Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

In both developing and developed nations, pulmonary diseases are the major cause of mortality and disability. There has been a worldwide increase in the incidence of both acute and chronic respiratory illnesses, which poses a serious problem for the healthcare system. Lung cancer seems to be just one form of a parenchymal lung disorder, but there are many others, including chronic obstructive pulmonary disease (COPD), asthma, occupational lung diseases (asbestosis, pneumoconiosis), . Notably, chronic respiratory disorders cannot be cured, and acute abnormalities are notoriously difficult to treat. As a result, it is possible that therapeutic objectives could be achieved using nanotechnology in the form of either improved pharmacological efficacy or reduced toxicity. In addition, the incorporation of various nanostructures permits the enhancement of medication bioavailability, transport, and administration. Medicines and diagnostics based on nanotechnology have progressed significantly toward clinical application for the treatment of lung cancers. In recent years, scientists have shifted their focus towards exploring the potential of nanostructures in the treatment of other relevant respiratory illnesses. Micelles and polymeric nanoparticles are the two most studied nanostructures in a wide range of diseases. This study concludes with a summary of recent and pertinent research in drug delivery systems for the treatment of various pulmonary disorders, as well as trends, limitations, significance, and treatment and diagnostics employing nanotechnology, as well as future studies in this domain.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/2211738511666230525151106
2024-02-01
2025-09-24
Loading full text...

Full text loading...

References

  1. WangH. NaghaviM. AllenC. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015.Lancet2016388100531459154410.1016/S0140‑6736(16)31012‑127733281
    [Google Scholar]
  2. World Health Organization. Global surveillance, prevention and control of chronic respiratory diseases: A comprehensive approach. 2007. Available From: https://digitallibrary.un.org/record/620500?ln=en
  3. van RijtS.H. BeinT. MeinersS. Medical nanoparticles for next generation drug delivery to the lungs.Eur. Respir. J.2014443765410.1183/09031936.00212813
    [Google Scholar]
  4. HirschF.R. ScagliottiG.V. MulshineJ.L. Lung cancer: Current therapies and new targeted treatments.Lancet20173891006629931110.1016/S0140‑6736(16)30958‑827574741
    [Google Scholar]
  5. SidhayeV.K. NishidaK. MartinezF.J. Precision medicine in COPD: Where are we and where do we need to go?Eur. Respir. Rev.20182714918002210.1183/16000617.0022‑201830068688
    [Google Scholar]
  6. LabirisN.R. DolovichM.B. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications.Br. J. Clin. Pharmacol.200356658859910.1046/j.1365‑2125.2003.01892.x14616418
    [Google Scholar]
  7. SungJ.C. PulliamB.L. EdwardsD.A. Nanoparticles for drug delivery to the lungs.Trends Biotechnol.2007251256357010.1016/j.tibtech.2007.09.00517997181
    [Google Scholar]
  8. YanL. YangY. ZhangW. ChenX. Advanced materials and nanotechnology for drug delivery.Adv. Mater.201426315533554010.1002/adma.20130568324449177
    [Google Scholar]
  9. HabibiN. QuevedoD.F. GregoryJ.V. LahannJ. Emerging methods in therapeutics using multifunctional nanoparticles.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2020124e162510.1002/wnan.162532196991
    [Google Scholar]
  10. KuzmovA. MinkoT. Nanotechnology approaches for inhalation treatment of lung diseases.J. Control. Release201521950051810.1016/j.jconrel.2015.07.02426297206
    [Google Scholar]
  11. AndersonC.F. GrimmettM.E. DomalewskiC.J. CuiH. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2020121e158610.1002/wnan.158631602823
    [Google Scholar]
  12. SinghR. LillardJ.W.Jr Nanoparticle-based targeted drug delivery.Exp. Mol. Pathol.200986321522310.1016/j.yexmp.2008.12.00419186176
    [Google Scholar]
  13. MagenheimB. LevyM.Y. BenitaS. A new in vitro technique for the evaluation of drug release profile from colloidal carriers - ultrafiltration technique at low pressure.Int. J. Pharm.1993941-311512310.1016/0378‑5173(93)90015‑8
    [Google Scholar]
  14. MullerM. VehlowD. TorgerB. UrbanB. WoltmannB. HempelU. Adhesive drug delivery systems based on Polyelectrolyte Complex Nanoparticles (PEC NP) for bone healing.Curr. Pharm. Des.201824131341134810.2174/138161282466617121309552329237375
    [Google Scholar]
  15. ThorleyA.J. TetleyT.D. Pulmonary epithelium, cigarette smoke, and chronic obstructive pulmonary disease.Int. J. Chron. Obstruct. Pulmon. Dis.20072440942818268916
    [Google Scholar]
  16. YaoH. RahmanI. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease.Toxicol. Appl. Pharmacol.20112542728510.1016/j.taap.2009.10.02221296096
    [Google Scholar]
  17. Van EedenS.F. SinD.D. Oxidative stress in chronic obstructive pulmonary disease: A lung and systemic process.Can. Respir. J.2013201272910.1155/2013/50913023457671
    [Google Scholar]
  18. PassiM. ShahidS. ChockalingamS. SundarI.K. PackirisamyG. Conventional and nanotechnology based approaches to combat chronic obstructive pulmonary disease: Implications for chronic airway diseases.Int. J. Nanomedicine2020153803382610.2147/IJN.S24251632547029
    [Google Scholar]
  19. PattonJ.S. ByronP.R. Inhaling medicines: Delivering drugs to the body through the lungs.Nat. Rev. Drug Discov.200761677410.1038/nrd215317195033
    [Google Scholar]
  20. BrainJ.D. Inhalation, deposition, and fate of insulin and other therapeutic proteins.Diabetes Technol. Ther.20079s1Suppl. 1S-4S-1510.1089/dia.2007.022817563302
    [Google Scholar]
  21. EdwardsD.A. DunbarC. Bioengineering of therapeutic aerosols.Annu. Rev. Biomed. Eng.2002419310710.1146/annurev.bioeng.4.100101.13231112117752
    [Google Scholar]
  22. MusanteC.J. SchroeterJ.D. RosatiJ.A. CrowderT.M. HickeyA.J. MartonenT.B. Factors affecting the deposition of inhaled porous drug particles.J. Pharm. Sci.20029171590160010.1002/jps.1015212115821
    [Google Scholar]
  23. WadhwaR. AggarwalT. ThapliyalN. Nanotechnology in modern animal biotechnology.Concepts and Applications.Philadelphia, USAElsevier201959
    [Google Scholar]
  24. DinauerN. BalthasarS. WeberC. KreuterJ. LangerK. von BriesenH. Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes.Biomaterials200526295898590610.1016/j.biomaterials.2005.02.03815949555
    [Google Scholar]
  25. HeY. LiangY. HanR. LuW.L. MakJ.C.W. ZhengY. Rational particle design to overcome pulmonary barriers for obstructive lung diseases therapy.J. Control. Release2019314486110.1016/j.jconrel.2019.10.03531644935
    [Google Scholar]
  26. GanesanS. ComstockA.T. SajjanU.S. Barrier function of airway tract epithelium.Tissue Barriers201314e2499710.4161/tisb.2499724665407
    [Google Scholar]
  27. GeorasS.N. RezaeeF. Epithelial barrier function: At the front line of asthma immunology and allergic airway inflammation.J. Allergy Clin. Immunol.2014134350952010.1016/j.jaci.2014.05.04925085341
    [Google Scholar]
  28. MunkholmM. MortensenJ. Mucociliary clearance: Pathophysiological aspects.Clin. Physiol. Funct. Imaging201434317117710.1111/cpf.1208524119105
    [Google Scholar]
  29. PattonJ.S. BrainJ.D. DaviesL.A. The particle has landed--characterizing the fate of inhaled pharmaceuticals.J. Aerosol Med. Pulm. Drug Deliv.201023S2Suppl. 2S-71S-8710.1089/jamp.2010.083621133802
    [Google Scholar]
  30. PatelB GuptaN AhsanF Barriers that inhaled particles encounter. Textbook of Aerosol Medicine. Werne, North Rhine-Westphalia, Germany.: online publication2015707-27
    [Google Scholar]
  31. NewmanS.P. Drug delivery to the lungs: Challenges and opportunities.Ther. Deliv.20178864766110.4155/tde‑2017‑003728730933
    [Google Scholar]
  32. CipollaD. Will pulmonary drug delivery for systemic application ever fulfill its rich promise?Expert Opin. Drug Deliv.201613101337134010.1080/17425247.2016.121846627464271
    [Google Scholar]
  33. ÁlvarezE. GonzálezB. LozanoD. DoadrioA.L. ColillaM. Izquierdo-BarbaI. Nanoantibiotics based in mesoporous silica nanoparticles: New formulations for bacterial infection treatment.Pharmaceutics20211312203310.3390/pharmaceutics1312203334959315
    [Google Scholar]
  34. YangW. PetersJ.I. WilliamsR.O.III Inhaled nanoparticles—A current review.Int. J. Pharm.20083561-223924710.1016/j.ijpharm.2008.02.01118358652
    [Google Scholar]
  35. TodoroffJ. VanbeverR. Fate of nanomedicines in the lungs.Curr. Opin. Colloid Interface Sci.201116324625410.1016/j.cocis.2011.03.001
    [Google Scholar]
  36. ChanJ.G.Y. WongJ. ZhouQ.T. LeungS.S.Y. ChanH.K. Advances in device and formulation technologies for pulmonary drug delivery.AAPS PharmSciTech201415488289710.1208/s12249‑014‑0114‑y24728868
    [Google Scholar]
  37. YooJ.W. DoshiN. MitragotriS. Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery.Adv. Drug Deliv. Rev.20116314-151247125610.1016/j.addr.2011.05.00421605607
    [Google Scholar]
  38. AmoozgarZ. YeoY. Recent advances in stealth coating of nanoparticle drug delivery systems.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20124221923310.1002/wnan.115722231928
    [Google Scholar]
  39. MokuG. GopalsamuthiramV.R. HoyeT.R. PanyamJ. Surface modification of nanoparticles: Methods and applications.Surface Modification of Polymers: Methods and Applications.The Wiley Network201931734610.1002/9783527819249.ch11
    [Google Scholar]
  40. MonopoliM.P. ÅbergC. SalvatiA. DawsonK.A. Biomolecular coronas provide the biological identity of nanosized materials.Nat. Nanotechnol.201271277978610.1038/nnano.2012.20723212421
    [Google Scholar]
  41. WangL. RaoY. LiuX. Administration route governs the therapeutic efficacy, biodistribution and macrophage targeting of anti-inflammatory nanoparticles in the lung.J. Nanobiotechnology20211915610.1186/s12951‑021‑00803‑w33632244
    [Google Scholar]
  42. ThakurA.K. ChellappanD.K. DuaK. MehtaM. SatijaS. SinghI. Patented therapeutic drug delivery strategies for targeting pulmonary diseases.Expert Opin. Ther. Pat.202030537538710.1080/13543776.2020.174154732178542
    [Google Scholar]
  43. JinX. SongL. MaC.C. ZhangY.C. YuS. RETRACTED: Pulmonary route of administration is instrumental in developing therapeutic interventions against respiratory diseases.Saudi Pharm. J.202028121655166510.1016/j.jsps.2020.10.01233424258
    [Google Scholar]
  44. ChandelA. GoyalA.K. GhoshG. RathG. Recent advances in aerosolised drug delivery.Biomed. Pharmacother.201911210860110.1016/j.biopha.2019.10860130780107
    [Google Scholar]
  45. LombardoR. MusumeciT. CarboneC. PignatelloR. Nanotechnologies for intranasal drug delivery: An update of literature.Pharm. Dev. Technol.202126882484510.1080/10837450.2021.195018634218736
    [Google Scholar]
  46. RugeC.A. KirchJ. LehrC.M. Pulmonary drug delivery: From generating aerosols to overcoming biological barriers—therapeutic possibilities and technological challenges.Lancet Respir. Med.20131540241310.1016/S2213‑2600(13)70072‑924429205
    [Google Scholar]
  47. BormP.J.A. KreylingW. Toxicological hazards of inhaled nanoparticles--potential implications for drug delivery.J. Nanosci. Nanotechnol.20044552153110.1166/jnn.2004.08115503438
    [Google Scholar]
  48. MaedaH. WuJ. SawaT. MatsumuraY. HoriK. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review.J. Control. Release2000651-227128410.1016/S0168‑3659(99)00248‑510699287
    [Google Scholar]
  49. HashizumeH. BalukP. MorikawaS. Openings between defective endothelial cells explain tumor vessel leakiness.Am. J. Pathol.200015641363138010.1016/S0002‑9440(10)65006‑710751361
    [Google Scholar]
  50. FasolU. FrostA. BüchertM. Vascular and pharmacokinetic effects of EndoTAG-1 in patients with advanced cancer and liver metastasis.Ann. Oncol.20122341030103610.1093/annonc/mdr30021693769
    [Google Scholar]
  51. HirotaK. HasegawaT. HinataH. Optimum conditions for efficient phagocytosis of rifampicin-loaded PLGA microspheres by alveolar macrophages.J. Control. Release20071191697610.1016/j.jconrel.2007.01.01317335927
    [Google Scholar]
  52. MarelliU.K. RechenmacherF. SobahiT.R.A. Mas-MorunoC. KesslerH. Tumor targeting via integrin ligands.Front. Oncol.2013322210.3389/fonc.2013.0022224010121
    [Google Scholar]
  53. KluzaE. van der SchaftD.W.J. HautvastP.A.I. Synergistic targeting of alphavbeta3 integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis.Nano Lett.2010101525810.1021/nl902659g19968235
    [Google Scholar]
  54. ChenK. XieJ. XuH. Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting.Biomaterials200930366912691910.1016/j.biomaterials.2009.08.04519773081
    [Google Scholar]
  55. MehraN.K. MishraV. JainN.K. Receptor-based targeting of therapeutics.Ther. Deliv.20134336939410.4155/tde.13.623442082
    [Google Scholar]
  56. SudimackJ. LeeR.J. Targeted drug delivery via the folate receptor.Adv. Drug Deliv. Rev.200041214716210.1016/S0169‑409X(99)00062‑910699311
    [Google Scholar]
  57. WiewrodtR. ThomasA.P. CipellettiL. Size-dependent intracellular immunotargeting of therapeutic cargoes into endothelial cells.Blood200299391292210.1182/blood.V99.3.91211806994
    [Google Scholar]
  58. ZhangL. GuF.X. ChanJ.M. WangA.Z. LangerR.S. FarokhzadO.C. Nanoparticles in medicine: Therapeutic applications and developments.Clin. Pharmacol. Ther.200883576176910.1038/sj.clpt.610040017957183
    [Google Scholar]
  59. MüllerR.H. MäderK. GohlaS. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art.Eur. J. Pharm. Biopharm.200050116117710.1016/S0939‑6411(00)00087‑410840199
    [Google Scholar]
  60. de MenezesB.R.C. RodriguesK.F. SchatkoskiV.M. Current advances in drug delivery of nanoparticles for respiratory disease treatment.J. Mater. Chem. B Mater. Biol. Med.2021971745176110.1039/D0TB01783C33508058
    [Google Scholar]
  61. Ibarra-SánchezL.Á. Gámez-MéndezA. Martínez-RuizM. Nanostructures for drug delivery in respiratory diseases therapeutics: Revision of current trends and its comparative analysis.J. Drug Deliv. Sci. Technol.20227010321910.1016/j.jddst.2022.10321935280919
    [Google Scholar]
  62. AndradeF. RafaelD. VideiraM. FerreiraD. SosnikA. SarmentoB. Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases.Adv. Drug Deliv. Rev.20136513-141816182710.1016/j.addr.2013.07.02023932923
    [Google Scholar]
  63. MoralesJ.O. FatheK.R. BrunaughA. Challenges and future prospects for the delivery of biologics: Oral mucosal, pulmonary, and transdermal routes.AAPS J.201719365266810.1208/s12248‑017‑0054‑z28194704
    [Google Scholar]
  64. ChrystynH. Methods to identify drug deposition in the lungs following inhalation.Br. J. Clin. Pharmacol.200151428929910.1046/j.1365‑2125.2001.01304.x11318763
    [Google Scholar]
  65. BorghardtJ.M. KloftC. SharmaA. Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic processes.Can. Respir. J.201820181110.1155/2018/2732017
    [Google Scholar]
  66. KreylingW.G. HirnS. SchlehC. Nanoparticles in the lung.Nat. Biotechnol.201028121275127610.1038/nbt.173521139613
    [Google Scholar]
  67. ChoiH.S. AshitateY. LeeJ.H. Rapid translocation of nanoparticles from the lung airspaces to the body.Nat. Biotechnol.201028121300130310.1038/nbt.169621057497
    [Google Scholar]
  68. PoonW. ZhangY.N. OuyangB. Elimination pathways of nanoparticles.ACS Nano20191355785579810.1021/acsnano.9b0138330990673
    [Google Scholar]
  69. ZhangY.N. PoonW. TavaresA.J. McGilvrayI.D. ChanW.C.W. Nanoparticle–liver interactions: Cellular uptake and hepatobiliary elimination.J. Control. Release201624033234810.1016/j.jconrel.2016.01.02026774224
    [Google Scholar]
  70. GustavssonL BosquillonC GumbletonM Drug transporters in the lung: Expression and potential impact on pulmonary drug disposition.Semantic scholar.201610.1039/9781782623793‑00184
    [Google Scholar]
  71. Mora-HuertasC.E. FessiH. ElaissariA. Polymer-based nanocapsules for drug delivery.Int. J. Pharm.20103851-211314210.1016/j.ijpharm.2009.10.01819825408
    [Google Scholar]
  72. HeC. HuY. YinL. TangC. YinC. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles.Biomaterials201031133657366610.1016/j.biomaterials.2010.01.06520138662
    [Google Scholar]
  73. HuC.M.J. ZhangL. AryalS. CheungC. FangR.H. ZhangL. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform.Proc. Natl. Acad. Sci. USA201110827109801098510.1073/pnas.110663410821690347
    [Google Scholar]
  74. Yunus BashaR. T S SK, Doble M. Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages.Carbohydr. Polym.2019218536210.1016/j.carbpol.2019.04.05631221343
    [Google Scholar]
  75. ShahS. CristopherD. SharmaS. SoniwalaM. ChavdaJ. Inhalable linezolid loaded PLGA nanoparticles for treatment of tuberculosis: Design, development and in vitro evaluation.J. Drug Deliv. Sci. Technol.20206010201310.1016/j.jddst.2020.102013
    [Google Scholar]
  76. Abdel-AzizM.M. ElellaM.H.A. MohamedR.R. Green synthesis of quaternized chitosan/silver nanocomposites for targeting mycobacterium tuberculosis and lung carcinoma cells (A-549).Int. J. Biol. Macromol.202014224425310.1016/j.ijbiomac.2019.09.09631690471
    [Google Scholar]
  77. ChenY. ChenC. ZhangX. Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects.Acta Pharm. Sin. B20201061106112110.1016/j.apsb.2019.10.01132642416
    [Google Scholar]
  78. WangX. ParvathaneniV. ShuklaS.K. Inhalable resveratrol-cyclodextrin complex loaded biodegradable nanoparticles for enhanced efficacy against non-small cell lung cancer.Int. J. Biol. Macromol.202016463865010.1016/j.ijbiomac.2020.07.12432693132
    [Google Scholar]
  79. BuhechaM.D. LansleyA.B. SomavarapuS. PannalaA.S. Development and characterization of PLA nanoparticles for pulmonary drug delivery: Co-encapsulation of theophylline and budesonide, a hydrophilic and lipophilic drug.J. Drug Deliv. Sci. Technol.20195310112810.1016/j.jddst.2019.101128
    [Google Scholar]
  80. LinL.C.W. HuangC.Y. YaoB.Y. Viromimetic STING agonist‐loaded hollow polymeric nanoparticles for safe and effective vaccination against Middle East respiratory syndrome coronavirus.Adv. Funct. Mater.20192928180761610.1002/adfm.20180761632313544
    [Google Scholar]
  81. NanY. Lung carcinoma therapy using epidermal growth factor receptor targeted lipid polymeric nanoparticles co loaded with cisplatin and doxorubicin.Oncol. Rep.20194252087209610.3892/or.2019.732331545462
    [Google Scholar]
  82. JoM.J. LeeY.J. ParkC.W. Evaluation of the physicochemical properties, pharmacokinetics, and in vitro anticancer effects of docetaxel and osthol encapsulated in methoxy poly (ethylene glycol)-b-poly (caprolactone) polymeric micelles.Int. J. Mol. Sci.202022123110.3390/ijms2201023133379376
    [Google Scholar]
  83. JoM.J. JoY.H. LeeY.J. Physicochemical, pharmacokinetic, and toxicity evaluation of methoxy poly (ethylene glycol)-b-poly (d, l-Lactide) polymeric micelles encapsulating alpinumisoflavone extracted from unripe Cudrania tricuspidata fruit.Pharmaceutics201911836610.3390/pharmaceutics1108036631374844
    [Google Scholar]
  84. KedarU. PhutaneP. ShidhayeS. KadamV. Advances in polymeric micelles for drug delivery and tumor targeting.Nanomedicine20106671472910.1016/j.nano.2010.05.00520542144
    [Google Scholar]
  85. MiyataK. ChristieR.J. KataokaK. Polymeric micelles for nano-scale drug delivery.React. Funct. Polym.201171322723410.1016/j.reactfunctpolym.2010.10.009
    [Google Scholar]
  86. Amarnath PraphakarR JeyarajM AhmedM Suresh KumarS RajanM. Silver nanoparticle functionalized CS-g-(CA-MA-PZA) carrier for sustainable anti-tuberculosis drug delivery.Int J Biol Macromol2018118Pt B16273810.1016/j.ijbiomac.2018.07.00829981824
    [Google Scholar]
  87. TripodoG. PerteghellaS. GrisoliP. TrapaniA. TorreM.L. MandracchiaD. Drug delivery of rifampicin by natural micelles based on inulin: Physicochemical properties, antibacterial activity and human macrophages uptake.Eur. J. Pharm. Biopharm.201913625025810.1016/j.ejpb.2019.01.02230685506
    [Google Scholar]
  88. GrotzE. TateosianN.L. SalgueiroJ. Pulmonary delivery of rifampicin-loaded soluplus micelles against Mycobacterium tuberculosis.J. Drug Deliv. Sci. Technol.20195310117010.1016/j.jddst.2019.101170
    [Google Scholar]
  89. PellosiD.S. d’AngeloI. MaiolinoS. In vitro/in vivo investigation on the potential of Pluronic® mixed micelles for pulmonary drug delivery.Eur. J. Pharm. Biopharm.2018130303810.1016/j.ejpb.2018.06.00629890256
    [Google Scholar]
  90. HeW. XiaoW. ZhangX. Pulmonary-affinity paclitaxel polymer micelles in response to biological functions of ambroxol enhance therapeutic effect on lung cancer.Int. J. Nanomedicine20201577979310.2147/IJN.S22957632099365
    [Google Scholar]
  91. RezazadehM. DavatsazZ. EmamiJ. HasanzadehF. Jahanian-NajafabadiA. Preparation and characterization of spray-dried inhalable powders containing polymeric micelles for pulmonary delivery of paclitaxel in lung cancer.J. Pharm. Pharm. Sci.2018211s200s214s10.18433/jpps3004830321135
    [Google Scholar]
  92. PraphakarR.A. MunusamyM.A. RajanM. Development of extended-voyaging anti-oxidant linked amphiphilic polymeric nanomicelles for anti-tuberculosis drug delivery.Int. J. Pharm.20175241-216817710.1016/j.ijpharm.2017.03.08928377319
    [Google Scholar]
  93. KimG. PiaoC. OhJ. LeeM. Self-assembled polymeric micelles for combined delivery of anti-inflammatory gene and drug to the lungs by inhalation.Nanoscale201810188503851410.1039/C8NR00427G29693671
    [Google Scholar]
  94. FerreiraD.S. LopesS.C.A. FrancoM.S. OliveiraM.C. pH-sensitive liposomes for drug delivery in cancer treatment.Ther. Deliv.2013491099112310.4155/tde.13.8024024511
    [Google Scholar]
  95. PinheiroM. LúcioM. LimaJ.L.F.C. ReisS. Liposomes as drug delivery systems for the treatment of TB.Nanomedicine2011681413142810.2217/nnm.11.12222026379
    [Google Scholar]
  96. De LeoV. RuscignoS. TrapaniA. Preparation of drug-loaded small unilamellar liposomes and evaluation of their potential for the treatment of chronic respiratory diseases.Int. J. Pharm.20185451-237838810.1016/j.ijpharm.2018.04.03029678545
    [Google Scholar]
  97. ParkY.I. KwonS.H. LeeG. pH-sensitive multi-drug liposomes targeting folate receptor β for efficient treatment of non-small cell lung cancer.J. Control. Release202133011410.1016/j.jconrel.2020.12.01133321157
    [Google Scholar]
  98. TaiT.T. WuT.J. WuH.D. A strategy to treat COVID‐19 disease with targeted delivery of inhalable liposomal hydroxychloroquine: A preclinical pharmacokinetic study.Clin. Transl. Sci.202114113213610.1111/cts.1292333135382
    [Google Scholar]
  99. SerranoG. KocherginaI. GutiérrezR. Liposomal Lactoferrin and Liposomal Lactoferrin plus Zinc Induces Antiinflammatory and Immunomodulatory Effects by Activation of IFNγ.Int J Res Health Sci202084253110.5530/ijrhs.8.4.1
    [Google Scholar]
  100. ZhangT. ChenY. GeY. HuY. LiM. JinY. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers.Acta Pharm. Sin. B20188344044810.1016/j.apsb.2018.03.00429881683
    [Google Scholar]
  101. ParvathaneniV. KulkarniN.S. ShuklaS.K. Systematic development and optimization of inhalable pirfenidone liposomes for non-small cell lung cancer treatment.Pharmaceutics202012320610.3390/pharmaceutics1203020632121070
    [Google Scholar]
  102. PooladandaV. ThatikondaS. SunnapuO. iRGD conjugated nimbolide liposomes protect against endotoxin induced acute respiratory distress syndrome.Nanomedicine20213310235110.1016/j.nano.2020.10235133418136
    [Google Scholar]
  103. GriffithD.E. EagleG. ThomsonR. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by Mycobacterium avium complex (CONVERT). A prospective, open-label, randomized study.Am. J. Respir. Crit. Care Med.2018198121559156910.1164/rccm.201807‑1318OC30216086
    [Google Scholar]
  104. KesharwaniP. JainK. JainN.K. Dendrimer as nanocarrier for drug delivery.Prog. Polym. Sci.201439226830710.1016/j.progpolymsci.2013.07.005
    [Google Scholar]
  105. KandeelM. Al-TaherA. ParkB.K. KwonH.J. Al-NazawiM. A pilot study of the antiviral activity of anionic and cationic polyamidoamine dendrimers against the Middle East respiratory syndrome coronavirus.J. Med. Virol.20209291665167010.1002/jmv.2592832330296
    [Google Scholar]
  106. BohrA. TsapisN. FogedC. AndreanaI. YangM. FattalE. Treatment of acute lung inflammation by pulmonary delivery of anti-TNF-α siRNA with PAMAM dendrimers in a murine model.Eur. J. Pharm. Biopharm.202015611412010.1016/j.ejpb.2020.08.00932798665
    [Google Scholar]
  107. PaullJ.R. HeeryG.P. BobardtM.D. Virucidal and antiviral activity of astodrimer sodium against SARS-CoV-2 in vitro.Antiviral Res.2021191105089
    [Google Scholar]
  108. ZhongQ. BielskiE.R. RodriguesL.S. BrownM.R. ReinekeJ.J. da RochaS.R.P. Conjugation to poly (amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis.Mol. Pharm.20161372363237510.1021/acs.molpharmaceut.6b0012627253493
    [Google Scholar]
  109. AmreddyN. BabuA. PanneerselvamJ. Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment.Nanomedicine201814237338410.1016/j.nano.2017.11.01029155362
    [Google Scholar]
  110. RestaniR.B. PiresR.F. BaptistaP.V. Nano‐in‐Micro sildenafil dry powder formulations for the treatment of pulmonary arterial hypertension disorders: The synergic effect of POxylated polyurea dendrimers, PLGA, and cholesterol.Part. Part. Syst. Charact.2020376190044710.1002/ppsc.201900447
    [Google Scholar]
  111. BohrA. TsapisN. AndreanaI. Anti-inflammatory effect of anti-TNF-α sirna cationic phosphorus dendrimer nanocomplexes administered intranasally in a murine acute lung injury model.Biomacromolecules20171882379238810.1021/acs.biomac.7b0057228639789
    [Google Scholar]
  112. AroraV. AbourehabM.A.S. ModiG. KesharwaniP. Dendrimers as prospective nanocarrier for targeted delivery against lung cancer.Eur. Polym. J.202218011163510.1016/j.eurpolymj.2022.111635
    [Google Scholar]
  113. LiuQ. GuanJ. QinL. ZhangX. MaoS. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery.Drug Discov. Today202025115015910.1016/j.drudis.2019.09.02331600580
    [Google Scholar]
  114. ColsonY.L. GrinstaffM.W. Biologically responsive polymeric nanoparticles for drug delivery.Adv. Mater.201224283878388610.1002/adma.20120042022988558
    [Google Scholar]
  115. HowellM. WangC. MahmoudA. HellermannG. MohapatraS.S. MohapatraS. Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: Perspectives and challenges for use in lung diseases.Drug Deliv. Transl. Res.20133435236310.1007/s13346‑013‑0132‑423936754
    [Google Scholar]
  116. DengZ. KalinG.T. ShiD. KalinichenkoV.V. Nanoparticle delivery systems with cell-specific targeting for pulmonary diseases.Am. J. Respir. Cell Mol. Biol.202164329230710.1165/rcmb.2020‑0306TR33095997
    [Google Scholar]
  117. YaghiA. DolovichM. Airway epithelial cell cilia and obstructive lung disease.Cells2016544010.3390/cells504004027845721
    [Google Scholar]
  118. AghapourM. RaeeP. MoghaddamS.J. HiemstraP.S. HeijinkI.H. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease: Role of cigarette smoke exposure.Am. J. Respir. Cell Mol. Biol.201858215716910.1165/rcmb.2017‑0200TR28933915
    [Google Scholar]
  119. WhitsettJ.A. KalinT.V. XuY. KalinichenkoV.V. Building and regenerating the lung cell by cell.Physiol. Rev.201999151355410.1152/physrev.00001.201830427276
    [Google Scholar]
  120. HuertasA. GuignabertC. BarberàJ.A. Pulmonary vascular endothelium: The orchestra conductor in respiratory diseases.Eur. Respir. J.2018514170074510.1183/13993003.00745‑201729545281
    [Google Scholar]
  121. YunE.J. LorizioW. SeedorfG. AbmanS.H. VuT.H. VEGF and endothelium-derived retinoic acid regulate lung vascular and alveolar development.Am. J. Physiol. Lung Cell. Mol. Physiol.20163104L287L29810.1152/ajplung.00229.201526566904
    [Google Scholar]
  122. JandlK. MarshL.M. HoffmannJ. Basement membrane remodeling controls endothelial function in idiopathic pulmonary arterial hypertension.Am. J. Respir. Cell Mol. Biol.202063110411710.1165/rcmb.2019‑0303OC32160015
    [Google Scholar]
  123. KanS. HariyadiD.M. GraingeC. KnightD.A. BartlettN.W. LiangM. Airway epithelial-targeted nanoparticles for asthma therapy.Am. J. Physiol. Lung Cell. Mol. Physiol.20203183L500L50910.1152/ajplung.00237.201931913649
    [Google Scholar]
  124. BrennerJ.S. GreinederC. ShuvaevV. MuzykantovV. Endothelial nanomedicine for the treatment of pulmonary disease.Expert Opin. Drug Deliv.201512223926110.1517/17425247.2015.96141825394760
    [Google Scholar]
  125. Da Silva-CandalA. BrownT. KrishnanV. Shape effect in active targeting of nanoparticles to inflamed cerebral endothelium under static and flow conditions.J. Control. Release20193099410510.1016/j.jconrel.2019.07.02631330214
    [Google Scholar]
  126. SorianoJ.B. AbajobirA.A. AbateK.H. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015.Lancet Respir. Med.20175969170610.1016/S2213‑2600(17)30293‑X28822787
    [Google Scholar]
  127. YheeJ. ImJ. NhoR. Advanced therapeutic strategies for chronic lung disease using nanoparticle-based drug delivery.J. Clin. Med.2016598210.3390/jcm509008227657144
    [Google Scholar]
  128. JiangJ. OberdörsterG. BiswasP. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies.J. Nanopart. Res.2009111778910.1007/s11051‑008‑9446‑4
    [Google Scholar]
  129. JanibS.M. MosesA.S. MacKayJ.A. Imaging and drug delivery using theranostic nanoparticles.Adv. Drug Deliv. Rev.201062111052106310.1016/j.addr.2010.08.00420709124
    [Google Scholar]
  130. JacobsC. MüllerR.H. Production and characterization of a budesonide nanosuspension for pulmonary administration.Pharm. Res.200219218919410.1023/A:101427691736311883646
    [Google Scholar]
  131. YadollahiR. VasilevK. SimovicS. Nanosuspension technologies for delivery of poorly soluble drugs.J. Nanomater.2015201511310.1155/2015/216375
    [Google Scholar]
  132. MehtaP. Dry powder inhalers: A focus on advancements in novel drug delivery systems.J. Drug Deliv.2016201611710.1155/2016/829096327867663
    [Google Scholar]
  133. CraparoE. FerraroM. PaceE. BondìM. GiammonaG. CavallaroG. Polyaspartamide-based nanoparticles loaded with fluticasone propionate and the in vitro evaluation towards cigarette smoke effects.Nanomaterials20177822210.3390/nano708022228805713
    [Google Scholar]
  134. GivensB.E. GearyS.M. SalemA.K. Nanoparticle-based CpG-oligonucleotide therapy for treating allergic asthma.Immunotherapy201810759560410.2217/imt‑2017‑014229569508
    [Google Scholar]
  135. DavisS.S. Biomédical applications of nanotechnology — implications for drug targeting and gene therapy.Trends Biotechnol.199715621722410.1016/S0167‑7799(97)01036‑69183864
    [Google Scholar]
  136. VijN. Nano-based theranostics for chronic obstructive lung diseases: Challenges and therapeutic potential.Expert Opin. Drug Deliv.2011891105110910.1517/17425247.2011.59738121711085
    [Google Scholar]
  137. GongM.N. ThompsonB.T. Acute respiratory distress syndrome.Curr. Opin. Crit. Care2016221213710.1097/MCC.000000000000027526645554
    [Google Scholar]
  138. MatthayM.A. ZemansR.L. The acute respiratory distress syndrome: Pathogenesis and treatment.Annu. Rev. Pathol.20116114716310.1146/annurev‑pathol‑011110‑13015820936936
    [Google Scholar]
  139. DownsC. Ion transport and lung fluid balance.InLung epithelial biology in the pathogenesis of pulmonary disease.Amsterdam, NetherlandsElsevier2017213110.1016/B978‑0‑12‑803809‑3.00002‑6
    [Google Scholar]
  140. VadászI. RavivS. SznajderJ.I. Alveolar epithelium and Na,K-ATPase in acute lung injury.Intensive Care Med.20073371243125110.1007/s00134‑007‑0661‑817530222
    [Google Scholar]
  141. ThilleA.W. EstebanA. Fernández-SegovianoP. Chronology of histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: A prospective cohort study of clinical autopsies.Lancet Respir. Med.20131539540110.1016/S2213‑2600(13)70053‑524429204
    [Google Scholar]
  142. GonzalesJ.N. LucasR. VerinA.D. The acute respiratory distress syndrome: Mechanisms and perspective therapeutic approaches.Austin J Vasc Med2015211009
    [Google Scholar]
  143. RosenbloomJ. MendozaF.A. JimenezS.A. Strategies for anti-fibrotic therapies.Biochim. Biophys. Acta Mol. Basis Dis.2013183271088110310.1016/j.bbadis.2012.12.007
    [Google Scholar]
  144. MiddletonE.A. WeyrichA.S. ZimmermanG.A. Platelets in pulmonary immune responses and inflammatory lung diseases.Physiol. Rev.20169641211125910.1152/physrev.00038.201527489307
    [Google Scholar]
  145. RoccoP.R. Dos SantosC. PelosiP. Lung parenchyma remodeling in acute respiratory distress syndrome.Minerva Anestesiol.2009751273074019940826
    [Google Scholar]
  146. MatthayM.A. Resolution of pulmonary edema. Thirty years of progress.Am. J. Respir. Crit. Care Med.2014189111301130810.1164/rccm.201403‑0535OE24881936
    [Google Scholar]
  147. MantovaniA. CassatellaM.A. CostantiniC. JaillonS. Neutrophils in the activation and regulation of innate and adaptive immunity.Nat. Rev. Immunol.201111851953110.1038/nri302421785456
    [Google Scholar]
  148. ImaiY. KubaK. NeelyG.G. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury.Cell2008133223524910.1016/j.cell.2008.02.04318423196
    [Google Scholar]
  149. HuppertL. MatthayM. WareL. Pathogenesis of acute respiratory distress syndrome.Semin. Respir. Crit. Care Med.2019401313910.1055/s‑0039‑1683996
    [Google Scholar]
  150. DollT.A.P.F. DeyR. BurkhardP. Design and optimization of peptide nanoparticles.J. Nanobiotechnology20151317310.1186/s12951‑015‑0119‑z26498651
    [Google Scholar]
  151. TarvirdipourS. SchoenenbergerC.A. BenensonY. PalivanC.G. A self-assembling amphiphilic peptide nanoparticle for the efficient entrapment of DNA cargoes up to 100 nucleotides in length.Soft Matter20201661678169110.1039/C9SM01990A31967171
    [Google Scholar]
  152. PisonU. WelteT. GiersigM. GronebergD.A. Nanomedicine for respiratory diseases.Eur. J. Pharmacol.20065331-334135010.1016/j.ejphar.2005.12.06816434033
    [Google Scholar]
  153. SadikotR.T. RubinsteinI. Long-acting, multi-targeted nanomedicine: Addressing unmet medical need in acute lung injury.J. Biomed. Nanotechnol.20095661461910.1166/jbn.2009.107820201223
    [Google Scholar]
  154. MansourH. Haemosu, Wu X. Nanomedicine in pulmonary delivery.Int. J. Nanomedicine2009429931910.2147/IJN.S493720054434
    [Google Scholar]
  155. SadikotR.T. Peptide nanomedicines for treatment of acute lung injury.Methods Enzymol.201250831532410.1016/B978‑0‑12‑391860‑4.00016‑122449933
    [Google Scholar]
  156. SadikotR.T. KolanjiyilA.V. KleinstreuerC. RubinsteinI. Nanomedicine for treatment of acute lung injury and acute respiratory distress syndrome.Biomed. Hub20172211210.1159/00047708631988911
    [Google Scholar]
  157. PlumleyC. GormanE.M. El-GendyN. BybeeC.R. MunsonE.J. BerklandC. Nifedipine nanoparticle agglomeration as a dry powder aerosol formulation strategy.Int. J. Pharm.20093691-213614310.1016/j.ijpharm.2008.10.01619015016
    [Google Scholar]
  158. SpenceS. GreeneM.K. FayF. Targeting Siglecs with a sialic acid–decorated nanoparticle abrogates inflammation.Sci. Transl. Med.20157303303ra14010.1126/scitranslmed.aab345926333936
    [Google Scholar]
  159. ZhangC.Y. LinW. GaoJ. pH-responsive nanoparticles targeted to lungs for improved therapy of acute lung inflammation/injury.ACS Appl. Mater. Interfaces20191118163801639010.1021/acsami.9b0405130973702
    [Google Scholar]
  160. SadikotR.T. LimS. WangX. ChristmanJ.W. OnyukselH. RubinsteinI. Salutary effects of nanomicellar GLP-1 administered after onset of LPS-induced acute lung inflammation in mice.Am. J. Respir. Crit. Care Med.2019179A5646
    [Google Scholar]
  161. ZhangM. YeL. HuangH. Micelles self-assembled by 3-O-β-d-glucopyranosyl latycodigenin enhance cell membrane permeability, promote antibiotic pulmonary targeting and improve anti-infective efficacy.J. Nanobiotechnology202018114010.1186/s12951‑020‑00699‑y33008413
    [Google Scholar]
  162. MitsopoulosP. OmriA. AlipourM. VermeulenN. SmithM.G. SuntresZ.E. Effectiveness of liposomal-N-acetylcysteine against LPS-induced lung injuries in rodents.Int. J. Pharm.20083631-210611110.1016/j.ijpharm.2008.07.01518694812
    [Google Scholar]
  163. GaoW. WangY. XiongY. Size-dependent anti-inflammatory activity of a peptide-gold nanoparticle hybrid in vitro and in a mouse model of acute lung injury.Acta Biomater.20198520321710.1016/j.actbio.2018.12.04630597258
    [Google Scholar]
  164. ZoulikhaM. XiaoQ. BoafoG.F. SallamM.A. ChenZ. HeW. Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome.Acta Pharm. Sin. B202134401226
    [Google Scholar]
  165. KaviratnaA.S. BanerjeeR. Nanovesicle aerosols as surfactant therapy in lung injury.Nanomedicine20128566567210.1016/j.nano.2011.08.00421889480
    [Google Scholar]
  166. D’AlmeidaAPL Pacheco de OliveiraMT de SouzaET α-bisabolol-loaded lipid-core nanocapsules reduce lipopolysaccharide-induced pulmonary inflammation in mice.Int. J. Nanomedicine201712544794491
    [Google Scholar]
  167. JiangS. LiS. HuJ. Combined delivery of angiopoietin-1 gene and simvastatin mediated by anti-intercellular adhesion molecule-1 antibody-conjugated ternary nanoparticles for acute lung injury therapy.Nanomedicine2019151253610.1016/j.nano.2018.08.00930193816
    [Google Scholar]
  168. DesaiN. Nanoparticle Albumin-Bound Paclitaxel (Abraxane®).Albumin in Medicine.SingaporeSpringer2016
    [Google Scholar]
  169. ChenH.W. MedleyC.D. SefahK. Molecular recognition of small-cell lung cancer cells using aptamers.ChemMedChem200836991100110.1002/cmdc.20080003018338423
    [Google Scholar]
  170. ZhaoZ. XuL. ShiX. TanW. FangX. ShangguanD. Recognition of subtype non-small cell lung cancer by DNA aptamers selected from living cells.Analyst200913491808181410.1039/b904476k19684903
    [Google Scholar]
  171. EmerichD.F. ThanosC.G. Nanotechnology and medicine.Expert Opin. Biol. Ther.20033465566310.1517/14712598.3.4.65512831370
    [Google Scholar]
  172. Pérez-HerreroE. Fernández-MedardeA. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.Eur. J. Pharm. Biopharm.201593527910.1016/j.ejpb.2015.03.01825813885
    [Google Scholar]
  173. WheelockC.E. GossV.M. BalgomaD. Application of ’omics technologies to biomarker discovery in inflammatory lung diseases.Eur. Respir. J.201342380282510.1183/09031936.0007881223397306
    [Google Scholar]
  174. AlivertiA. Wearable technology: Role in respiratory health and disease.Breathe2017132e27e3610.1183/20734735.00841728966692
    [Google Scholar]
  175. KimS.K. KimY.H. ParkS. ChoS.W. Organoid engineering with microfluidics and biomaterials for liver, lung disease, and cancer modeling.Acta Biomater.2021132375110.1016/j.actbio.2021.03.00233711526
    [Google Scholar]
/content/journals/pnt/10.2174/2211738511666230525151106
Loading
/content/journals/pnt/10.2174/2211738511666230525151106
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test