Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

A recent study on the deployment of nanoparticles in the consumer and healthcare sectors has shown highly serious safety concerns. This is despite the fact that nanoparticles offer a vast array of applications and great promise. According to studies on how nanoparticles interact with neurons, the central nervous system experiences both negative and positive impacts central nervous system. With a maximum concentration of 0.1-1.0 wt.%, nanoparticles can be incorporated into materials to impart antibacterial and antiviral properties. Depending on the host or base materials utilised, this concentration may be transformed into a liquid phase release rate (leaching rate). For instance, nanoparticulate silver (Ag) or copper oxide (CuO)-filled epoxy resin exhibits extremely restricted release of the metal ions (Ag+ or Cu2+) into their surroundings unless they are physically removed or deteriorated. Nanoparticles are able to traverse a variety of barriers, including the blood-brain barrier (BBB) and skin, and are capable of penetrating biological systems and leaking into internal organs. In these circumstances, it is considered that the maximum drug toxicity test limit (10 g/ml), as measured in artificial cerebrospinal solution, is far lower than the concentration or dosage. As this is a fast-increasing industry, as the public exposure to these substances increases, so does their use. Thus, neurologists are inquisitive about how nanoparticles influence human neuronal cells in the central nervous system (CNS) in terms of both their potential benefits and drawbacks. This study will emphasise and address the significance of nanoparticles in human neuronal cells and how they affect the human brain and its activities

Loading

Article metrics loading...

/content/journals/pnt/10.2174/2211738511666230602143628
2024-02-01
2025-09-24
Loading full text...

Full text loading...

References

  1. MalhotraB.D. AliM.A. Nanomaterials in biosensors: Fundamentals and applications.Nanomaterials for Biosensors. MalhotraB.D. AliM.A. Norwich, UKWilliam Andrew Publishing2018174
    [Google Scholar]
  2. SalehT.A. GuptaV.K. Synthesis, classification, and properties of nanomaterials.Nanomaterial and Polymer Membranes. SalehT.A. GuptaV.K. Amsterdam, The NetherlandsElsevier20168313310.1016/B978‑0‑12‑804703‑3.00004‑8
    [Google Scholar]
  3. ZhangC. XieB. ZouY. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional biomaterials for cell fate regulation.Adv. Drug Deliv. Rev.2018132335610.1016/j.addr.2018.06.02029964080
    [Google Scholar]
  4. SudhaP.N. SangeethaK. VijayalakshmiK. BarhoumA. Nano materials history, classification, unique properties, production and market.Emerging Applica tions of Nanoparticles and Architecture Nanostructures. Amster dam. BarhoumA. MakhloufA.S.H. The NetherlandsElsevier201834138410.1016/B978‑0‑323‑51254‑1.00012‑9
    [Google Scholar]
  5. OmraniM.M. AnsariM. KiaieN. Therapeutic effect of stem cells and nano-biomaterials on alzheimer’s disease.Biointerface Res. Appl. Chem.2016618141820
    [Google Scholar]
  6. HusainQ. Nanosupport bound lipases their stability and applica tions.Biointerface Res. Appl. Chem.2017721942216
    [Google Scholar]
  7. HigaA.M. MambriniG.P. HausenM. StrixinoF.T. LeiteF.L. Ag nanoparticle-based nano-immunosensor for anti-glutathione s transferase detection.Biointerface Res. Appl. Chem.2016610531058
    [Google Scholar]
  8. FaisalN. KumarK. Polymer and metal nanocomposites in biomed ical applications.Biointerface Res. Appl. Chem.2017722862294
    [Google Scholar]
  9. EaliasA.M. SaravanakumarM.P. A review on the classification, characterisation, synthesis of nanoparticles and their application.Mater. Sci. Eng.2017263032019
    [Google Scholar]
  10. TawfikA.S. DamolaT.S. IbrahimG.D. MohammedA.A-D. Carbon based nanomaterials for desulfurization: classification, preparation, and evaluation.Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering. TawfikA.S. Hershey, PA, USAIGI Global2016154179
    [Google Scholar]
  11. StrambeanuN. DemetroviciL. DragosD. LunguM. Nanoparticles: Definition, classification and general physical properties.Nanoparticles’ Promises and Risks: Characterization, Manipulation, and Potential Hazards to Humanity and the Environment. LunguM. NeculaeA. BunoiuM. BirisC. New York, NY, USASpringer20153810.1007/978‑3‑319‑11728‑7_1
    [Google Scholar]
  12. McNamaraK. TofailS.A.M. Nanoparticles in biomedical applica tions.Adv. Phys. X201721548810.1080/23746149.2016.1254570
    [Google Scholar]
  13. KhanH.A. SakharkarM.K. NayakA. KishoreU. KhanA. 14—Nanoparticles for biomedical applications: An overview.In: Nara yan R, Ed. Nanobiomaterials.Cambridge, UK: Woodhead Publishing20183578410.1016/B978‑0‑08‑100716‑7.00014‑3
    [Google Scholar]
  14. DongX. Current strategies for brain drug delivery.Theranostics2018861481149310.7150/thno.2125429556336
    [Google Scholar]
  15. OberdörsterG. ElderA. RinderknechtA. Nanoparticles and the brain: Cause for concern?J. Nanosci. Nanotechnol.2009984996500710.1166/jnn.2009.GR0219928180
    [Google Scholar]
  16. BellettatoC.M. ScarpaM. Possible strategies to cross the blood– brain barrier.Ital. J. Pediatr.201844S2Suppl. 213110.1186/s13052‑018‑0563‑030442184
    [Google Scholar]
  17. Hasannejad-AslB. PooresmaeilF. ChoupaniE. Nanoparticles as Powerful Tools for Crossing the Blood-brain Barrier CNS & Neurological Disorders-Drug Targets. Formerly.Curr. Drug Targets CNS Neurol. Disord.2022
    [Google Scholar]
  18. OberdörsterG. SharpZ. AtudoreiV. Translocation of inhaled ultrafine particles to the brain.Inhal. Toxicol.2004166-743744510.1080/0895837049043959715204759
    [Google Scholar]
  19. DukhinS.S. LabibM.E. Convective diffusion of nanoparticles from the epithelial barrier toward regional lymph nodes.Adv. Colloid Interface Sci.2013199-200234310.1016/j.cis.2013.06.00223859221
    [Google Scholar]
  20. TeleanuD. ChircovC. GrumezescuA. TeleanuR. Neurotoxicity of nanomaterials: An up-to-date overview.Nanomaterials2019919610.3390/nano901009630642104
    [Google Scholar]
  21. CoxA. VinciguerraD. ReF. Protein-functionalized nanopar ticles derived from end-functional polymers and polymer prodrugs for crossing the blood-brain barrier.Eur. J. Pharm. Biopharm.2019142142708210.1016/j.ejpb.2019.06.00431176723
    [Google Scholar]
  22. Hasannejad-AslB. PooresmaeilF. ChoupaniE. Nanoparticles as Powerful Tools for Crossing the Blood-brain Barrier.CNS Neurol. Disord. Drug Targets20232211826
    [Google Scholar]
  23. BanikB.L. FattahiP. BrownJ.L. Polymeric nanoparticles: The future of nanomedicine.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20168227129910.1002/wnan.136426314803
    [Google Scholar]
  24. CruchoC.I.C. BarrosM.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods.Mater. Sci. Eng. C20178077178410.1016/j.msec.2017.06.00428866227
    [Google Scholar]
  25. ReynoldsJ.L. MahatoR.I. Nanomedicines for the treatment of CNS diseases.J. Neuroimmune Pharmacol.20171211510.1007/s11481‑017‑9725‑x28150132
    [Google Scholar]
  26. HongF. ZhouY. JiJ. ZhuangJ. ShengL. WangL. Nano-TiO2 inhibits development of the central nervous system and its mecha nism in offspring mice.J. Agric. Food Chem.20186644117671177410.1021/acs.jafc.8b0295230269504
    [Google Scholar]
  27. BoyesW.K. van ThrielC. Neurotoxicology of Nanomaterials.Chem. Res. Toxicol.20203351121114410.1021/acs.chemrestox.0c0005032233399
    [Google Scholar]
  28. Ziemińska E, Stafiej A, Strużyńska L. The role of the glutamatergic NMDA receptor in nanosilver-evoked neurotoxicity in primary cul tures of cerebellar granule cells.Toxicology20143151384810.1016/j.tox.2013.11.00824291493
    [Google Scholar]
  29. LiuZ. RenG. ZhangT. YangZ. Action potential changes associat ed with the inhibitory effects on voltage-gated sodium current of hippocampal CA1 neurons by silver nanoparticles.Toxicology2009264317918410.1016/j.tox.2009.08.00519683029
    [Google Scholar]
  30. LongT.C. TajubaJ. SamaP. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro.Environ. Health Perspect.2007115111631163710.1289/ehp.1021618007996
    [Google Scholar]
  31. HadrupN. LoeschnerK. MortensenA. The similar neurotox ic effects of nanoparticulate and ionic silver in vivo and in vitro.Neurotoxicology201233341642310.1016/j.neuro.2012.04.00822531227
    [Google Scholar]
  32. XuL. DanM. ShaoA. Silver nanoparticles induce tight junc tion disruption and astrocyte neurotoxicity in a rat blood-brain bar rier primary triple coculture model.Int. J. Nanomedicine2015106105611826491287
    [Google Scholar]
  33. FengX. ChenL. GuoW. Graphene oxide induces p62/SQSTM-dependent apoptosis through the impairment of au tophagic flux and lysosomal dysfunction in PC12 cells.Acta Biomater.20188127829210.1016/j.actbio.2018.09.05730273743
    [Google Scholar]
  34. LiuY. LiJ. XuK. Characterization of superparamagnetic iron oxide nanoparticle-induced apoptosis in PC12 cells and mouse hippocampus and striatum.Toxicol. Lett.201829215116110.1016/j.toxlet.2018.04.03329715513
    [Google Scholar]
  35. CocciniT. GrandiS. LonatiD. LocatelliC. De SimoneU. Com parative cellular toxicity of titanium dioxide nanoparticles on hu man astrocyte and neuronal cells after acute and prolonged exposure.Neurotoxicology201548778910.1016/j.neuro.2015.03.00625783503
    [Google Scholar]
  36. OhE. LiuR. NelA. GemillK.B. BilalM. CohenY. MedintzI.L. Meta-analysis of cellular toxicity for cadmium-containing quantum dots.Nat. Nanotechnol.2016May; 115479486
    [Google Scholar]
  37. ZhengX. ZhangC. GuoQ. Dual-functional nanoparticles for precise drug delivery to Alzheimer’s disease lesions: Targeting mechanisms, pharmacodynamics and safety.Int. J. Pharm.2017525123724810.1016/j.ijpharm.2017.04.03328432017
    [Google Scholar]
  38. DengH. WangP. JankovicJ. The genetics of Parkinson disease.Ageing Res. Rev.201842728510.1016/j.arr.2017.12.00729288112
    [Google Scholar]
  39. PanY. NeussS. LeifertA. FischlerM. WenF. SimonU. SchmidG. BrandauW. Jahnen‐Dechent W. Size‐dependent cytotoxicity of gold nanoparticles.Small2007Nov 5; 31119411949
    [Google Scholar]
  40. SridharV. GaudR. BajajA. WairkarS. Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanopar ticles with improved brain delivery in Parkinson’s disease.Nanomedicine20181482609261810.1016/j.nano.2018.08.00430171904
    [Google Scholar]
  41. RajR. WairkarS. SridharV. GaudR. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Develop ment, characterization and in vivo anti-Parkinson activity.Int. J. Biol. Macromol.2018109273510.1016/j.ijbiomac.2017.12.05629247729
    [Google Scholar]
  42. MotylJ. Przykaza Ł Boguszewski PM, Kosson P, Strosznajder JB. Pramipexole and Fingolimod exert neuroprotection in a mouse model of Parkinson’s disease by activation of sphingosine kinase 1 and Akt kinase.Neuropharmacology201813513915010.1016/j.neuropharm.2018.02.02329481916
    [Google Scholar]
  43. HegazyM.A. MakladH.M. SamyD.M. AbdelmonsifD.A. El SabaaB.M. ElnozahyF.Y. Cerium oxide nanoparticles could ameliorate behavioral and neurochemical impairments in 6-hydroxydopamine induced Parkinson’s disease in rats.Neurochem. Int.201710836137110.1016/j.neuint.2017.05.01128527632
    [Google Scholar]
  44. TalaminiL. ViolattoM.B. CaiQ. MonopoliM.P. KantnerK. KrpeticZ. Perez-PottiA. CookmanJ. GarryD. SilveiraC.P. BoselliL. Influence of size and shape on the anatomical distribution of endotoxin-free gold nanoparticles.ACS Nano2017 May 3011655195529
    [Google Scholar]
  45. SaraivaC. PaivaJ. SantosT. FerreiraL. BernardinoL. MicroRNA 124 loaded nanoparticles enhance brain repair in Parkinson’s dis ease.J. Control. Release201623529130510.1016/j.jconrel.2016.06.00527269730
    [Google Scholar]
  46. ZhouZ. LuJ. LiuW.W. Advances in stroke pharmacology.Pharmacol. Ther.2018191234210.1016/j.pharmthera.2018.05.01229807056
    [Google Scholar]
  47. BarthelsD. DasH. Current advances in ischemic stroke research and therapies.Biochim. Biophys. Acta Mol. Basis Dis.202018664165260
    [Google Scholar]
  48. SarmahD. SarafJ. KaurH. Stroke management: An emerg ing role of nanotechnology.Micromachines20178926210.3390/mi809026230400452
    [Google Scholar]
  49. ChenL. GaoX. The application of nanoparticles for neuroprotec tion in acute ischemic stroke.Ther. Deliv.201781091592810.4155/tde‑2017‑002328944741
    [Google Scholar]
  50. HanL. CaiQ. TianD. Targeted drug delivery to ischemic stroke via chlorotoxin-anchored, lexiscan-loaded nanoparticles.Nanomedicine20161271833184210.1016/j.nano.2016.03.00527039220
    [Google Scholar]
  51. WangC. LinG. LuanY. Hif-proly l hydroxylase 2 silencing using sirna delivered by mri-visible nanoparticles improves therapy efficacy of transplanted epcs for ischemic stroke.Biomaterials2019197229243
    [Google Scholar]
  52. YildirimerL. ThanhN.T.K. LoizidouM. SeifalianA.M. Toxicology and clinical potential of nanoparticles.Nano Today20116658560710.1016/j.nantod.2011.10.00123293661
    [Google Scholar]
  53. GatooM.A. NaseemS. ArfatM.Y. Mahmood DarA. QasimK. ZubairS. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations.BioMed Res. Int.201420141810.1155/2014/49842025165707
    [Google Scholar]
  54. ShinS. SongI. UmS. Role of physicochemical properties in nano particle toxicity.Nanomaterials2015531351136510.3390/nano503135128347068
    [Google Scholar]
  55. HuW. PengC. LvM. LiX. ZhangY. ChenN. FanC. HuangQ. Protein corona-mediated mitigation of cytotoxicity of graphene oxide.ACS Nano2011 May 245536933700
    [Google Scholar]
  56. HobsonD.W. GuyR.C. Nanotoxicology.Ency clopedia of Toxicology.3rd ed WexlerP. Oxford, UKAcademic Press201443443610.1016/B978‑0‑12‑386454‑3.01045‑9
    [Google Scholar]
  57. ViswanathB. KimS. Influence of nanotoxicity on human health and environment: The alternative strategies.Rev. Environ. Contam. Toxicol.20172426110427718008
    [Google Scholar]
  58. AiJ. BiazarE. JafarpourM. Nanotoxicology and nanoparticle safety in biomedical designs.Int. J. Nanomedicine201161117112721698080
    [Google Scholar]
  59. AillonK.L. XieY. El-GendyN. BerklandC.J. ForrestM.L. Effects of nanomaterial physicochemical properties on in vivo toxicity.Adv. Drug Deliv. Rev.200961645746610.1016/j.addr.2009.03.01019386275
    [Google Scholar]
  60. ZhangX.Q. XuX. BertrandN. PridgenE. SwamiA. FarokhzadO.C. Interactions of nanomaterials and biological systems: Implica tions to personalized nanomedicine.Adv. Drug Deliv. Rev.201264131363138410.1016/j.addr.2012.08.00522917779
    [Google Scholar]
  61. ShvedovaA. PietroiustiA. KaganV. Nanotoxicology ten years later: Lights and shadows.Toxicol. Appl. Pharmacol.20162991210.1016/j.taap.2016.02.01426908175
    [Google Scholar]
  62. ShangL. NienhausK. NienhausG.U. Engineered nanoparticles interacting with cells: size matters.J. Nanobiotechnology2014121510.1186/1477‑3155‑12‑524491160
    [Google Scholar]
  63. SinghA.K. Introduction to nanoparticles and nanotoxicology.In: Singh AK, Ed. Engineered NanoparticlesBoston, MA, USA: Aca demic Press201611810.1016/B978‑0‑12‑801406‑6.00001‑7
    [Google Scholar]
  64. LiJ. MartinF.L. Current perspective on nanomaterial-induced adverse effects: Neurotoxicity as a case example.Neurotoxicity of Nanomaterials and Nanomedicine. Cam bridge. JiangX. GaoH. MA, USAAcademic Press2017759810.1016/B978‑0‑12‑804598‑5.00004‑0
    [Google Scholar]
  65. GaoH. JiangX. Introduction and overview.Neurotoxicity of Nanomaterials and Nanomedicine. Cam bridge. JiangX. GaoH. MA, USAAcademic Press201710.1016/B978‑0‑12‑804598‑5.02001‑8
    [Google Scholar]
  66. LovisoloD. DionisiM. RuffinattiF.A. DistasiC. Nanoparticles and potential neurotoxicity: Focus on molecular mechanisms.AIMS Mol. Sci.2017511310.3934/molsci.2018.1.1
    [Google Scholar]
  67. JiangX. GaoH. Preface.In: Jiang X, Gao H, Eds.Neurotoxicity of Nanomaterials and Nanomedicine. Cambridge, MA, USA: Aca demic Press201710.1016/B978‑0‑12‑804598‑5.05001‑7
    [Google Scholar]
  68. SongB. ZhangY. LiuJ. FengX. ZhouT. ShaoL. Unraveling the neurotoxicity of titanium dioxide nanoparticles: Farticleocusing on molecular mechanisms.Beilstein J. Nanotechnol.2016764565410.3762/bjnano.7.5727335754
    [Google Scholar]
  69. JiaX. WangS. ZhouL. SunL. The potential liver, brain, and em bryo toxicity of titanium dioxide nanoparticles on mice.Nanoscale Res. Lett.201712147810.1186/s11671‑017‑2242‑228774157
    [Google Scholar]
  70. KarmakarA. ZhangQ. ZhangY. Neurotoxicity of nanoscale mate rials.Yao Wu Shi Pin Fen Xi201422114716024673911
    [Google Scholar]
  71. ValdiglesiasV. Fernández-BertólezN. KiliçG. Are iron oxide nanoparticles safe? Current knowledge and future perspec tives.J. Trace Elem. Med. Biol.201638536310.1016/j.jtemb.2016.03.01727056797
    [Google Scholar]
  72. AhmedM.M. HusseinM.M.A. Neurotoxic effects of silver nanopar ticles and the protective role of rutin.Biomed. Pharmacother.20179073173910.1016/j.biopha.2017.04.02628419969
    [Google Scholar]
  73. XuP. Van KirkE.A. ZhanY. MurdochW.J. RadoszM. ShenY. Targeted charge-reversal nanoparticles for nuclear drug delivery.Angew. Chem. Int. Ed.200746264999500210.1002/anie.200605254
    [Google Scholar]
  74. FloraS.J.S. The applications, neurotoxicity, and related mechanism of gold nanoparticles.Neurotoxicity of Nanomaterials and Nanomedicine. JiangX. GaoH. Cambridge, MA, USAAcademic Press201717920310.1016/B978‑0‑12‑804598‑5.00008‑8
    [Google Scholar]
  75. ZhouM. XieL. FangC.J. Implications for blood-brain-barrier permeability, in vitro oxidative stress and neurotoxicity potential induced by mesoporous silica nanoparticles: Effects of surface modification.RSC Advances2016642800280910.1039/C5RA17517H
    [Google Scholar]
  76. YouR. HoY.S. HungC.H.L. Silica nanoparticles induce neu rodegeneration-like changes in behavior, neuropathology, and af fect synapse through MAPK activation.Part. Fibre Toxicol.20181512810.1186/s12989‑018‑0263‑329970116
    [Google Scholar]
  77. DistasiC. RuffinattiF.A. DionisiM. SiO2 nanoparticles mod ulate the electrical activity of neuroendocrine cells without exerting genomic effects.Sci. Rep.201881276010.1038/s41598‑018‑21157‑829426889
    [Google Scholar]
  78. ShiD. MiG. WebsterT.J. The synthesis, application, and related neurotoxicity of carbon nanotubes.Neuro toxicity of Nanomaterials and Nanomedicine. JiangX. GaoH. Cambridge, MA, USAAcademic Press201725928410.1016/B978‑0‑12‑804598‑5.00011‑8
    [Google Scholar]
  79. KulkarniM. MazareA. GongadzeE. Titanium nanostructures for biomedical applications.Nanotechnology201526606200210.1088/0957‑4484/26/6/06200225611515
    [Google Scholar]
  80. WaltersM.N.I. PapadimitriouJ.M. SpectorW.G. Phagocytosis: A review.CRC Crit. Rev. Toxicol.19785437742110.3109/10408447809081012210992
    [Google Scholar]
  81. MossmanB.T. ChurgA. Mechanisms in the pathogenesis of asbes tosis and silicosis.Am. J. Respir. Crit. Care Med.199815751666168010.1164/ajrccm.157.5.97071419603153
    [Google Scholar]
  82. RimalB. GreenbergA.K. RomW.N. Basic pathogenetic mecha nisms in silicosis: Current understanding.Curr. Opin. Pulm. Med.200511216917310.1097/01.mcp.0000152998.11335.2415699791
    [Google Scholar]
  83. VoigtN. Henrich-NoackP. KockentiedtS. HintzW. TomasJ. SabelB.A. Toxicity of polymeric nanoparticles in vivo and in vitro.J. Nanopart. Res.2014166237910.1007/s11051‑014‑2379‑12642098
    [Google Scholar]
  84. NevesA.R. QueirozJ.F. LimaS.A.C. ReisS. Apo E-functionalization of solid lipid nanoparticles enhances brain drug delivery: Uptake mechanism and transport pathways.Bioconjug. Chem.2017284995100410.1021/acs.bioconjchem.6b0070528355061
    [Google Scholar]
  85. MendonçaM.C.P. SoaresE.S. de JesusM.B. Reduced graphene oxide induces transient blood–brain barrier opening: An in vivo study.J. Nanobiotechnology20151317810.1186/s12951‑015‑0143‑z26518450
    [Google Scholar]
  86. LiuX. SuiB. SunJ. Blood-brain barrier dysfunction induced by silica NPs in vitro and in vivo: Involvement of oxidative stress and Rho-kinase/JNK signaling pathways.Biomaterials2017121648210.1016/j.biomaterials.2017.01.00628081460
    [Google Scholar]
  87. KafaH. WangJ.T.W. RubioN. Translocation of LRP1 target ed carbon nanotubes of different diameters across the blood–brain barrier in vitro and in vivo.J. Control. Release201622521722910.1016/j.jconrel.2016.01.03126809004
    [Google Scholar]
  88. LuW. SunQ. WanJ. SheZ. JiangX.G. Cationic albumin conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration.Cancer Res.20066624118781188710.1158/0008‑5472.CAN‑06‑235417178885
    [Google Scholar]
  89. HuangR. KeW. HanL. Brain-targeting mechanisms of lac toferrin-modified DNA-loaded nanoparticles.J. Cereb. Blood Flow Metab.200929121914192310.1038/jcbfm.2009.10419654588
    [Google Scholar]
  90. Sousa de AlmeidaM. SusnikE. DraslerB. Taladriz-BlancoP. Petri-FinkA. Rothen-RutishauserB. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine.Chem. Soc. Rev.20215095397543410.1039/D0CS01127D33666625
    [Google Scholar]
  91. SwansonJ.A. WattsC. Macropinocytosis.Trends Cell Biol.199551142442810.1016/S0962‑8924(00)89101‑114732047
    [Google Scholar]
  92. ReifarthM. HoeppenerS. SchubertU.S. Uptake and intracellular fate of engineered nanoparticles in mammalian cells: Capabilities and limitations of transmission electron microscopy-polymer-based nanoparticles.Adv. Mater.2018309170370410.1002/adma.20170370429325211
    [Google Scholar]
  93. dos SantosT. VarelaJ. LynchI. SalvatiA. DawsonK.A. Effects of transport inhibitors on the cellular uptake of carboxylated polysty rene nanoparticles in different cell lines.PLoS One201169e2443810.1371/journal.pone.002443821949717
    [Google Scholar]
  94. KuhnD.A. VanheckeD. MichenB. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macro phages.Beilstein J. Nanotechnol.201451625163610.3762/bjnano.5.17425383275
    [Google Scholar]
  95. IversenT.G. SkotlandT. SandvigK. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies.Nano Today20116217618510.1016/j.nantod.2011.02.003
    [Google Scholar]
  96. VoigtJ. ChristensenJ. ShastriV.P. Differential uptake of nanopar ticles by endothelial cells through polyelectrolytes with affinity for caveolae.Proc. Natl. Acad. Sci. USA201411182942294710.1073/pnas.132235611124516167
    [Google Scholar]
  97. MayorS. PartonR.G. DonaldsonJ.G. Clathrin-independent path ways of endocytosis.Cold Spring Harb. Perspect. Biol.201466a01675810.1101/cshperspect.a01675824890511
    [Google Scholar]
  98. CzajkaM. SawickiK. SikorskaK. PopekS. KruszewskiM. Kap ka-Skrzypczak L. Toxicity of titanium dioxide nanoparticles in central nervous system.Toxicol. In Vitro20152951042105210.1016/j.tiv.2015.04.00425900359
    [Google Scholar]
  99. RosalesC. Uribe-QuerolE. Phagocytosis: A fundamental process in immunity.BioMed Res. Int.2017201711810.1155/2017/904285128691037
    [Google Scholar]
  100. SimkóM. MattssonM.O. Risks from accidental exposures to engi neered nanoparticles and neurological health effects: A critical re view.Part. Fibre Toxicol.2010714210.1186/1743‑8977‑7‑4221176150
    [Google Scholar]
  101. BaiR. ZhangL. LiuY. Integrated analytical techniques with high sensitivity for studying brain translocation and potential im pairment induced by intranasally instilled Archives of Toxicology 1 3 copper nanoparticles.Toxicol. Lett.2014226708010.1016/j.toxlet.2014.01.04124503010
    [Google Scholar]
  102. LiangH. ChenA. LaiX. Neuroinflammation is induced by tongue-instilled ZnO nanoparticles via the Ca2+-dependent NF-κB and MAPK pathways.Part. Fibre Toxicol.20181513910.1186/s12989‑018‑0274‑030340606
    [Google Scholar]
  103. ChenL. YokelR.A. HennigB. ToborekM. Manufactured alumi num oxide nanoparticles decrease expression of tight junction pro teins in brain vasculature.J. Neuroimmune Pharmacol.20083428629510.1007/s11481‑008‑9131‑518830698
    [Google Scholar]
  104. TakácsS. SzabóA. OszláncziG. Repeated simultaneous cortical electrophysiological and behavioral recording in rats ex posed to manganese-containing nanoparticles.Acta Biol. Hung.201263442644010.1556/ABiol.63.2012.4.223134600
    [Google Scholar]
  105. SárköziL. HorváthE. KónyaZ. Subacute intratracheal expo sure of rats to manganese nanoparticles: Behavioral, electrophysio logical, and general toxicological effects.Inhal. Toxicol.200921Suppl. 1839110.1080/0895837090293940619558238
    [Google Scholar]
  106. OszláncziG. VezérT. SárköziL. HorváthE. KónyaZ. PappA. Functional neurotoxicity of Mn-containing nanoparticles in rats.Ecotoxicol. Environ. Saf.20107382004200910.1016/j.ecoenv.2010.09.00220863568
    [Google Scholar]
  107. SonavaneG. TomodaK. MakinoK. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of parti cle size.Colloids Surf. B Biointerfaces200866227428010.1016/j.colsurfb.2008.07.00418722754
    [Google Scholar]
  108. Lasagna-ReevesC. Gonzalez-RomeroD. BarriaM.A. Bioac cumulation and toxicity of gold nanoparticles after repeated admin istration in mice.Biochem. Biophys. Res. Commun.2010393464965510.1016/j.bbrc.2010.02.04620153731
    [Google Scholar]
  109. KakkarV. KaurI.P. Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain.Food Chem. Toxicol.201149112906291310.1016/j.fct.2011.08.00621889563
    [Google Scholar]
  110. KruszewskiM BrzoskaK BrunborgG Toxicity of silver nanomaterials in higher eukaryotes.Advances in molecular toxi cology2011517921810.1016/B978‑0‑444‑53864‑2.00005‑0
    [Google Scholar]
  111. AnL. LiuS. YangZ. ZhangT. Cognitive impairment in rats in duced by nano-CuO and its possible mechanisms.Toxicol. Lett.2012213222022710.1016/j.toxlet.2012.07.00722820425
    [Google Scholar]
  112. LiY. LiJ. YinJ. Systematic influence induced by 3 nm tita nium dioxide following intratracheal instillation of mice.J. Nanosci. Nanotechnol.201010128544854910.1166/jnn.2010.269021121364
    [Google Scholar]
  113. HussainS.M. JavorinaA.K. SchrandA.M. DuhartH.M. AliS.F. SchlagerJ.J. The interaction of manganese nanoparticles with PC 12 cells induces dopamine depletion.Toxicol. Sci.200692245646310.1093/toxsci/kfl02016714391
    [Google Scholar]
  114. LiuZ. LiuS. RenG. ZhangT. YangZ. Nano-CuO inhibited volt age-gated sodium current of hippocampal CA1 neurons via reactive oxygen species but independent from G-proteins pathway.J. Appl. Toxicol.201131543944510.1002/jat.161121218498
    [Google Scholar]
  115. GitlerAD ChesiA GeddieML α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity.Nat. Genet.200941330831510.1038/ng.30019182805
    [Google Scholar]
  116. ZeY. HuR. WangX. Neurotoxicity and gene-expressed profile in brain-injured mice caused by exposure to titanium diox ide nanoparticles.J. Biomed. Mater. Res. A2014102247047810.1002/jbm.a.3470523533084
    [Google Scholar]
  117. MiaoW. ZhuB. XiaoX. Effects of titanium dioxide nanopar ticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae.Aquat. Toxicol.201516111712610.1016/j.aquatox.2015.02.00225703175
    [Google Scholar]
  118. Tin-Tin-Win-ShweYamamoto S, Ahmed S, Kakeyama M, Koba yashi T, Fujimaki H. Brain cytokine and chemokine mRNA ex pression in mice induced by intranasal instillation with ultrafine carbon black.Toxicol. Lett.2006163215316010.1016/j.toxlet.2005.10.00616293374
    [Google Scholar]
  119. KircherM.F. MahmoodU. KingR.S. WeisslederR. JosephsonL. A multimodal nanoparticle for preoperative magnetic resonance im aging and intraoperative optical brain tumor delineation.Cancer Res.200363238122812514678964
    [Google Scholar]
  120. de OliveiraG.M.T. KistL.W. PereiraT.C.B. Transient modula tion of acetylcholinesterase activity caused by exposure to dextran coated iron oxide nanoparticles in brain of adult zebrafish.Comp. Biochem. Physiol. C Toxicol. Pharmacol.20141621778410.1016/j.cbpc.2014.03.01024704546
    [Google Scholar]
  121. FaiolaF JiangG ZhoQ YaoX YinN. Vitamin E attenuates silver nanoparticle-induced effects on body weight and neurotoxici ty in rats.Biochem Bio hys Res Commun201545840510
    [Google Scholar]
  122. DavenportL.L. HsiehH. EppertB.L. Systemic and behavioral effects of intranasal administration of silver nanoparticles.Neurotoxicol. Teratol.201551687610.1016/j.ntt.2015.08.00626340819
    [Google Scholar]
  123. ZhaoX. RenX. ZhuR. LuoZ. RenB. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in zebrafish embryos.Aquat. Toxicol.2016180567010.1016/j.aquatox.2016.09.01327658222
    [Google Scholar]
  124. LiuH. ZhaoW. WangX. Neurotoxicity and brain localiza tion of europium doped Gd2O3 nanotubes in rats after intranasal instillation.J. Rare Earths2017201717
    [Google Scholar]
  125. MajnoG. JorisI. Apoptosis, oncosis, and necrosis. An overview of cell death.Am. J. Pathol.199514613157856735
    [Google Scholar]
  126. DrögeW. Free radicals in the physiological control of cell function.Physiol. Rev.2002821479510.1152/physrev.00018.200111773609
    [Google Scholar]
  127. YinN. LiuQ. LiuJ. Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis cou pled to oxidative stress.Small201399-101831184110.1002/smll.20120273223427069
    [Google Scholar]
  128. LazzariG. VinciguerraD. BalassoA. NicolasV. GoudinN. Garfa-TraoreM. FehérA. DinnyesA. NicolasJ. CouvreurP. MuraS. Light sheet fluorescence microscopy versus confocal microscopy: In quest of a suitable tool to assess drug and nanomedicine penetration into multicellular tumor spheroids.European Journal of Pharmaceutics and Biopharmaceutics.2019 Sep 1142195203
    [Google Scholar]
  129. ChuS. LiX. SunN. HeF. CuiZ. LiY. LiuR. The combination of ultrafine carbon black and lead provokes cytotoxicity and apoptosis in mice lung fibroblasts through oxidative stress-activated mitochondrial pathways.Science of The Total Environment2021 Dec 10799149420
    [Google Scholar]
  130. TeleanuR.I. ChircovC. GrumezescuA.M. TeleanuD.M. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment.Journal of clinical medicine2019Dec 29; 9184
    [Google Scholar]
  131. YangB. MaoX. HongF. MengW. TangY. XiaX. YangS. DengW. HanK. Lead-free direct band gap double-perovskite nanocrystals with bright dual-color emission.Journal of the American Chemical Society.2018Nov 19; 140491700117006
    [Google Scholar]
  132. PfaenderS. MarK.B. MichailidisE. KratzelA. BoysI.N. V’kovskiP. FanW. KellyJ.N. HirtD. EbertN. StalderH. LY6E impairs coronavirus fusion and confers immune control of viral disease.Nature microbiology2020 Nov51113301339
    [Google Scholar]
  133. ChenYL AnalytisJG ChuJH LiuZK MoSK QiXL ZhangHJ LuDH DaiX FangZ ZhangSC Experimental realization of a three-dimensional topological insulator, Bi2Te3.science2009Jul 10;325593717881
    [Google Scholar]
  134. HadrupN. LoeschnerK. BergströmA. WilcksA. GaoX. VogelU. FrandsenH.L. LarsenE.H. LamH.R. MortensenA. Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats.Archives of toxicology.2012 Apr86543551
    [Google Scholar]
  135. ChenZ. YinJ.J. ZhouY.T. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxi city.ACS Nano2012654001401210.1021/nn300291r22533614
    [Google Scholar]
  136. LongT.C. SalehN. TiltonR.D. LowryG.V. VeronesiB. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity.Environ. Sci. Technol.200640144346435210.1021/es060589n16903269
    [Google Scholar]
  137. PhenratT. LongT.C. LowryG.V. VeronesiB. Partial oxidation (“aging”) and surface modification decrease the toxicity of na nosized zerovalent iron.Environ. Sci. Technol.200943119520010.1021/es801955n19209606
    [Google Scholar]
  138. GeppertM. HohnholtM.C. NürnbergerS. DringenR. Ferritin up regulation and transient ROS production in cultured brain astro cytes after loading with iron oxide nanoparticles.Acta Biomater.20128103832383910.1016/j.actbio.2012.06.02922750736
    [Google Scholar]
  139. RenC. HuX. ZhouQ. Graphene oxide quantum dots reduce oxida tive stress and inhibit neurotoxicity in vitro and in vivo through cat alase-like activity and metabolic regulation.Adv. Sci.201855170059510.1002/advs.20170059529876205
    [Google Scholar]
  140. SternS.T. AdiseshaiahP.P. CristR.M. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity.Part. Fibre Toxicol.2012912010.1186/1743‑8977‑9‑2022697169
    [Google Scholar]
  141. YangM. ZhangM. TaharaY. Lysosomal membrane permea bilization: Carbon nanohorn-induced reactive oxygen species gen eration and toxicity by this neglected mechanism.Toxicol. Appl. Pharmacol.2014280111712610.1016/j.taap.2014.07.02225110057
    [Google Scholar]
  142. PongracIM Pavičić I, Milić M, et al. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles.Int. J. Nanomedicine2016111701171527217748
    [Google Scholar]
  143. WuT. TangM. The inflammatory response to silver and titanium dioxide nanoparticles in the central nervous system.Nanomedicine201813223324910.2217/nnm‑2017‑027029199887
    [Google Scholar]
  144. SunC. YinN. WenR. Silver nanoparticles induced neurotox icity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions.Neurotoxicology20165221022110.1016/j.neuro.2015.09.00726702581
    [Google Scholar]
  145. SkalskaJ. Dąbrowska-Bouta B, Strużyńska L. Oxidative stress in rat brain but not in liver following oral administration of a low dose of nanoparticulate silver.Food Chem. Toxicol.20169730731510.1016/j.fct.2016.09.02627658324
    [Google Scholar]
  146. AttiaH. NounouH. ShalabyM. Zinc oxide nanoparticles induced oxidative DNA damage, inflammation and apoptosis in rat’s brain after oral exposure.Toxics2018622910.3390/toxics602002929861430
    [Google Scholar]
  147. BiranR. MartinD.C. TrescoP.A. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microe lectrode arrays.Exp. Neurol.2005195111512610.1016/j.expneurol.2005.04.02016045910
    [Google Scholar]
  148. GeD. DuQ. RanB. The neurotoxicity induced by engineered nanomaterials.Int. J. Nanomedicine2019144167418610.2147/IJN.S20335231239675
    [Google Scholar]
  149. LiX. ZhengH. ZhangZ. Glia activation induced by peripher al administration of aluminum oxide nanoparticles in rat brains.Nanomedicine20095447347910.1016/j.nano.2009.01.01319523415
    [Google Scholar]
  150. StansleyB. PostJ. HensleyK. A comparative review of cell culture systems for the study of microglial biology in Alzheimer’s disease.J. Neuroinflammation20129111510.1186/1742‑2094‑9‑11522651808
    [Google Scholar]
  151. KnudsenK.B. NorthevedH. EkP.K. Differential toxicological response to positively and negatively charged nanoparticles in the rat brain.Nanotoxicology20148776477423889261
    [Google Scholar]
  152. ChenI.C. HsiaoI.L. LinH.C. WuC.H. ChuangC.Y. HuangY.J. Influ ence of silver and titanium dioxide nanoparticles on in vitro blood brain barrier permeability.Environ. Toxicol. Pharmacol.20164710811810.1016/j.etap.2016.09.00927664952
    [Google Scholar]
  153. XiaT. LiN. NelA.E. Potential health impact of nanoparticles.Annu. Rev. Public Health200930113715010.1146/annurev.publhealth.031308.10015519705557
    [Google Scholar]
  154. LandsiedelR. KappM.D. SchulzM. WienchK. OeschF. Genotox icity investigations on nanomaterials: Methods, preparation and characterization of test material, potential artifacts and limita tions—Many questions, some answers.Mutat. Res. Rev. Mutat. Res.20096812-324125810.1016/j.mrrev.2008.10.00219041420
    [Google Scholar]
  155. FengX. ChenA. ZhangY. WangJ. ShaoL. WeiL. Central nerv ous system toxicity of metallic nanoparticles.Int. J. Nanomedicine2015104321434026170667
    [Google Scholar]
  156. KangY. LiuJ. SongB. Potential links between cytoskeletal disturbances and electroneurophysiological dysfunctions induced in the central nervous system by inorganic nanoparticles.Cell. Physiol. Biochem.20164061487150510.1159/00045320027997890
    [Google Scholar]
  157. RimK.T. SongS.W. KimH.Y. Oxidative DNA damage from nano particle exposure and its application to workers’ health: A literature review.Saf. Health Work20134417718610.1016/j.shaw.2013.07.00624422173
    [Google Scholar]
  158. XieH. MasonM.M. WiseJ.P.Sr Genotoxicity of metal nanoparti cles.Rev. Environ. Health201126425126810.1515/REVEH.2011.033
    [Google Scholar]
  159. HsiaoI.L. ChangC.C. WuC.Y. Indirect effects of TiO2 nano particle on neuron-glial cell interactions.Chem. Biol. Interact.2016254C344410.1016/j.cbi.2016.05.02427216632
    [Google Scholar]
  160. SinghN. ManshianB. JenkinsG.J.S. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials.Biomaterials20093023-243891391410.1016/j.biomaterials.2009.04.00919427031
    [Google Scholar]
  161. SoenenS.J. Rivera-GilP. MontenegroJ.M. ParakW.J. De SmedtS.C. BraeckmansK. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evalua tion.Nano Today20116544646510.1016/j.nantod.2011.08.001
    [Google Scholar]
  162. GangulyP. BreenA. PillaiS.C. Toxicity of nanomaterials: Expo sure, pathways, assessment, and recent advances.ACS Biomater. Sci. Eng.2018472237227510.1021/acsbiomaterials.8b0006833435097
    [Google Scholar]
  163. Márquez-RamírezS.G. Delgado-BuenrostroN.L. ChirinoY.I. Iglesi as GG, López-Marure R. Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells.Toxicology20123022-314615610.1016/j.tox.2012.09.00523044362
    [Google Scholar]
  164. PeynshaertK. ManshianB.B. JorisF. Exploiting intrinsic nanoparticle toxicity: The pros and cons of nanoparticle-induced autophagy in biomedical research.Chem. Rev.2014114157581760910.1021/cr400372p24927160
    [Google Scholar]
/content/journals/pnt/10.2174/2211738511666230602143628
Loading
/content/journals/pnt/10.2174/2211738511666230602143628
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test