment, and diffusion of the drug. The in vitro diffusion study revealed the biphasic characteristic with an initial burst, followed by sustenance for 8 h. A remarkable drug uptake was observed in the epithelial cell line of CHO Cricetulus griseus in the presence of surfactant. The drug was retained on the pneumonic lungs for 8 h. The histopathological study of lung tissue revealed that surfactant-based lipid vesicles could attenuate lung fibrosis significantly. Conclusion: It can be concluded that elastic nano lipid vesicular system of aztreonam could be a paradigm for targeting and localization of the drug with a long residence time in the lungs.
-
-
-
Biogenic Nanoparticles: Synthesis, Characterization, and Biological Potential of Gold Nanoparticles Synthesized using Lasiosiphon eriocephalus Decne Plant Extract
Introduction: Recent advancements in biomedicine have revolutionized nanomedicine as a therapeutic moderator in the management of both infectious and noninfectious diseases. Purpose: In the current study we demonstrated biosynthesis of gold nanoparticles using aqueous leaf extract of Lasiosiphon eriocephalus as a capping and reducing agent and evaluation of their antioxidant, antibacterial, and anticancer properties. Methods: The biosynthesized LE-AuNPs were characterized by UV-Vis spectrophotometry, SEM, TEM, XRD, FTIR, DLS, and Zeta potential analysis. The antibacterial activity was checked by a minimum inhibitory concentration assay. The anticancer potential of biogenic LE-AuNPs was checked by cytotoxicity and genotoxicity assay against HeLa and HCT-15 cells. Results: The characteristic surface plasmon resonance peak of the colloidal solution at 538 nm by UV-Vis spectrum confirmed the formation of LE-AuNPs in the solution. The SEM, TEM, and XRD revealed 20-60 sized hexagonal and crystalline LE-AuNPs. The LE-AuNPs displayed significant inhibition potential against DPPH and ABTS radicals in vitro. The LE-AuNPs demonstrated significant antibacterial potential. The results of cytotoxicity interpreted that biogenic gold nanoparticles exhibited strong dose and time-dependent cytotoxicity effect against selected cancer cell lines where IC50 of LE-AuNPs required to inhibit the growth of HeLa cells after 24 h and 48 h exposure were 5.65± 0.69 μg/mL and 4.37±0.23 μg/mL respectively and that of HCT- 15 cells was 6.46 ± 0.69 μg/mL and 5.27 ± 0.34 μg/mL, 24h and 48h post-exposure respectively. Conclusions: Findings from this study revealed that gold nanoparticles synthesized using L. eriocephalus, showed remarkable antioxidant, antimicrobial, and extensive cytotoxicity and genotoxicity activities.
-
Most Read This Month
