Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Exosomes are intrinsic membrane-based vesicles that play a key role in both normal and pathological processes. Since their discovery, exosomes have been investigated as viable drug delivery systems and clinical indicators because of their magnitude and effectiveness in delivering biological components to targeted cells. Exosome characteristics are biocompatible, prefer tumor recruitment, have tunable targeting efficiency, and are stable, making them outstanding and eye-catching medication delivery systems for cancer and other disorders. There is great interest in using cell-released tiny vesicles that activate the immune system in the age of the fast development of cancer immunotherapy. Exosomes, which are cell-derived nanovesicles, have a lot of potential for application in cancer immunotherapy due to their immunogenicity and molecular transfer function. More significantly, exosomes can transfer their cargo to specified cells and so affect the phenotypic and immune-regulation capabilities of those cells. In this article, we summarize exosomes' biogenesis, isolation techniques, drug delivery, applications, and recent clinical updates. The use of exosomes as drug-delivery systems for small compounds, macromolecules, and nucleotides has recently advanced. We have tried to give holistic and exhaustive pieces of information showcasing current progress and clinical updates of exosomes.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/2211738511666230523114311
2024-02-01
2025-09-24
Loading full text...

Full text loading...

References

  1. KalraH. AddaC.G. LiemM. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma.Proteomics201313223354336410.1002/pmic.20130028224115447
    [Google Scholar]
  2. LobbR.J. BeckerM. WenS. Optimized exosome isolation protocol for cell culture supernatant and human plasma.J. Extracell. Vesicles2015412703110.3402/jev.v4.2703126194179
    [Google Scholar]
  3. ZhouM. SarahR.W. ZhaoY. ChenH. SundstromJ.M. Methods for exosome isolation and characterization.Exosomes. EdelsteinL. Academic Press2020233810.1016/B978‑0‑12‑816053‑4.00002‑X
    [Google Scholar]
  4. KalluriR. The biology and function of exosomes in cancer.J. Clin. Invest.201612641208121510.1172/JCI8113527035812
    [Google Scholar]
  5. ThéryC. ZitvogelL. AmigorenaS. Exosomes: Composition, biogenesis and function.Nat. Rev. Immunol.20022856957910.1038/nri85512154376
    [Google Scholar]
  6. AryaniA. DeneckeB. Exosomes as a nanodelivery system: A key to the future of neuromedicine?Mol. Neurobiol.201653281883410.1007/s12035‑014‑9054‑525502465
    [Google Scholar]
  7. van NielG. Porto-CarreiroI. SimoesS. RaposoG. Exosomes: A common pathway for a specialized function.J. Biochem.20061401132110.1093/jb/mvj12816877764
    [Google Scholar]
  8. KowalJ. TkachM. ThéryC. Biogenesis and secretion of exosomes.Curr. Opin. Cell Biol.20142911612510.1016/j.ceb.2014.05.00424959705
    [Google Scholar]
  9. RuivoC.F. AdemB. SilvaM. MeloS.A. The biology of cancer exosomes: Insights and new perspectives.Cancer Res.201777236480648810.1158/0008‑5472.CAN‑17‑099429162616
    [Google Scholar]
  10. AldertonG.K. Metastasis. Exosomes drive premetastatic niche formation.Nat. Rev. Cancer201212744710.1038/nrc3304
    [Google Scholar]
  11. SchubertD. A brief history of adherons: The discovery of brain exosomes.Int. J. Mol. Sci.20202120767310.3390/ijms2120767333081326
    [Google Scholar]
  12. AldertonG.K. Fishing for exosomes.Nat. Rev. Cancer2015158453310.1038/nrc399026205334
    [Google Scholar]
  13. SomasundaramR. HerlynM. Melanoma exosomes: Messengers of metastasis.Nat. Med.201218685385410.1038/nm.277522673991
    [Google Scholar]
  14. Alvarez-ErvitiL. SeowY. YinH. BettsC. LakhalS. WoodM.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes.Nat. Biotechnol.201129434134510.1038/nbt.180721423189
    [Google Scholar]
  15. da CostaV.R. AraldiR.P. VigerelliH. Exosomes in the tumor microenvironment: From biology to clinical applications.Cells20211010261710.3390/cells1010261734685596
    [Google Scholar]
  16. WortzelI. DrorS. KenificC.M. LydenD. Exosome-mediated metastasis: Communication from a distance.Dev. Cell201949334736010.1016/j.devcel.2019.04.01131063754
    [Google Scholar]
  17. MaL. LiY. PengJ. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration.Cell Res.2015251243810.1038/cr.2014.13525342562
    [Google Scholar]
  18. MeehanB. RakJ. Di VizioD. Oncosomes – large and small: what are they, where they came from?J. Extracell. Vesicles2016513310910.3402/jev.v5.3310927680302
    [Google Scholar]
  19. DoyleL.M. WangM.Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis.Cells20198772710.3390/cells8070727
    [Google Scholar]
  20. XiaY. ChenT. ChenG. A nature-inspired colorimetric and fluorescent dual-modal biosensor for exosomes detection.Talanta202021412085110.1016/j.talanta.2020.12085132278412
    [Google Scholar]
  21. MeloS.A. LueckeL.B. KahlertC. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer.Nature2015523755917718210.1038/nature1458126106858
    [Google Scholar]
  22. WolfersJ. LozierA. RaposoG. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming.Nat. Med.20017329730310.1038/8543811231627
    [Google Scholar]
  23. HuX. QiuY. Exosomes reveal the dual nature of radiotherapy in tumor immunology.Cancer Sci.20221131105111210.1111/cas.15314
    [Google Scholar]
  24. HessvikN.P. LlorenteA. Current knowledge on exosome biogenesis and release.Cell. Mol. Life Sci.201875219320810.1007/s00018‑017‑2595‑928733901
    [Google Scholar]
  25. AlenquerM. AmorimM. Exosome biogenesis, regulation, and function in viral infection.Viruses2015795066508310.3390/v709286226393640
    [Google Scholar]
  26. DreyerF. BaurA. Biogenesis and functions of exosomes and extracellular vesicles.Methods Mol. Biol.2016144820121610.1007/978‑1‑4939‑3753‑0_15
    [Google Scholar]
  27. BaiettiM.F. ZhangZ. MortierE. Syndecan–syntenin–ALIX regulates the biogenesis of exosomes.Nat. Cell Biol.201214767768510.1038/ncb250222660413
    [Google Scholar]
  28. JafariR. RahbarghaziR. AhmadiM. HassanpourM. RezaieJ. Hypoxic exosomes orchestrate tumorigenesis: Molecular mechanisms and therapeutic implications.J. Transl. Med.202018147410.1186/s12967‑020‑02662‑933302971
    [Google Scholar]
  29. RivaP. BattagliaC. VenturinM. Emerging role of genetic alterations affecting exosome biology in neurodegenerative diseases.Int. J. Mol. Sci.20192017411310.3390/ijms2017411331450727
    [Google Scholar]
  30. AnakorE. Le GallL. DumonceauxJ. DuddyW.J. DuguezS. Exosomes in ageing and motor neurone disease: Biogenesis, uptake mechanisms, modifications in disease and uses in the development of biomarkers and therapeutics.Cells20211011293010.3390/cells1011293034831153
    [Google Scholar]
  31. LiS. LinZ. JiangX. YuX. Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools.Acta Pharmacol. Sin.201839454255110.1038/aps.2017.17829417947
    [Google Scholar]
  32. GuH. OverstreetA.M.C. YangY. Exosomes biogenesis and potentials in disease diagnosis and drug delivery.Nano Life201444144101710.1142/S1793984414410177
    [Google Scholar]
  33. LiP. KaslanM. LeeS.H. YaoJ. GaoZ. Progress in Exosome Isolation Techniques.Theranostics20177378980410.7150/thno.1813328255367
    [Google Scholar]
  34. BuH. HeD. HeX. WangK. Exosomes: Isolation, analysis, and applications in cancer detection and therapy.ChemBioChem201920445146110.1002/cbic.20180047030371016
    [Google Scholar]
  35. YamashitaT. TakahashiY. NishikawaM. TakakuraY. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation.Eur. J. Pharm. Biopharm.2016981810.1016/j.ejpb.2015.10.01726545617
    [Google Scholar]
  36. LudwigN. WhitesideT.L. ReichertT.E. Challenges in exosome isolation and analysis in health and disease.Int. J. Mol. Sci.20192019468410.3390/ijms2019468431546622
    [Google Scholar]
  37. YangD. ZhangW. ZhangH. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics.Theranostics20201083684370710.7150/thno.4158032206116
    [Google Scholar]
  38. GurunathanS. KangM.H. JeyarajM. QasimM. KimJ.H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes.Cells20198430710.3390/cells804030730987213
    [Google Scholar]
  39. LässerC. EldhM. LötvallJ. Isolation and characterization of RNA-containing exosomes.J. Vis. Exp.201259e303722257828
    [Google Scholar]
  40. ZhuL. SunH.T. WangS. Isolation and characterization of exosomes for cancer research.J. Hematol. Oncol.202013115210.1186/s13045‑020‑00987‑y33168028
    [Google Scholar]
  41. MullerL. HongC.S. StolzD.B. WatkinsS.C. WhitesideT.L. Isolation of biologically-active exosomes from human plasma.J. Immunol. Methods2014411556510.1016/j.jim.2014.06.00724952243
    [Google Scholar]
  42. AlzhraniG.N. AlanaziS.T. AlsharifS.Y. Exosomes: Isolation, characterization, and biomedical applications.Cell Biol. Int.20214591807183110.1002/cbin.1162033913604
    [Google Scholar]
  43. KurianT.K. BanikS. GopalD. ChakrabartiS. MazumderN. Elucidating methods for isolation and quantification of exosomes: A review.Mol. Biotechnol.202163424926610.1007/s12033‑021‑00300‑333492613
    [Google Scholar]
  44. RekkerK. SaareM. RoostA.M. Comparison of serum exosome isolation methods for microRNA profiling.Clin. Biochem.2014471-213513810.1016/j.clinbiochem.2013.10.02024183884
    [Google Scholar]
  45. ZhangM. JinK. GaoL. Methods and technologies for exosome isolation and characterization.Small Methods201829180002110.1002/smtd.201800021
    [Google Scholar]
  46. ShirejiniS.Z. InciF. The Yin and Yang of exosome isolation methods: Conventional practice, microfluidics, and commercial kits.Biotechnol. Adv.20225410781410.1016/j.biotechadv.2021.10781434389465
    [Google Scholar]
  47. ChoS. YangH.C. RheeW.J. Development and comparative analysis of human urine exosome isolation strategies.Process Biochem.20208819720310.1016/j.procbio.2019.09.017
    [Google Scholar]
  48. HouR. LiY. SuiZ. Advances in exosome isolation methods and their applications in proteomic analysis of biological samples.Anal. Bioanal. Chem.2019411215351536110.1007/s00216‑019‑01982‑031267193
    [Google Scholar]
  49. LiB. PanW. LiuC. Homogenous magneto-fluorescent nanosensor for tumor-derived exosome isolation and analysis.ACS Sens.2020572052206010.1021/acssensors.0c0051332594744
    [Google Scholar]
  50. LiM. RaiA.J. Joel DeCastroG. An optimized procedure for exosome isolation and analysis using serum samples: Application to cancer biomarker discovery.Methods201587263010.1016/j.ymeth.2015.03.00925814440
    [Google Scholar]
  51. CoughlanC. BruceK.D. BurgyO. Exosome isolation by ultracentrifugation and precipitation and techniques for downstream analyses.Curr. Protoc. Cell Biol.2020881e11010.1002/cpcb.11032633898
    [Google Scholar]
  52. FangX. DuanY. AdkinsG.B. Highly efficient exosome isolation and protein analysis by an integrated nanomaterial-based platform.Anal. Chem.20189042787279510.1021/acs.analchem.7b0486129381333
    [Google Scholar]
  53. LudwigN. RazzoB.M. YerneniS.S. WhitesideT.L. Optimization of cell culture conditions for exosome isolation using mini-size exclusion chromatography (mini-SEC).Exp. Cell Res.2019378214915710.1016/j.yexcr.2019.03.01430857972
    [Google Scholar]
  54. DewiaHA RSC Advances RSCPublishing.
  55. WendlerF. Bota-RabassedasN. Franch-MarroX. Cancer becomes wasteful: Emerging roles of exosomes † in cell-fate determination.J. Extracell. Vesicles2013212239010.3402/jev.v2i0.2239024223259
    [Google Scholar]
  56. AhnS.H. RyuS.W. Manufacturing therapeutic exosomes: From bench to industry.Mol. Cells2022455284290
    [Google Scholar]
  57. HuangT. HeJ. Characterization of extracellular vesicles by size-exclusion high-performance liquid chromatography (HPLC).Methods Mol. Biol.20171660191199
    [Google Scholar]
  58. BöingA.N. van der PolE. GrootemaatA.E. CoumansF.A.W. SturkA. NieuwlandR. Single-step isolation of extracellular vesicles by size-exclusion chromatography.J. Extracell. Vesicles2014312343010.3402/jev.v3.2343025279113
    [Google Scholar]
  59. NamG.H. ChoiY. KimG.B. KimS. KimS.A. KimI.S. Emerging prospects of exosomes for cancer treatment: From conventional therapy to immunotherapy.Adv. Mater.20203251200244010.1002/adma.20200244033015883
    [Google Scholar]
  60. BusattoS. VilanilamG. TicerT. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid.Cells201871227310.3390/cells712027330558352
    [Google Scholar]
  61. BracewellD.G. FrancisR. SmalesC.M. The future of host cell protein (HCP) identification during process development and manufacturing linked to a risk‐based management for their control.Biotechnol. Bioeng.201511291727173710.1002/bit.2562825998019
    [Google Scholar]
  62. ChitoiuL. DobraniciA. GherghiceanuM. DinescuS. CostacheM. Multi-omics data integration in extracellular vesicle biology—utopia or future reality?Int. J. Mol. Sci.20202122855010.3390/ijms2122855033202771
    [Google Scholar]
  63. SongY. KimY. HaS. The emerging role of exosomes as novel therapeutics: Biology, technologies, clinical applications, and the next.Am. J. Reprod. Immunol.2021852e1332910.1111/aji.1332932846024
    [Google Scholar]
  64. WebberJ. ClaytonA. How pure are your vesicles?J. Extracell. Vesicles2013211986110.3402/jev.v2i0.1986124009896
    [Google Scholar]
  65. BatrakovaE.V. KimM.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery.J. Control. Release201521939640510.1016/j.jconrel.2015.07.03026241750
    [Google Scholar]
  66. TranT.H. MattheolabakisG. AldawsariH. AmijiM. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases.Clin. Immunol.20151601465810.1016/j.clim.2015.03.02125842185
    [Google Scholar]
  67. WangJ. ChenD. HoE.A. Challenges in the development and establishment of exosome-based drug delivery systems.J. Control. Release202132989490610.1016/j.jconrel.2020.10.02033058934
    [Google Scholar]
  68. PengH. JiW. ZhaoR. Exosome: A significant nano-scale drug delivery carrier.J. Mater. Chem. B Mater. Biol. Med.20208347591760810.1039/D0TB01499K32697267
    [Google Scholar]
  69. KooijmansS.A. VaderP. van DommelenS.M. van SolingeW.W. SchiffelersR.M. Exosome mimetics: A novel class of drug delivery systems.Int. J. Nanomedicine201271525154122619510
    [Google Scholar]
  70. DadH.A. GuT.W. ZhuA.Q. HuangL.Q. PengL.H. Plant exosome-like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms.Mol. Ther.2021291133110.1016/j.ymthe.2020.11.03033278566
    [Google Scholar]
  71. XiX-M. XiaS-J. LuR. Drug loading techniques for exosome-based drug delivery systems.Pharmazie2021762616733714281
    [Google Scholar]
  72. ArrighettiN. CorboC. EvangelopoulosM. PastòA. ZucoV. TasciottiE. Exosome-like nanovectors for drug delivery in cancer.Curr. Med. Chem.201926336132614810.2174/092986732566618083115025930182846
    [Google Scholar]
  73. JangS.C. KimO.Y. YoonC.M. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors.ACS Nano2013797698771010.1021/nn402232g24004438
    [Google Scholar]
  74. ZhangL. FanC. HaoW. NSCs migration promoted and drug delivered exosomes‐collagen scaffold via a bio‐specific peptide for one‐step spinal cord injury repair.Adv. Healthc. Mater.2021108200189610.1002/adhm.20200189633522126
    [Google Scholar]
  75. SunD. ZhuangX. ZhangS. Exosomes are endogenous nanoparticles that can deliver biological information between cells.Adv. Drug Deliv. Rev.201365334234710.1016/j.addr.2012.07.00222776312
    [Google Scholar]
  76. StickneyZ. LosaccoJ. McDevittS. ZhangZ. LuB. Development of exosome surface display technology in living human cells.Biochem. Biophys. Res. Commun.20164721535910.1016/j.bbrc.2016.02.05826902116
    [Google Scholar]
  77. OuY-H. ZouS. GohW-J. Cell-derived nanovesicles as exosome-mimetics for drug delivery purposes: Uses and recommendations.Bio-Carrier Vectors.Springer202114717010.1007/978‑1‑0716‑0943‑9_11
    [Google Scholar]
  78. AnushaR. PriyaS. Dietary exosome‐like nanoparticles: An updated review on their pharmacological and drug delivery applications.Mol. Nutr. Food Res.20226614220014210.1002/mnfr.20220014235593481
    [Google Scholar]
  79. GongC. ZhangX. ShiM. Tumor exosomes reprogrammed by low pH are efficient targeting vehicles for smart drug delivery and personalized therapy against their homologous tumor.Adv. Sci.2021810200278710.1002/advs.20200278734026432
    [Google Scholar]
  80. PullanJ.E. ConfeldM.I. OsbornJ.K. KimJ. SarkarK. MallikS. Exosomes as drug carriers for cancer therapy.Mol. Pharm.20191651789179810.1021/acs.molpharmaceut.9b0010430951627
    [Google Scholar]
  81. LiangS. XuH. YeB.C. Membrane-decorated exosomes for combination drug delivery and improved glioma therapy.Langmuir202238129930810.1021/acs.langmuir.1c0250034936368
    [Google Scholar]
  82. KumarD.N. ChaudhuriA. AqilF. Exosomes as emerging drug delivery and diagnostic modality for breast cancer: Recent advances in isolation and application.Cancers2022146143510.3390/cancers1406143535326585
    [Google Scholar]
  83. NakaseI. FutakiS. Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes.Sci. Rep.2015511011210.1038/srep1011226011176
    [Google Scholar]
  84. ZhuQ. LingX. YangY. Embryonic stem cells‐derived exosomes endowed with targeting properties as chemotherapeutics delivery vehicles for glioblastoma therapy.Adv. Sci.201966180189910.1002/advs.20180189930937268
    [Google Scholar]
  85. OhnoS. TakanashiM. SudoK. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells.Mol. Ther.201321118519110.1038/mt.2012.18023032975
    [Google Scholar]
  86. TianY. LiS. SongJ. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy.Biomaterials20143572383239010.1016/j.biomaterials.2013.11.08324345736
    [Google Scholar]
  87. LeeJ. LeeH. GohU. Cellular engineering with membrane fusogenic liposomes to produce functionalized extracellular vesicles.ACS Appl. Mater. Interfaces20168116790679510.1021/acsami.6b0131526954538
    [Google Scholar]
  88. QiH. LiuC. LongL. Blood exosomes endowed with magnetic and targeting properties for cancer therapy.ACS Nano20161033323333310.1021/acsnano.5b0693926938862
    [Google Scholar]
  89. Cancer Sci.2016
    [Google Scholar]
  90. UrbanelliL. BurattaS. SaginiK. FerraraG. LanniM. EmilianiC. Exosome-based strategies for diagnosis and therapy.Recent Patents CNS Drug Discov.2015101102710.2174/157488981066615070212405926133463
    [Google Scholar]
  91. SunY.F. PiJ. XuJ.F. Emerging role of exosomes in tuberculosis: From immunity regulations to vaccine and immunotherapy.Front. Immunol.20211262897310.3389/fimmu.2021.62897333868247
    [Google Scholar]
  92. CastañoC. NovialsA. Exosomes and diabetes.Diabetes Metab. Res. Rev.2019353e310710.1002/dmrr.3107
    [Google Scholar]
  93. AmiriA. BagherifarR. Ansari DezfouliE. KiaieS.H. JafariR. RamezaniR. Exosomes as bio-inspired nanocarriers for RNA delivery: Preparation and applications.J. Transl. Med.202220112510.1186/s12967‑022‑03325‑735287692
    [Google Scholar]
  94. KalluriR. The biology and function of urine exosomes in bladder cancer.J Clin Invest20164236210.1172
    [Google Scholar]
  95. BrintonL.T. SloaneH.S. KesterM. KellyK.A. Formation and role of exosomes in cancer.Cell. Mol. Life Sci.201572465967110.1007/s00018‑014‑1764‑325336151
    [Google Scholar]
  96. MunsonP. ShuklaA. Exosomes: Potential in cancer diagnosis and therapy.Medicines20152431032710.3390/medicines204031027088079
    [Google Scholar]
  97. BarileL. VassalliG. Exosomes: Therapy delivery tools and biomarkers of diseases.Pharmacol. Ther.2017174637810.1016/j.pharmthera.2017.02.02028202367
    [Google Scholar]
  98. SteinbichlerT.B. DudásJ. SkvortsovS. GanswindtU. RiechelmannH. SkvortsovaI.I. Therapy resistance mediated by exosomes.Mol. Cancer20191815810.1186/s12943‑019‑0970‑x30925921
    [Google Scholar]
  99. Kruh-GarciaN.A. WolfeL.M. DobosK.M. Deciphering the role of exosomes in tuberculosis.Tuberculosis2015951263010.1016/j.tube.2014.10.01025496995
    [Google Scholar]
  100. LiY. YinZ. FanJ. ZhangS. YangW. The roles of exosomal miRNAs and lncRNAs in lung diseases.Signal Transduct. Target. Ther.2019414710.1038/s41392‑019‑0080‑731728212
    [Google Scholar]
  101. LeeB.C. KangI. YuK.R. Therapeutic features and updated clinical trials of mesenchymal stem cell (MSC)-derived exosomes.J. Clin. Med.202110471110.3390/jcm1004071133670202
    [Google Scholar]
  102. NavabiH. CrostonD. HobotJ. Preparation of human ovarian cancer ascites-derived exosomes for a clinical trial.Blood Cells Mol. Dis.200535214915210.1016/j.bcmd.2005.06.00816061407
    [Google Scholar]
/content/journals/pnt/10.2174/2211738511666230523114311
Loading
/content/journals/pnt/10.2174/2211738511666230523114311
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test