Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

In this study, arsenic nanoparticles containing folic acid (FA@As NPs) were synthesized by microwave irradiating a mixture of AsO and sodium borohydride solution in the presence of folic acid.

The physicochemical characteristics of the prepared NPs were studied by UV–visible spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. Antioxidant activities, hemocompatibility, and cytotoxic effects of the prepared NPs were then evaluated. The attained results showed that the hexagonal FA@As NPs have a size range between 12.8 nm and 19.5 nm.

The DPPH scavenging activity of FA@As NPs was found to be significantly greater than that of As NPs at concentrations ranging from 40 µg/mL to 2560 µg/mL (<0.05). The hemolytic test confirmed that the measured hemolysis percentage (HP) for FA@As NPs and As NPs was 0% at concentrations between 20 to160 µg/mL, and for FA@As NPs, the measured HP was not significantly higher than As NPs at concentrations higher than 320 µg/mL (>0.05).

The necessary concentration for the death of half of the cells (IC) for MDA-MB-231, MCF-7, and HUVEC cells treated (24 h) with FA@As NPs was measured to be 19.1±1.3 µg/mL, 15.4±1.1 µg/mL, and 16.8±1.2 µg/mL, respectively. However, further investigations are necessary to clarify the mechanisms behind the biological activities of FA@As NPs.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/2211738511666230507175710
2024-02-01
2025-09-24
Loading full text...

Full text loading...

References

  1. AsereT.G. StevensC.V. Du LaingG. Use of (modified) natural adsorbents for arsenic remediation: A review.Sci. Total Environ.201967670672010.1016/j.scitotenv.2019.04.237 31054415
    [Google Scholar]
  2. YingchenG. Syntheses, crystal structures and antibacterial activities of arsenic (Ⅲ) and bismuth (Ⅲ) dialkyldithiocarbamate complexes.Chemistry201404
    [Google Scholar]
  3. CharanN. LavanyaN. PraveenB. Antiviral activity of antimony and arsenic oxides.Pharma Chem20124687689
    [Google Scholar]
  4. WangQ.Q. JiangY. NaranmanduraH. Therapeutic strategy of arsenic trioxide in the fight against cancers and other diseases.Metallomics202012332633610.1039/c9mt00308h 32163072
    [Google Scholar]
  5. RajuN.J. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies.Environ. Res.202220311178210.1016/j.envres.2021.111782 34343549
    [Google Scholar]
  6. Vergara-GerónimoC.A. León Del RíoA. Rodríguez-DorantesM. Ostrosky-WegmanP. SalazarA.M. Arsenic-protein interactions as a mechanism of arsenic toxicity.Toxicol. Appl. Pharmacol.202143111573810.1016/j.taap.2021.115738 34619159
    [Google Scholar]
  7. HuX. LiH. IpT.K.Y. Arsenic trioxide targets Hsp60, triggering degradation of p53 and survivin.Chem. Sci.20211232108931090010.1039/D1SC03119H 34476069
    [Google Scholar]
  8. SönksenM. KerlK. BunzenH.J.M.R.R. Current status and future prospects of nanomedicine for arsenic trioxide delivery to solid tumors.Med. Res. Rev.202242137439810.1002/med.21844 34309879
    [Google Scholar]
  9. SiddiqueR. KhanS. BaiQ. LiH. UllahM.W. XueM. Arsenic trioxide-based nanomedicines as a therapeutic combination approach for treating gliomas: A review.Curr. Nanosci.202117340641710.2174/1573413716999201207142810
    [Google Scholar]
  10. LiuC. The osteogenic niche-targeted arsenic nanoparticles prevent colonization of disseminated breast tumor cells in the bone.Acta Pharm. Sin. B2021 35127392
    [Google Scholar]
  11. PengY. ZhaoZ. LiuT. Smart human‐serum‐albumin–As2O3 nanodrug with self‐amplified folate receptor‐targeting ability for chronic myeloid leukemia treatment.Angew. Chem. Int. Ed.20175636108451084910.1002/anie.201701366 28686804
    [Google Scholar]
  12. FerraroG. PratesiA. CirriD. Arsenoplatin-ferritin nanocage: Structure and cytotoxicity.Int. J. Mol. Sci.2021224187410.3390/ijms22041874 33668605
    [Google Scholar]
  13. FuX. LiY. ZhaoJ. Will arsenic trioxide benefit treatment of solid tumor by nano-encapsulation?Mini Rev. Med. Chem.202020323925110.2174/1389557519666191018155426 31760930
    [Google Scholar]
  14. AkhtarA. Xiaoyan WangS. GhaliL. BellC. WenX. Recent advances in arsenic trioxide encapsulated nanoparticles as drug delivery agents to solid cancers.J. Biomed. Res.2017313177188 28808212
    [Google Scholar]
  15. AhnR.W. ChenF. ChenH. A novel nanoparticulate formulation of arsenic trioxide with enhanced therapeutic efficacy in a murine model of breast cancer.Clin. Cancer Res.201016143607361710.1158/1078‑0432.CCR‑10‑0068 20519360
    [Google Scholar]
  16. Ulewicz-MagulskaB. Wesolowski MJPFfHN. Total phenolic contents and antioxidant potential of herbs used for medical and culinary purposes.Plant Foods Hum. Nutr.2019741616710.1007/s11130‑018‑0699‑5
    [Google Scholar]
  17. SubastriA. ArunV. SharmaP. Synthesis and characterisation of arsenic nanoparticles and its interaction with DNA and cytotoxic potential on breast cancer cells.Chem. Biol. Interact.2018295738310.1016/j.cbi.2017.12.025 29277637
    [Google Scholar]
  18. HelmyL.A. Abdel-HalimM. RaghdaH. The other side to the use of active targeting ligands; the case of folic acid in the targeting of breast cancer.Colloids Surf. B Biointerfaces202221111228910.1016/j.colsurfb.2021.112289 34954516
    [Google Scholar]
  19. GovindarasuM. PariA. SalmanS.A. Synthesis, physicochemical characterization and in vitro evaluation of biodegradable PLGA nanoparticles entrapped to folic acid for targeted delivery of kaempferitrin.Biotechnol. Appl. Biochem.20226962387239810.1002/bab.2290 35020231
    [Google Scholar]
  20. NawazF.Z. Kipreos ETJTiE. Kipreos, and metabolism, emerging roles for folate receptor folr1 in signaling and cancer.Trends Endocrinol. Metab.202233315917410.1016/j.tem.2021.12.003
    [Google Scholar]
  21. FathimaE. IlaiyarajaN. AnandT. Enhanced cellular uptake, transport and oral bioavailability of optimized folic acid-loaded chitosan nanoparticles.Int. J. Biol. Macromol.202220859661010.1016/j.ijbiomac.2022.03.042
    [Google Scholar]
  22. YangG. ParkS.J. Conventional and microwave hydrothermal synthesis and application of functional materials: A review.Materials2019127117710.3390/ma12071177 30978917
    [Google Scholar]
  23. Nageswara RaoB. SatyanarayanaN. Review—development of inorganic nanostructures by microwave synthesis technique.ECS J. Solid State Sci. Technol.2021101010300310.1149/2162‑8777/ac255d
    [Google Scholar]
  24. BandiR. AlleM. ParkC.W. Rapid synchronous synthesis of Ag nanoparticles and Ag nanoparticles/holocellulose nanofibrils: Hg(II) detection and dye discoloration.Carbohydr. Polym.202024011635610.1016/j.carbpol.2020.116356 32475600
    [Google Scholar]
  25. AmeriA. ShakibaieM. RahimiH.R. Rapid and facile microwave-assisted synthesis of palladium nanoparticles and evaluation of their antioxidant properties and cytotoxic effects against fibroblast-like (HSkMC) and human lung carcinoma (A549) Cell lines.Biol. Trace Elem. Res.2020197113214010.1007/s12011‑019‑01984‑0 31782064
    [Google Scholar]
  26. ForootanfarH. Adeli-SardouM. NikkhooM. Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide.J. Trace Elem. Med. Biol.2014281757910.1016/j.jtemb.2013.07.005 24074651
    [Google Scholar]
  27. Múzquiz-RamosE.M. Guerrero-ChávezV. Macías-MartínezB.I. López-BadilloC.M. García-CerdaL.A. Synthesis and characterization of maghemite nanoparticles for hyperthermia applications.Ceram. Int.201541139740210.1016/j.ceramint.2014.08.083
    [Google Scholar]
  28. PalA. SahaS. Kumar MajiS. KunduM. KunduA. Wet-chemical synthesis of spherical arsenic nanoparticles by a simple reduction method and its characterization.Adv. Mater. Lett.20123317718010.5185/amlett.2011.9305
    [Google Scholar]
  29. Durán-ToroV.M. PriceR.E. MaasM. Amorphous arsenic sulfide nanoparticles in a shallow water hydrothermal system.Mar. Chem.2019211253610.1016/j.marchem.2019.03.008
    [Google Scholar]
  30. EdmundsonM.C. HorsfallL. Construction of a modular arsenic-resistance operon in E. coli and the production of arsenic nanoparticles.Front. Bioeng. Biotechnol.2015316010.3389/fbioe.2015.00160 26539432
    [Google Scholar]
  31. Kaňa A, Loula M, Mestek O. Controlled preparation of arsenic nanoparticles.J. Nanopart. Res.2021231123910.1007/s11051‑021‑05356‑5
    [Google Scholar]
  32. PrabhuN. GajendranT. Green synthesis of noble metal of platinum nanoparticles from Ocimum sanctum (Tulsi) Plant-extracts.IOSR J. Biotechnol. Biochem.20173110711210.9790/264X‑0301107112
    [Google Scholar]
  33. GanaieS.U. AbbasiT. AbbasiS.A. Biomimetic synthesis of platinum nanoparticles utilizing a terrestrial weed Antigonon leptopus.Particul. Sci. Technol.201836668168810.1080/02726351.2017.1292336
    [Google Scholar]
  34. AzmanovaM. Pitto-BarryA.J.C. Oxidative stress in cancer therapy: Friend or enemy?ChemBioChem20222310e20210064110.1002/cbic.202100641 35015324
    [Google Scholar]
  35. Gliszczyńska-Świgło AJFC. Folates as antioxidants.Food Chem.2007101414801483
    [Google Scholar]
  36. El-BoradyO.M. El-Sayed AFJJoMR. Synthesis, morphological, spectral and thermal studies for folic acid conjugated ZnO nanoparticles: potency for multi-functional bio-nanocomposite as antimicrobial, antioxidant and photocatalytic agent.J. Mater. Res. Technol.20209219051917
    [Google Scholar]
  37. SalariZ. AmeriA. ForootanfarH. Microwave-assisted biosynthesis of zinc nanoparticles and their cytotoxic and antioxidant activity.J. Trace Elem. Med. Biol.20173911612310.1016/j.jtemb.2016.09.001 27908402
    [Google Scholar]
  38. DobrovolskaiaM.A. ClogstonJ.D. NeunB.W. HallJ.B. PatriA.K. McNeilS.E. Method for analysis of nanoparticle hemolytic properties in vitro.Nano Lett.2008882180218710.1021/nl0805615 18605701
    [Google Scholar]
  39. SinghN. SahooS.K. KumarR. Hemolysis tendency of anticancer nanoparticles changes with type of blood group antigen: An insight into blood nanoparticle interactions.Mater. Sci. Eng. C202010911064510.1016/j.msec.2020.110645 32228982
    [Google Scholar]
  40. MahmudH. FöllerM. LangF. Arsenic-induced suicidal erythrocyte death.Arch. Toxicol.200983210711310.1007/s00204‑008‑0338‑2 18636241
    [Google Scholar]
  41. WangZ.Y. SongJ. ZhangD.S. Nanosized As2O3/Fe2O3 complexes combined with magnetic fluid hyperthermia selectively target liver cancer cells.World J. Gastroenterol.200915242995300210.3748/wjg.15.2995 19554652
    [Google Scholar]
  42. BalážP. In-vitro testing of arsenic sulfide nanoparticles for the treatment of multiple myeloma cells.NSTI Nanotech20113
    [Google Scholar]
  43. Bujňáková Z, Baláž P, Makreski P, et alArsenic sulfide nanoparticles prepared by milling: properties, free-volume characterization, and anti-cancer effects.J Mater Sci201550419738510.1007/s10853‑014‑8763‑5
    [Google Scholar]
  44. DongX. MaN. LiuM. LiuZ. Effects of As2O3 nanoparticles on cell growth and apoptosis of NB4 cells.Exp. Ther. Med.20151041271127610.3892/etm.2015.2651 26622477
    [Google Scholar]
  45. JadhavV. RayP. SachdevaG. BhattP. Biocompatible arsenic trioxide nanoparticles induce cell cycle arrest by p21WAF1/CIP1 expression via epigenetic remodeling in LNCaP and PC3 cell lines.Life Sci.2016148415210.1016/j.lfs.2016.02.042 26883975
    [Google Scholar]
  46. DasB. RahamanH. GhoshS.K. SenguptaM. Synthesis and characterization of arsenic(III) Oxide nanoparticles as potent inhibitors of MCF 7 cell proliferation through proapoptotic mechanism.Bionanoscience202010242042910.1007/s12668‑020‑00726‑0
    [Google Scholar]
  47. GlienkeW. ChowK.U. BauerN. BergmannL. Down-regulation of wt1 expression in leukemia cell lines as part of apoptotic effect in arsenic treatment using two compounds.Leuk. Lymphoma20064781629163810.1080/10428190600625398 16966277
    [Google Scholar]
  48. WangY. ZhangY. YangL. Arsenic trioxide induces the apoptosis of human breast cancer MCF-7 cells through activation of caspase-3 and inhibition of HERG channels.Exp. Ther. Med.20112348148610.3892/etm.2011.224 22977528
    [Google Scholar]
  49. XiaJ. LiY. YangQ. Arsenic trioxide inhibits cell growth and induces apoptosis through inactivation of notch signaling pathway in breast cancer.Int. J. Mol. Sci.20121389627964110.3390/ijms13089627 22949821
    [Google Scholar]
  50. RalphS.J. Arsenic-based antineoplastic drugs and their mechanisms of action.Met. Based Drugs2008200826014610.1155/2008/260146
    [Google Scholar]
  51. ChakrabortyS. KaushikB. SandipS. Novel arsenic nanoparticles are more effective and less toxic than As (III) to inhibit extracellular and intracellular proliferation of Leishmania donovani.J. Parasitol. Res.2014201418764010.1155/2014/187640 25614827
    [Google Scholar]
  52. RazaMA ZakiaK AmbreenS Toxicity evaluation of arsenic nanoparticles on growth, biochemical, hematological, and physiological parameters of labeo rohita juveniles.Adv Mater Sci Eng2021202110.1155/2021/5185425
    [Google Scholar]
  53. ShahverdiA.R. FaranakS. ElnazF. Characterization of folic acid surface-coated selenium nanoparticles and corresponding in vitro and in vivo effects against breast cancer.Arch. Med. Res.2018491101710.1016/j.arcmed.2018.04.007
    [Google Scholar]
  54. JiangP. HuaJ. RuiyingL. Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells.Appl. Microbiol. Biotechnol.20139731051106210.1007/s00253‑012‑4359‑7
    [Google Scholar]
/content/journals/pnt/10.2174/2211738511666230507175710
Loading
/content/journals/pnt/10.2174/2211738511666230507175710
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test