Skip to content
2000
Volume 13, Issue 5
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Background

HER2-positive breast cancer is an aggressive subtype characterized by the overexpression of the HER2 receptor, a transmembrane glycoprotein critical for tumor progression. Current therapies often face challenges like drug resistance and systemic toxicity, necessitating the development of advanced drug delivery systems.

Objective

This study aimed to fabricate and determine the cytotoxicity of pH-sensitive PLA nanoparticles dual-loaded with docetaxel and each of the small molecule tyrosine kinase inhibitors (STKIs) (tucatinib, neratinib, lapatinib) in HER2-positive breast cancer cells.

Methods

Nanoparticles were synthesized by a dispersion polymerization method using an acid-labile crosslinking agent, PEG and lactide macromonomers. They were characterized for structure (TEM), surface morphology (SEM), particle size, polydispersity index, zeta potential, and drug loading capacity. Cytotoxicity was assessed on SKBR3 and MCF7 breast cancer cell lines, with IC values compared across formulations.

Results

The nanoparticles were spherical with nanoscale sizes and negative zeta potential values. studies demonstrated enhanced antiproliferative effects of the drug-loaded nanoparticles, with synergistic activity observed between docetaxel and the STKIs. The drug concentrations were halved in combination formulations and resulted in better cytotoxicity compared to single-drug treatments, particularly against SKBR3 cells. The IC values were lower in SKBR3 cells than in MCF7 cells, highlighting the role of HER2 expression in the activity of TKIs.

Conclusion

The pH-sensitive PLA nanoparticles effectively co-delivered docetaxel and STKIs and demonstrated enhanced efficacy and reduced drug dosages in HER2-positive breast cancer models. This study provides a foundation for further exploration of nanoparticle-based combination therapies with potential applications in treating other aggressive cancer types.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385373466250219070753
2025-10-01
2025-11-13
Loading full text...

Full text loading...

References

  1. SunY.S. ZhaoZ. YangZ.N. Risk factors and preventions of breast cancer.Int. J. Biol. Sci.201713111387139710.7150/ijbs.21635 29209143
    [Google Scholar]
  2. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  3. NCICommon Cancer Sites - Cancer Stat Facts. SEER.2023Available from: https://seer.cancer.gov/statfacts/html/common.html (Accessed on: July 27, 2023).
  4. BredinP. WalsheJ.M. DenduluriN. Systemic therapy for metastatic HER2-positive breast cancer.Semin. Oncol.202047525926910.1053/j.seminoncol.2020.07.008 32896428
    [Google Scholar]
  5. IshikawaT. IchikawaY. ShimizuD. The role of HER-2 in breast cancer.J. Surg. Sci.20142149 25679012
    [Google Scholar]
  6. MokhtariR.B. HomayouniT.S. BaluchN. Combination therapy in combating cancer.Oncotarget2017823380223804310.18632/oncotarget.16723 28410237
    [Google Scholar]
  7. CostaR.L.B. CzernieckiB.J. Clinical development of immunotherapies for HER2+ breast cancer: A review of HER2-directed monoclonal antibodies and beyond.NPJ Breast Cancer2020611010.1038/s41523‑020‑0153‑3 32195333
    [Google Scholar]
  8. HunterF.W. BarkerH.R. LipertB. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer.Br. J. Cancer2020122560361210.1038/s41416‑019‑0635‑y 31839676
    [Google Scholar]
  9. KumarG. NandakumarK. MutalikS. RaoC.M. Biologicals to direct nanotherapeutics towards HER2-positive breast cancers.Nanomedicine20202710219710.1016/j.nano.2020.102197 32275958
    [Google Scholar]
  10. LarionovA.A. Current therapies for human epidermal growth factor receptor 2-positive metastatic breast cancer patients.Front. Oncol.201888910.3389/fonc.2018.00089 29670855
    [Google Scholar]
  11. ShuM. YanH. XuC. A novel anti-HER2 antibody GB235 reverses Trastuzumab resistance in HER2-expressing tumor cells in vitro and in vivo.Sci. Rep.2020101298610.1038/s41598‑020‑59818‑2 32076029
    [Google Scholar]
  12. JurczykM. KasperczykJ. WrześniokD. BeberokA. JelonekK. Nanoparticles loaded with docetaxel and resveratrol as an advanced tool for cancer therapy.Biomedicines2022105118710.3390/biomedicines10051187 35625921
    [Google Scholar]
  13. SaloustrosE. MavroudisD. GeorgouliasV. Paclitaxel and docetaxel in the treatment of breast cancer.Expert Opin. Pharmacother.20089152603261610.1517/14656566.9.15.2603 18803448
    [Google Scholar]
  14. FarhaN.G. KasiA. Docetaxel. StatPearls.Treasure Island (FL)StatPearls Publishing202216 30725927
    [Google Scholar]
  15. AntonarakisE.S. ArmstrongA.J. Evolving standards in the treatment of docetaxel-refractory castration-resistant prostate cancer.Prost Canc Prosta Dis201114319220510.1038/pcan.2011.23 21577234
    [Google Scholar]
  16. SwainS.M. BaselgaJ. KimS.B. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer.N. Engl. J. Med.2015372872473410.1056/NEJMoa1413513 25693012
    [Google Scholar]
  17. WangJ. XuB. Targeted therapeutic options and future perspectives for HER2-positive breast cancer.Signal Transduct. Target. Ther.2019413410.1038/s41392‑019‑0069‑2 31637013
    [Google Scholar]
  18. KulukianA. LeeP. TaylorJ. Preclinical activity of HER2-selective tyrosine kinase inhibitor tucatinib as a single agent or in combination with trastuzumab or docetaxel in solid tumor models.Mol. Cancer Ther.202019497698710.1158/1535‑7163.MCT‑19‑0873 32241871
    [Google Scholar]
  19. GottesmanM.M. PastanI. AmbudkarS.V. P-glycoprotein and multidrug resistance.Curr. Opin. Genet. Dev.19966561061710.1016/S0959‑437X(96)80091‑8 8939727
    [Google Scholar]
  20. MaloneyS.M. HooverC.A. Morejon-LassoL.V. ProsperiJ.R. Mechanisms of taxane resistance.Cancers20201211332310.3390/cancers12113323 33182737
    [Google Scholar]
  21. OrrG.A. Verdier-PinardP. McDaidH. HorwitzS.B. Mechanisms of Taxol resistance related to microtubules.Oncogene200322477280729510.1038/sj.onc.1206934 14576838
    [Google Scholar]
  22. ConlonN.T. KooijmanJ.J. van GerwenS.J.C. Comparative analysis of drug response and gene profiling of HER2-targeted tyrosine kinase inhibitors.Br. J. Cancer202112471249125910.1038/s41416‑020‑01257‑x 33473169
    [Google Scholar]
  23. EjigahV. MandalaB. AkalaE.O. Nanotechnology in the development of small and large molecule tyrosine kinase inhibitors and immunotherapy for the treatment of HER2-positive breast cancer.J Canc Metast Res202242622 38966076
    [Google Scholar]
  24. ShahM. WedamS. ChengJ. FDA approval summary: Tucatinib for the treatment of patients with advanced or metastatic HER2-positive breast cancer.Clin. Cancer Res.20212751220122610.1158/1078‑0432.CCR‑20‑2701 33055172
    [Google Scholar]
  25. ButtiR. DasS. GunasekaranV.P. YadavA.S. KumarD. KunduG.C. Receptor tyrosine kinases (RTKs) in breast cancer: Signaling, therapeutic implications and challenges.Mol. Cancer20181713410.1186/s12943‑018‑0797‑x 29455658
    [Google Scholar]
  26. TsouH.R. Overbeek-KlumpersE.G. HallettW.A. Optimization of 6,7-disubstituted-4-(arylamino)quinoline-3-carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity.J. Med. Chem.20054841107113110.1021/jm040159c 15715478
    [Google Scholar]
  27. KongA. FeldingerK. Profile of neratinib and its potential in the treatment of breast cancer.Breast Cancer2015714716210.2147/BCTT.S54414 26089701
    [Google Scholar]
  28. RabindranS.K. DiscafaniC.M. RosfjordE.C. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase.Cancer Res.200464113958396510.1158/0008‑5472.CAN‑03‑2868 15173008
    [Google Scholar]
  29. SecombeK.R. BallI.A. ShirrenJ. WignallA.D. KeefeD.M. BowenJ.M. Pathophysiology of neratinib-induced diarrhea in male and female rats: Microbial alterations a potential determinant.Breast Cancer20212819910910.1007/s12282‑020‑01133‑9 32683606
    [Google Scholar]
  30. TaoG. DagherF. GhoseR. Neratinib causes non-recoverable gut injury and reduces intestinal cytochrome P450 3A enzyme in mice.Toxicol. Res. (Camb.)202211118419410.1093/toxres/tfab111 35237423
    [Google Scholar]
  31. TsangR.Y. SadeghiS. FinnR.S. Lapatinib, a dual-targeted small molecule inhibitor of EGFR and HER2, in HER2-amplified breast cancer: From bench to bedside.Clini Med Insig: Therap20113S378310.4137/CMT.S3783
    [Google Scholar]
  32. WangJ. LvF.M. WangD.L. Synergistic antitumor effects on drug-resistant breast cancer of paclitaxel/lapatinib composite nanocrystals.Molecules202025360410.3390/molecules25030604 32019194
    [Google Scholar]
  33. RyanQ. IbrahimA. CohenM.H. FDA drug approval summary: Lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2.Oncologist200813101114111910.1634/theoncologist.2008‑0816 18849320
    [Google Scholar]
  34. Segovia-MendozaM. González-GonzálezM.E. BarreraD. DíazL. García-BecerraR. Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: Preclinical and clinical evidence.Am. J. Cancer Res.20155925312561 26609467
    [Google Scholar]
  35. ChenJ. ZengF. ForresterS.J. EguchiS. ZhangM.Z. HarrisR.C. Expression and function of the epidermal growth factor receptor in physiology and disease.Physiol. Rev.20169631025106910.1152/physrev.00030.2015 33003261
    [Google Scholar]
  36. MaedaS. SakaiK. KajiK. Lapatinib as first-line treatment for muscle-invasive urothelial carcinoma in dogs.Sci. Rep.2022121410.1038/s41598‑021‑04229‑0 35027594
    [Google Scholar]
  37. PowlesT. HuddartR.A. ElliottT. Phase III, double-blind, randomized trial that compared maintenance lapatinib versus placebo after first-line chemotherapy in patients with human epidermal growth factor receptor 1/2-positive metastatic bladder cancer.J. Clin. Oncol.2017351485510.1200/JCO.2015.66.3468 28034079
    [Google Scholar]
  38. BerkoY.A. FunmilolaA.F. AkalaE.O. Fabrication of paclitaxel and 17AAG-loaded poly-ε-caprolactone nanoparticles for breast cancer treatment.J. Pharm. Drug Deliv. Res.2021101196 33681397
    [Google Scholar]
  39. PeyvandP. VaeziZ. SedghiM. DalirN. Ma’maniL. Naderi-ManeshH. Imidazolium-based ionic liquid functionalized mesoporous silica nanoparticles as a promising nano-carrier: Response surface strategy to investigate and optimize loading and release process for Lapatinib delivery.Pharm. Dev. Technol.20202591150116110.1080/10837450.2020.1803909 32746669
    [Google Scholar]
  40. WenJ. YangK. LiuF. LiH. XuY. SunS. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems.Chem. Soc. Rev.201746196024604510.1039/C7CS00219J 28848978
    [Google Scholar]
  41. ChenX. YaoX. WangC. ChenL. ChenX. Mesoporous silica nanoparticles capped with fluorescence-conjugated cyclodextrin for pH-activated controlled drug delivery and imaging.Microp Mesopor Mater2015217217465310.1016/j.micromeso.2015.06.012
    [Google Scholar]
  42. AleanizyF.S. AlqahtaniF.Y. SetóS. Trastuzumab targeted neratinib loaded poly-amidoamine dendrimer nanocapsules for breast cancer therapy.Int. J. Nanomedicine2020155433544310.2147/IJN.S256898 32801698
    [Google Scholar]
  43. ShenY. LiM. LiuT. A dual-functional HER2 aptamer-conjugated, pH-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in HER2-positive breast cancer cells.Int. J. Nanomedicine2019144029404410.2147/IJN.S201688 31213813
    [Google Scholar]
  44. LiL. WangJ. RadfordD.C. KopečekJ. YangJ. Combination treatment with immunogenic and anti-PD-L1 polymer-drug conjugates of advanced tumors in a transgenic MMTV-PyMT mouse model of breast cancer.J. Control. Release202133265265910.1016/j.jconrel.2021.02.011 33607175
    [Google Scholar]
  45. AdesinaS.K. HollyA. Kramer-MarekG. CapalaJ. AkalaE.O. Polylactide-based paclitaxel-loaded nanoparticles fabricated by dispersion polymerization: Characterization, evaluation in cancer cell lines, and preliminary biodistribution studies.J. Pharm. Sci.201410382546255510.1002/jps.24061 24961596
    [Google Scholar]
  46. LingY. WeiK. LuoY. GaoX. ZhongS. Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy.Biomaterials201132297139715010.1016/j.biomaterials.2011.05.089 21726899
    [Google Scholar]
  47. PuriR. AdesinaS. AkalaE. Cellular uptake and cytotoxicity studies of pH-responsive polymeric nanoparticles fabricated by dispersion polymerization.J Nanosci Nanomed201821318 34263267
    [Google Scholar]
  48. PuriR. BerheS. AkalaE. pH-sensitive polymeric nanoparticles fabricated by dispersion polymerization for the delivery of bioactive agents.Pharm. Nanotechnol.201751446610.2174/2211738505666170110102320 28948910
    [Google Scholar]
  49. AdesinaS.K. WightS.A. AkalaE.O. Optimization of the fabrication of novel stealth PLA-based nanoparticles by dispersion polymerization using D-optimal mixture design.Drug Dev. Ind. Pharm.201440111547155610.3109/03639045.2013.838578 24059281
    [Google Scholar]
  50. HuangS.J. OnyariJ.M. Multicomponent polymers of poly(lactic acid) macromonomers with methacrylate terminal and copolymers of poly(2-hydroxyethyl methacrylate).J. Macromol. Sci. Part A Pure Appl. Chem.199633557158410.1080/10601329608010879
    [Google Scholar]
  51. BogdanovA. BogdanovA. ChubenkoV. VolkovN. MoiseenkoF. MoiseyenkoV. Tumor acidity: From hallmark of cancer to target of treatment.Front. Oncol.20221297915410.3389/fonc.2022.979154 36106097
    [Google Scholar]
  52. KatoY. OzawaS. MiyamotoC. Acidic extracellular microenvironment and cancer.Cancer Cell Int.20131318910.1186/1475‑2867‑13‑89 24004445
    [Google Scholar]
  53. KoltaiT. Cancer: Fundamentals behind pH targeting and the double-edged approach.OncoTargets Ther.201696343636010.2147/OTT.S115438 27799782
    [Google Scholar]
  54. QinX. LiT. LiS. The tumor biochemical and biophysical microenvironments synergistically contribute to cancer cell malignancy.Cell. Mol. Immunol.202017111186118710.1038/s41423‑019‑0282‑5 31471589
    [Google Scholar]
  55. KawaguchiS. ItoK. Dispersion Polymerization. In: Okubo M, Ed. Polymer Particles Advances in Polymer Science.SpringerBerlin, Heidelberg200517529932810.1007/b100118
    [Google Scholar]
  56. AljabaliA.A. ObeidM.A. BashatwahR.M. Nanomaterials and their impact on the immune system.Int. J. Mol. Sci.2023243200810.3390/ijms24032008 36768330
    [Google Scholar]
  57. ChoiC.H.J. ZuckermanJ.E. WebsterP. DavisM.E. Targeting kidney mesangium by nanoparticles of defined size.Proc. Natl. Acad. Sci. USA2011108166656666110.1073/pnas.1103573108 21464325
    [Google Scholar]
  58. Soo ChoiH. LiuW. MisraP. Renal clearance of quantum dots.Nat. Biotechnol.200725101165117010.1038/nbt1340 17891134
    [Google Scholar]
  59. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  60. ZhangM. GaoS. YangD. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo.Acta Pharm. Sin. B20211182265228510.1016/j.apsb.2021.03.033 34522587
    [Google Scholar]
  61. ChamseddineI.M. FrieboesH.B. KokkolarasM. Design optimization of tumor vasculature-bound nanoparticles.Sci. Rep.2018811776810.1038/s41598‑018‑35675‑y 30538267
    [Google Scholar]
  62. DhandC. PrabhakaranM.P. BeuermanR.W. LakshminarayananR. DwivediN. RamakrishnaS. Role of size of drug delivery carriers for pulmonary and intravenous administration with emphasis on cancer therapeutics and lung-targeted drug delivery.RSC Advances2014462326733268910.1039/C4RA02861A
    [Google Scholar]
  63. BosoD.P. Ferrari Decuzzi SchreflerBA DecuzziP. Optimizing particle size for targeting diseased microvasculature: From experiments to artificial neural networks.Int. J. Nanomedicine201161517152610.2147/IJN.S20283 21845041
    [Google Scholar]
  64. ClaytonK.N. SalamehJ.W. WereleyS.T. Kinzer-UrsemT.L. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry.Biomicrofluidics201610505410710.1063/1.4962992 27703593
    [Google Scholar]
  65. DanaeiM. DehghankholdM. AtaeiS. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  66. ClogstonJ.D. PatriA.K. Zeta Potential Measurement. In: McNeil S, Ed. Characterization of Nanoparticles Intended for Drug Delivery.Humana PressTotowa, New Jersey2011697637010.1007/978‑1‑60327‑198‑1_6
    [Google Scholar]
  67. BhattacharjeeS. DLS and zeta potential - What they are and what they are not?J. Control. Release201623533735110.1016/j.jconrel.2016.06.017 27297779
    [Google Scholar]
  68. ChibowskiE. SzcześA. Zeta potential and surface charge of DPPC and DOPC liposomes in the presence of PLC enzyme.Adsorption2016224-675576510.1007/s10450‑016‑9767‑z
    [Google Scholar]
  69. GattoM.S. Najahi-MissaouiW. Lyophilization of nanoparticles, does it really work? overview of the current status and challenges.Int. J. Mol. Sci.202324181404110.3390/ijms241814041 37762348
    [Google Scholar]
  70. TantraR. SchulzeP. QuinceyP. Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility.Particuology20108327928510.1016/j.partic.2010.01.003
    [Google Scholar]
  71. DongY. FengS.S. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs.Biomaterials200425142843284910.1016/j.biomaterials.2003.09.055 14962562
    [Google Scholar]
  72. MuneerR. HashmetM.R. PourafsharyP. ShakeelM. Unlocking the power of artificial intelligence: Accurate zeta potential prediction using machine learning.Nanomaterials2023137120910.3390/nano13071209 37049303
    [Google Scholar]
  73. BashirS. AamirM. SarfarazR.M. Fabrication, characterization and in vitro release kinetics of tofacitinib-encapsulated polymeric nanoparticles: A promising implication in the treatment of rheumatoid arthritis.Int. J. Polym. Mater.202170744945810.1080/00914037.2020.1725760
    [Google Scholar]
  74. KamarajN. RajaguruP.Y. IssacP. SundaresanS. Fabrication, characterization, in vitro drug release and glucose uptake activity of 14-deoxy, 11, 12-didehydroandrographolide loaded polycaprolactone nanoparticles.Asian J. Pharm. Sci.201712435336210.1016/j.ajps.2017.02.003 32104346
    [Google Scholar]
  75. LeeB. YoonS. LeeJ.W. Statistical characterization of the morphologies of nanoparticles through machine learning based electron microscopy image analysis.ACS Nano20201412171251713310.1021/acsnano.0c06809 33231065
    [Google Scholar]
  76. MalatestaM. Transmission electron microscopy as a powerful tool to investigate the interaction of nanoparticles with subcellular structures.Int. J. Mol. Sci.202122231278910.3390/ijms222312789 34884592
    [Google Scholar]
  77. AlSawaftahN.M. AwadN.S. PittW.G. HusseiniG.A. pH-responsive nanocarriers in cancer therapy.Polymers202214593610.3390/polym14050936 35267759
    [Google Scholar]
  78. YanY. DingH. pH-Responsive nanoparticles for cancer immunotherapy: A brief review.Nanomaterials2020108161310.3390/nano10081613 32824578
    [Google Scholar]
  79. ZhangP. XuQ. LiX. WangY. pH-responsive polydopamine nanoparticles for photothermally promoted gene delivery.Mater. Sci. Eng. C202010811039610.1016/j.msec.2019.110396 31924025
    [Google Scholar]
  80. ZhuoS. ZhangF. YuJ. ZhangX. YangG. LiuX. pH-sensitive biomaterials for drug delivery.Molecules20202523564910.3390/molecules25235649 33266162
    [Google Scholar]
  81. GaoW. ChanJ.M. FarokhzadO.C. pH-Responsive nanoparticles for drug delivery.Mol. Pharm.2010761913192010.1021/mp100253e 20836539
    [Google Scholar]
  82. KamalyN. YameenB. WuJ. FarokhzadO.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release.Chem. Rev.201611642602266310.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  83. ZubrisK.A.V. Polymeric Nanoparticles for the Intracellular Delivery of Paclitaxel in Lung and Breast Cancer201172202
    [Google Scholar]
  84. D’SouzaS. A review of in vitro drug release test methods for nano-sized dosage forms.Adv. Pharma.2014201411210.1155/2014/304757
    [Google Scholar]
  85. HuaS. Comparison of in vitro dialysis release methods of loperamide-encapsulated liposomal gel for topical drug delivery.Int. J. Nanomedicine20149173574410.2147/IJN.S55805 24511230
    [Google Scholar]
  86. KimY. ParkE.J. KimT.W. NaD.H. Recent progress in drug release testing methods of biopolymeric particulate system.Pharmaceutics2021138131310.3390/pharmaceutics13081313 34452274
    [Google Scholar]
  87. ShenJ. BurgessD.J. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: Recent developments and challenges.Drug Deliv. Transl. Res.20133540941510.1007/s13346‑013‑0129‑z 24069580
    [Google Scholar]
  88. YuM. YuanW. LiD. SchwendemanA. SchwendemanS.P. Predicting drug release kinetics from nanocarriers inside dialysis bags.J. Control. Release2019315233010.1016/j.jconrel.2019.09.016 31629038
    [Google Scholar]
  89. Gómez-LázaroL. Martín-SabrosoC. Aparicio-BlancoJ. Torres-SuárezA.I. Assessment of in vitro release testing methods for colloidal drug carriers: The lack of standardized protocols.Pharmaceutics202416110310.3390/pharmaceutics16010103 38258113
    [Google Scholar]
  90. Al-NakashliR. RaveendranR. KhineY.Y. Drug-loading content influences cellular uptake of polymer-coated nanocellulose.Mol. Pharm.20232042017202810.1021/acs.molpharmaceut.2c00997 36896581
    [Google Scholar]
  91. Della RoccaJ. LiuD. LinW. Are high drug loading nanoparticles the next step forward for chemotherapy?Nanomedicine (Lond)20127330330510.2217/nnm.11.191 22385191
    [Google Scholar]
  92. Lapatinib.2024Available from: https://pubchem.ncbi.nlm.nih.gov/compound/208908 (Accessed on: February 22, 2024).
  93. Neratinib.2024Available from: https://pubchem.ncbi.nlm.nih.gov/compound/9915743 (Accessed on: April 3, 2024).
  94. Tucatinib2021Available from: https://pubchem.ncbi.nlm.nih.gov/compound/51039094 (Accessed on: December 21, 2021).
  95. AykulS. Martinez-HackertE. Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis.Anal. Biochem.20165089710310.1016/j.ab.2016.06.025 27365221
    [Google Scholar]
  96. HeY. ZhuQ. ChenM. The changing 50% inhibitory concentration (IC50) of cisplatin: A pilot study on the artifacts of the MTT assay and the precise measurement of density-dependent chemoresistance in ovarian cancer.Oncotarget2016743708037082110.18632/oncotarget.12223 27683123
    [Google Scholar]
  97. Sousa-PimentaM. EstevinhoL.M. SzopaA. Chemotherapeutic properties and side-effects associated with the clinical practice of terpene alkaloids: Paclitaxel, docetaxel, and cabazitaxel.Front. Pharmacol.202314115730610.3389/fphar.2023.1157306 37229270
    [Google Scholar]
  98. Al SaqrA. WaniS.U.D. GangadharappaH.V. AldawsariM.F. KhafagyE.S. LilaA.S.A. Enhanced cytotoxic activity of docetaxel-loaded silk fibroin nanoparticles against breast cancer cells.Polymers2021139141610.3390/polym13091416 33925581
    [Google Scholar]
  99. MannJ. YangN. MontpetitR. KirschenmanR. LemieuxH. GopingI.S. BAD sensitizes breast cancer cells to docetaxel with increased mitotic arrest and necroptosis.Sci. Rep.202010135510.1038/s41598‑019‑57282‑1 31942016
    [Google Scholar]
  100. MartellucciS. ClementiL. SabettaS. Tau oligomers accumulation sensitizes prostate cancer cells to docetaxel treatment.J. Cancer Res. Clin. Oncol.202114771957197110.1007/s00432‑021‑03598‑3 33811272
    [Google Scholar]
  101. RobertsS. HirschM. McSteaA. Cluster analysis of endogenous HER2 and HER3 receptors in SKBR3 cells.Bio Protoc.2018823e309610.21769/BioProtoc.3096 34532543
    [Google Scholar]
  102. LiJ. JiangJ. BaoX. Mechanistic modeling of central nervous system pharmacokinetics and target engagement of HER2 tyrosine kinase inhibitors to inform treatment of breast cancer brain metastases.Clin. Cancer Res.202228153329334110.1158/1078‑0432.CCR‑22‑0405 35727144
    [Google Scholar]
  103. ChangY.Y. LinH.J. HsiaoL.C. LinY.F. ChangC.S. LiuD.Z. Reduction of breast tumor drug resistance by 2,3,5,4′-tetrahydroxystilbene for exhibition synergic chemotherapeutic effect.PLoS One20211612e026053310.1371/journal.pone.0260533 34874967
    [Google Scholar]
  104. SonJ. JangJ. BeyettT.S. A novel HER2-selective kinase inhibitor is effective in HER2 mutant and amplified non-small cell lung cancer.Cancer Res.20228281633164510.1158/0008‑5472.CAN‑21‑2693 35149586
    [Google Scholar]
  105. ChouT.C. Drug combination studies and their synergy quantification using the Chou-Talalay method.Cancer Res.201070244044610.1158/0008‑5472.CAN‑09‑1947 20068163
    [Google Scholar]
  106. DimmittS. StampferH. MartinJ.H. When less is more - efficacy with less toxicity at the ED50.Br. J. Clin. Pharmacol.20178371365136810.1111/bcp.13281 28387051
    [Google Scholar]
  107. KennyB.J. PreussC.V. McPheeA.S. ED50. StatPearls.Treasure Island (FL)StatPearls Publishing202412 30855857
    [Google Scholar]
  108. CollinsD.M. ConlonN.T. KannanS. Preclinical characteristics of the irreversible pan-HER kinase inhibitor neratinib compared with lapatinib: Implications for the treatment of HER2-positive and HER2-mutated breast cancer.Cancers201911673710.3390/cancers11060737 31141894
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385373466250219070753
Loading
/content/journals/pnt/10.2174/0122117385373466250219070753
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test