Skip to content
2000
image of Response Surface Optimization, Fabrication and In-vitro Investigation of Elastic Nanovesicles Loaded with Flunarizine

Abstract

Background

Different variables have been used for the preparation of elastic nanovesicles. In this work, the ethanol injection method has been used to prepare flunarizine spanlastic nanovesicles and study the potential of these variables on vesicle size, encapsulation efficiency, and vesicle elasticity.

Objective

The objective of this study was to encapsulate flunarizine dihydrochloride (FHC), a medication with low solubility in water, within nano-elastic vesicles made from Span 60. These vesicles, known as nano-spanlastics, were developed to provide non-invasive trans-nasal delivery and offer a potential therapeutic option for migraines. The ideal formula for flunarizine spanlastic nanovesicles should have the lowest possible particle size and PdI, highest possible zeta potential, vesicle elasticity, drug entrapment, and dissolving efficiency.

Methods

An experimental design was followed during the preparation of flunarizine-loaded nanospanlastics utilizing the ethanol injection method and a number of edge activators (EAs). To investigate how the independent parameters affected the features of elastic vesicles and choose the best formula, Design-Expert®, software was used. The screening of 18 formulation and process aspects affecting vesicle size, polydispersity index, deformability index, zeta potential, drug entrapment, and release was made easier by the experimental design.

Results

The selected Flunarizine spanlastic nanovesicles exhibited a vesicle size of 135 ± 2.81 nm, PdI 0.2462 ± 0.01, ZP -28 ± 0.92 mV, relative deformability of 13.96 ± 0.76 g, EE% of 78.37 ± 1.42, and dissolution efficiency of about 90%.

Conclusion

The successful preparation of Flunarizine-loaded spanlastic nanovesicles using ethanol injection method significantly improved the drug's solubility. Flunarizine spanlastic formulations made up of Span 60 and EAs (Tween 40 and SDC) were prepared using various weight ratios of Span 60: EA. The study presented a viable and successful method for nasal delivery of the medication for migraine treatment.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385392040250404114249
2025-04-18
2025-09-25
Loading full text...

Full text loading...

References

  1. Lipton R.B. Bigal M.E. Steiner T.J. Silberstein S.D. Olesen J. Classification of primary headaches. Neurology 2004 63 3 427 435 10.1212/01.WNL.0000133301.66364.9B 15304572
    [Google Scholar]
  2. Viana M. Linde M. Sances G. Ghiotto N. Guaschino E. Allena M. Terrazzino S. Nappi G. Goadsby P.J. Tassorelli C. Migraine aura symptoms: Duration, succession and temporal relationship to headache. Cephalalgia 2016 36 5 413 421 26156076
    [Google Scholar]
  3. (IHS) C of the IHS headache classification the international classification of headache disorders. Cephalalgia 2018 38 1 211
    [Google Scholar]
  4. Kassab H.J. Alkufi H.K. Hussein L.S. Use of factorial design in formulation and evaluation of intrarectal in situ gel of sumatriptan. J. Adv. Pharm. Technol. Res. 2023 14 2 119 124 10.4103/japtr.japtr_603_22 37255866
    [Google Scholar]
  5. Olesen J. Gustavsson A. Svensson M. Wittchen H.U. Jönsson B. The economic cost of brain disorders in Europe. Eur. J. Neurol. 2012 19 1 155 162 10.1111/j.1468‑1331.2011.03590.x 22175760
    [Google Scholar]
  6. Leonardi M. Steiner T.J. Scher A.T. Lipton R.B. The global burden of migraine: Measuring disability in headache disorders with WHO’s Classification of Functioning, Disability and Health (ICF). J. Headache Pain 2005 6 6 429 440 10.1007/s10194‑005‑0252‑4 16388337
    [Google Scholar]
  7. Pietrobon D. Striessnig J. Neurobiology of migraine. Nat. Rev. Neurosci. 2003 4 5 386 398 10.1038/nrn1102 12728266
    [Google Scholar]
  8. Lauritzen M. Pathophysiology of the migraine aura. Brain 1994 117 1 199 210 10.1093/brain/117.1.199 7908596
    [Google Scholar]
  9. Olesen J. Burstein R. Ashina M. Tfelt-Hansen P. Origin of pain in migraine: Evidence for peripheral sensitisation. Lancet Neurol. 2009 8 7 679 690 10.1016/S1474‑4422(09)70090‑0 19539239
    [Google Scholar]
  10. Somjen G.G. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol. Rev. 2001 81 3 1065 1096 10.1152/physrev.2001.81.3.1065 11427692
    [Google Scholar]
  11. Maher B.H. Griffiths L.R. Identification of molecular genetic factors that influence migraine. Mol. Genet. Genomics 2011 285 6 433 446 10.1007/s00438‑011‑0622‑3 21519858
    [Google Scholar]
  12. Elzoghby A.O. Abd-Elwakil M.M. Abd-Elsalam K. Elsayed M.T. Hashem Y. Mohamed O. Natural polymeric nanoparticles for brain-targeting: Implications on drug and gene delivery. Curr. Pharm. Des. 2016 22 22 3305 3323 10.2174/1381612822666160204120829 26845323
    [Google Scholar]
  13. Alam M.I. Beg S. Samad A. Baboota S. Kohli K. Ali J. Ahuja A. Akbar M. Strategy for effective brain drug delivery. Eur. J. Pharm. Sci. 2010 40 5 385 403 10.1016/j.ejps.2010.05.003 20497904
    [Google Scholar]
  14. Hawkins B.T. Davis T.P. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev. 2005 57 2 173 185 10.1124/pr.57.2.4 15914466
    [Google Scholar]
  15. Alkufi H.K. Kassab H.J. Formulation and evaluation of sustained release sumatriptan mucoadhesive intranasal in-situ gel. Iraqi J. Pharm Sci. 2019 28 2 95 104 10.31351/vol28iss2pp95‑104
    [Google Scholar]
  16. Gabal Y.M. Kamel A.O. Sammour O.A. Elshafeey A.H. Effect of surface charge on the brain delivery of nanostructured lipid carriers in situ gels via the nasal route. Int. J. Pharm. 2014 473 1-2 442 457 10.1016/j.ijpharm.2014.07.025 25062866
    [Google Scholar]
  17. Hussein K. Kassab J. Hanan A. Management of cerebral vasospasm in aneurysmal subarachnoid hemorrhage. J. Emerg. Med. 2024 6 5
    [Google Scholar]
  18. Lechuga-Ballesteros D. Miller D.P. Advances in respiratory and nasal drug delivery. Mol. Pharm. 2015 12 8 2561 10.1021/acs.molpharmaceut.5b00495 26235035
    [Google Scholar]
  19. Taher S.S. Al-kinani K.K. Current Nanotechnological Strategies for Delivery of Anti-Retroviral Drugs: Overview and Future Prospects. Curr. Drug Ther. 2025 20 1 9 10.2174/0115748855331460241017100207
    [Google Scholar]
  20. Kumar M. Misra A. Babbar A.K. Mishra A.K. Mishra P. Pathak K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int. J. Pharm. 2008 358 1-2 285 291 10.1016/j.ijpharm.2008.03.029 18455333
    [Google Scholar]
  21. Jafarieh O. Md S. Ali M. Baboota S. Sahni J.K. Kumari B. Bhatnagar A. Ali J. Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev. Ind. Pharm. 2015 41 10 1674 1681 10.3109/03639045.2014.991400 25496439
    [Google Scholar]
  22. Abdelmonem R. Nabarawi E.M. Attia A. Development of novel bioadhesive granisetron hydrochloride spanlastic gel and insert for brain targeting and study their effects on rats. Drug Deliv. 2018 25 1 70 77 10.1080/10717544.2017.1413447 29228824
    [Google Scholar]
  23. Bhojani M.S. Dort V.M. Rehemtulla A. Ross B.D. Targeted imaging and therapy of brain cancer using theranostic nanoparticles. Mol. Pharm. 2010 7 6 1921 1929 10.1021/mp100298r 20964352
    [Google Scholar]
  24. Cunha S. Amaral M.H. Lobo J.M.S. Silva A.C. Lipid nanoparticles for nasal/intranasal drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 2017 34 3 257 282 10.1615/CritRevTherDrugCarrierSyst.2017018693 28845761
    [Google Scholar]
  25. Taher SS Sadeq ZA Al-Kinani KK Alwan ZS Solid lipid nanoparticles as a promising approach for delivery of anticancer agents. Mil. Med. Sci. Lett. 2022 91 3 197 207 10.31482/mmsl.2021.042
    [Google Scholar]
  26. Tamer M.A. Kassab H.J. Optimizing I.A.L.N.L.C. Formulation, development, and characterization parameters. Pharm. Nanotechnol. 2024 12 1 8 40007188
    [Google Scholar]
  27. Kakkar S. Kaur I.P. Spanlastics—A novel nanovesicular carrier system for ocular delivery. Int. J. Pharm. 2011 413 1-2 202 210 10.1016/j.ijpharm.2011.04.027 21540093
    [Google Scholar]
  28. Kakkar S. Kaur P.I. A novel nanovesicular carrier system to deliver drug topically. Pharm. Dev. Technol. 2013 18 3 673 685 10.3109/10837450.2012.685655 22612232
    [Google Scholar]
  29. Saleh A. Khalifa M. Shawky S. Bani-Ali A. Eassa H. Zolmitriptan intranasal spanlastics for enhanced migraine treatment; formulation parameters optimized via quality by design approach. Sci. Pharm. 2021 89 2 24 10.3390/scipharm89020024
    [Google Scholar]
  30. Alhammid S.N. Kassab H.J. Hussein L.S. Haiss M.A. Spanlastics nanovesicles: An emerging and innovative approach for drug delivery. Maaen J. Med. Sci. 2023 2 2 9 10.55810/2789‑9136.1027
    [Google Scholar]
  31. El-Nabarawy N.A. Teaima M.H. Helal D.A. Assessment of spanlastic vesicles of zolmitriptan for treating migraine in rats. Drug Des. Devel. Ther. 2019 13 3929 3937 10.2147/DDDT.S220473 31819367
    [Google Scholar]
  32. Waleed A. Hareeri R.H. Bazuhair M. Spanlastics as a potential platform for enhancing the brain delivery of flibanserin: In vitro response-surface optimization and in vivo pharmacokinetics assessment. Pharmaceutics 2022 14 12 2627 10.3390/pharmaceutics14122627
    [Google Scholar]
  33. Ali M.M. Shoukri R.A. Yousry C. Thin film hydration versus modified spraying technique to fabricate intranasal spanlastic nanovesicles for rasagiline mesylate brain delivery: Characterization, statistical optimization, and in vivo pharmacokinetic evaluation. Drug Deliv. Transl. Res. 2023 13 4 1153 1168 10.1007/s13346‑022‑01285‑5 36585559
    [Google Scholar]
  34. Mortagi Y. Gad S. Zaitone S. Spanlastic nano-vesicles: A novel approach to improve the dissolution, bioavailability, and pharmacokinetic behavior of famotidine. Pharmaceuticals 2024 17 12 1614 10.3390/ph17121614
    [Google Scholar]
  35. Seary H. Barakat E Raslan M.R. Development, characterization, and optimization of repaglinide loaded spanlastics along with investigation of drug solubility in various media. Univ. J. Pharma. Res. 2024 9 5 1 9 10.22270/ujpr.v9i5.1221
    [Google Scholar]
  36. Barakat E.H. Kassem A.M. Ibrahim M.F. Elsayad M.K. Abdelgawad W.Y. Salama A. Alruwaili N.K. Alsaidan O.A. Elmowafy M. Fabrication of prostructured spanlastics gel for improving transdermal effect of dapagliflozin: In vitro characterization studies and in vivo antidiabetic activity. J. Drug Deliv. Sci. Technol. 2024 97 105804 10.1016/j.jddst.2024.105804
    [Google Scholar]
  37. Kambli D.D. DCruz C.E.M. Kumar L. Novel nano felodipine-loaded spanlastic carriers for buccal delivery: Formulation, optimization and characterization. Colloid J. 2025 1 20 10.1134/S1061933X2460088X
    [Google Scholar]
  38. Pradip P.H. Adison F. Cleona D. Eberconazole nitrate–loaded spanlastics: Nanocarriers for topical delivery system. Tens. Surfact. Deterg. 2025 62 2 178 199 10.1515/tsd‑2024‑2644
    [Google Scholar]
  39. Elhabal S.F. El-Nabarawi M. Elrefai M.F.M. Teaima M.H. Shoela M.S. Khamis G.M. Faheem A.M. kholeif N. Sanad M.T. Nano-spanlastics-loaded dissolving microneedle patches for ketotifen fumarate: Advanced strategies for allergic conjunctivitis treatment and molecular insights. Drug Deliv. Transl. Res. 2025 ••• 1 24 10.1007/s13346‑025‑01796‑x 39934562
    [Google Scholar]
  40. Alkufi H.K. Kassab H.J. Nanospanlastic in situ gel for nose to brain delivery of nimodipine: In vitro optimization and in vivo pharmacokinetic study. Al-Rafidain J. Med. Sci. 2025 8 1 97 105 10.54133/ajms.v8i1.1687
    [Google Scholar]
  41. Harjot K. A M John N. Reeta Nanoemulsion for migraine prophylaxis nasal drug delivery: Preparation, characterization and in vitro evaluation. Pharm. Nanotechnol. 2016 4 3 229 241 10.2174/2211738504666160601162604 29052501
    [Google Scholar]
  42. Niu J. Hu R. RETRACTED: Role of flunarizine hydrochloride in secondary brain injury following intracerebral hemorrhage in rats. Int. J. Immunopathol. Pharmacol. 2017 30 4 413 419 10.1177/0394632017742224 29164980
    [Google Scholar]
  43. Stubberud A. Flaaen N.M. McCrory D.C. Pedersen S.A. Linde M. Flunarizine as prophylaxis for episodic migraine: A systematic review with meta-analysis. Pain 2019 160 4 762 772 10.1097/j.pain.0000000000001456 30699098
    [Google Scholar]
  44. Newton M.J. Harjot K. Fabrication, characterization, in vitro evaluation of solid lipid nanoemulsion of flunarizine dihydrochloride for nasal delivery. Antiinflamm. Antiall. Agents Med. Chem. 2017 15 3 204 220 10.2174/1871523015666161216141812 27993106
    [Google Scholar]
  45. Christina D. Sacco S. Ekizoglu E. European headache federation (EHF) critical re-appraisal and meta-analysis of oral drugs in migraine prevention—part 2: Flunarizine. J. Headache. Pain. 2023 24 1 128 10.1186/s10194‑023‑01657‑3
    [Google Scholar]
  46. Dong Y. Pang H. The co-solvency and thermodynamic properties calculation of flunarizine hydrochloride in mixtures of (acetonitrile/ethyl acetate + isopropanol). J. Chem. Thermodyn. 2022 165 106645 10.1016/j.jct.2021.106645
    [Google Scholar]
  47. Wang Y.J. Wang J. Zhang H.Y. He H.B. Tang X. Formulation, preparation and evaluation of flunarizine-loaded lipid microspheres. J. Pharm. Pharmacol. 2007 59 3 351 357 10.1211/jpp.59.3.0003 17331337
    [Google Scholar]
  48. Fan D. Leng W. Zhang L. Systematic evaluation and meta-analysis of Flunarizine Hydrochloride combined with traditional Chinese medicine decoction in the treatment of migraine headaches. Clinics 2024 79 100431 10.1016/j.clinsp.2024.100431 38964249
    [Google Scholar]
  49. Elzahraa A.F. Elsayed I. Gad M.K. Response surface optimization, Ex vivo and In vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone. Int. J. Pharm. 2017 530 1-2 1 11 10.1016/j.ijpharm.2017.07.050
    [Google Scholar]
  50. Singh G. Pai R.S. Devi K.V. Optimization of pellets containing solid dispersion prepared by extrusion/spheronization using central composite design and desirability function. J. Young Pharm. 2012 4 3 146 156 10.4103/0975‑1483.100020 23112533
    [Google Scholar]
  51. Yousry C. Elkheshen S.A. El-laithy H.M. Essam T. Fahmy R.H. Studying the influence of formulation and process variables on Vancomycin-loaded polymeric nanoparticles as potential carrier for enhanced ophthalmic delivery. Eur. J. Pharm. Sci. 2017 100 142 154 10.1016/j.ejps.2017.01.013 28089661
    [Google Scholar]
  52. Sallam N.M. Sanad R.A.B. Ahmed M.M. Khafagy E.L.S. Ghorab M. Gad S. Impact of the mucoadhesive lyophilized wafer loaded with novel carvedilol nano-spanlastics on biochemical markers in the heart of spontaneously hypertensive rat models. Drug Deliv. Transl. Res. 2021 11 3 1009 1036 10.1007/s13346‑020‑00814‑4 32607938
    [Google Scholar]
  53. van den Bergh B.A.I. Wertz P.W. Junginger H.E. Bouwstra J.A. Elasticity of vesicles assessed by electron spin resonance, electron microscopy and extrusion measurements. Int. J. Pharm. 2001 217 1-2 13 24 10.1016/S0378‑5173(01)00576‑2 11292538
    [Google Scholar]
  54. Nashat B.I. Al-Kinani K.K. Nanoemulsion formulation of leflunomide for transdermal delivery: Preparation and characterization. Inter. J. Drug Deli. Tech. 2023 13 1 57 65 10.25258/ijddt.13.1.09
    [Google Scholar]
  55. Salem H.F. Nafady M.M. Eissa E.M. Abdel-Sattar H.H. Khallaf R.A. Assembly of in-situ gel containing nano-spanlastics of an angiotensin ii inhibitor as a novel epitome for hypertension management: Factorial design optimization, in-vitro gauging, pharmacokinetics, and pharmacodynamics appraisal. AAPS PharmSciTech 2024 25 5 115 10.1208/s12249‑024‑02823‑9 38755324
    [Google Scholar]
  56. Fadhel A.Y. Rajab N.A. Tizanidine nano emulsion: Formulation and in-vitro characterization. J. Pharm. Negat. Results 2022 13 3 572 581 10.47750/pnr.2022.13.03.086
    [Google Scholar]
  57. Abdelbary A. Al-mahallawi A. Abdelrahim Ali A. Preparation, optimization, and in vitro simulated inhalation delivery of carvedilol nanoparticles loaded on a coarse carrier intended for pulmonary administration. Int. J. Nanomedicine 2015 10 6339 6353 10.2147/IJN.S91631 26491298
    [Google Scholar]
  58. Singh C.H. Jain C.P. Kumar B.N. Formulation, characterization, stability and in vitro evaluation of nimesulide niosomes. Pharmacophore. 2011 2 3 131 148
    [Google Scholar]
  59. Singh G. Ahuja N. Sharma P. Capalash N. Response surface methodology for the optimized production of an alkalophilic lassase from gamma-proteobacterium JB. BioResources 2009 4 2 544 553 10.15376/biores.4.2.544‑553
    [Google Scholar]
  60. Annadurai G. Ling L.Y. Lee J.F. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida. J. Hazard. Mater. 2008 151 1 171 178 10.1016/j.jhazmat.2007.05.061 17618738
    [Google Scholar]
  61. Tian X-H. Lin X-N. Wei F. Feng W. Huang Z-C. Wang P. Ren L. Diao Y. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int. J. Nanomedicine 2011 6 445 452 10.2147/IJN.S16570 21445277
    [Google Scholar]
  62. Zhang T.T. Li W. Meng G. Wang P. Liao W. Strategies for transporting nanoparticles across the blood–brain barrier. Biomater. Sci. 2016 4 2 219 229 10.1039/C5BM00383K 26646694
    [Google Scholar]
  63. Komaiko J. McClements D.J. Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. J. Food Eng. 2015 146 122 128 10.1016/j.jfoodeng.2014.09.003
    [Google Scholar]
  64. Uchegbu I.F. Florence A.T. Non-ionic surfactant vesicles (niosomes): Physical and pharmaceutical chemistry. Adv. Colloid Interface Sci. 1995 58 1 1 55 10.1016/0001‑8686(95)00242‑I
    [Google Scholar]
  65. Haiss M.A. Maraie N.K. Utilization of ultrasonication technique for the preparation of apigenin nanocrystals. Inter J Drug Deliv Technol. 2021 11 3 694 973
    [Google Scholar]
  66. Elsherif N.I. Shamma R.N. Abdelbary G. Terbinafine hydrochloride trans-ungual delivery via nanovesicular systems: In vitro characterization and ex vivo evaluation. AAPS PharmSciTech 2017 18 2 551 562 27138036
    [Google Scholar]
  67. Pan G. Sudol E.D. Dimonie V.L. El-Aasser M.S. Surfactant Concentration Effects on Nitroxide-Mediated Living Free Radical Miniemulsion Polymerization of Styrene. Macromolecules 2002 35 6915 6919 10.1021/ma0206016
    [Google Scholar]
  68. Jiang J. Oberdörster G. Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res. 2009 11 77 89 10.1007/s11051‑008‑9446‑4
    [Google Scholar]
  69. Rowe R.C. Sheskey P.J. Owen S.C. Association A.P. Handbook of Pharmaceutical Excipients. Smithfield, London Pharmaceutical Press 2006
    [Google Scholar]
  70. Salama H.A. Mahmoud A.A. Kamel A.O. Hady A.M. Awad G.A. Brain delivery of olanzapine by intranasal administration of transfersomal vesicles. J. Liposome Res. 2012 22 4 336 345 22881283
    [Google Scholar]
  71. Bhunchu S. Rojsitthisak P. Rojsitthisak P. Effects of preparation parameters on the characteristics of chitosan–alginate nanoparticles containing curcumin diethyl disuccinate. J. Drug Deliv. Sci. Technol. 2015 28 64 72 10.1016/j.jddst.2015.05.010
    [Google Scholar]
  72. Li P-H. Chiang B-H. Process optimization and stability of D-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrason. Sonochem. 2012 19 1 192 197 21680223
    [Google Scholar]
  73. Cevc G. Polymorphism of the bilayer membranes in the ordered phase and the molecular origin of the lipid pretransition and rippled lamellae. Biochim. Biophys. Acta 1991 1062 1 59 69 1998710
    [Google Scholar]
  74. Yassin G.E. Amer R.I. Fayez A.M. Carbamazepine loaded vesicular structures for enhanced brain targeting via intranasal route: Optimization, in vitro evaluation, and in vivo study. Int J Appl Pharm. 2019 11 4 264 274 10.22159/ijap.2019v11i4.33474
    [Google Scholar]
  75. Mazyed E.A. Zakaria S. Enhancement of dissolution characteristics of clopidogrel bisulphate by proniosomes. Int J Appl Pharm. 2019 11 2 77 85 10.22159/ijap.2019v11i2.30575
    [Google Scholar]
  76. Fathalla D. Youssef E.M.K. Soliman G.M. Liposomal and ethosomal gels for the topical delivery of anthralin: Preparation, comparative evaluation and clinical assessment in psoriatic patients. Pharmaceutics 2020 12 5 446 10.3390/pharmaceutics12050446 32403379
    [Google Scholar]
  77. Dai M. Bai L. Zhang H. Ma Q. Luo R. Lei F. Fei Q. He N. A novel flunarizine hydrochloride-loaded organogel for intraocular drug delivery in situ: Design, physicochemical characteristics and inspection. Int. J. Pharm. 2020 576 576 119027 31953090
    [Google Scholar]
  78. Kasimova A.O. Pavan G.M. Danani A. Mondon K. Cristiani A. Scapozza L. Gurny R. Möller M. Validation of a novel molecular dynamics simulation approach for lipophilic drug incorporation into polymer micelles. J. Phys. Chem. B 2012 116 14 4338 4345 10.1021/jp2104819 22435641
    [Google Scholar]
  79. Rana D. Bag K. Bhattacharyya S. N. Mandal B. M. Miscibility of poly (styrene-co-butyl acrylate) with poly (ethyl methacrylate): Existence of both UCST and LCST. J. Polym. Sci. B, Polym. Phys. 2000 38 3 369 375 10.1002/(SICI)1099‑0488(20000201)38:3<369::AID‑POLB3>3.0.CO;2‑W
    [Google Scholar]
  80. Mazyed E.A. Abdelaziz A.E. Fabrication of transgelosomes for enhancing the ocular delivery of acetazolamide: Statistical optimization, in vitro characterization, and in vivo study. Pharmaceutics 2020 12 5 465 32443679
    [Google Scholar]
  81. Alkufi H.K. Kassab H.J. Soluplus-stabilized nimodipine-entrapped spanlastic formulations prepared with edge activator (tween20): Comparative physicochemical evaluation. Pharm. Nanotechnol. 2024 1 9 10.2174/0122117385348551241028102256 39501952
    [Google Scholar]
  82. Ibrahim SS Abd-Allah H Spanlastic nanovesicles for enhanced ocular delivery of vanillic acid: Design, in vitro characterization, and in vivo anti-inflammatory evaluation. Int. J. Pharm. 2022 625 122068 10.1016/j.ijpharm.2022.122068
    [Google Scholar]
  83. Jaafer H. Al-Kinani K.K. Formulation and evaluation of idebenone microemulsion as a potential approach for the transmucosal drug delivery systems. Iraqi J. Pharma. Sci. 2024 33 1 79 88 10.31351/vol33iss1pp79‑88
    [Google Scholar]
  84. Abdelrahman F.E. Elsayed I. Gad M.K. Badr A. Mohamed M.I. Investigating the cubosomal ability for transnasal brain targeting: In vitro optimization, ex vivo permeation and in vivo biodistribution. Int. J. Pharm. 2015 490 1-2 281 291 10.1016/j.ijpharm.2015.05.064 26026251
    [Google Scholar]
  85. Rescigno A. Foundation of Pharmacokinetics. New York, USA University of Minnesota, Kluwer Academic/ Plenum Publishers 2003 1 6 10.1007/b105300
    [Google Scholar]
  86. Singh Y. Martin’s physical pharmacy and pharmaceutical sciences. Department of Pharmaceutics Ernest Mario School of Pharmacy Rutgers. USA The State University of New Jersey 2006 1 8
    [Google Scholar]
  87. Abdelbari M.A. El-mancy S.S. Elshafeey A.H. Abdelbary A.A. Implementing spanlastics for improving the ocular delivery of clotrimazole: In vitro characterization, ex vivo permeability, microbiological assessment and in vivo safety study. Int. J. Nanomedicine 2021 16 16 6249 6261 10.2147/IJN.S319348 34531656
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385392040250404114249
Loading
/content/journals/pnt/10.2174/0122117385392040250404114249
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Flunarizine ; elasticity ; Migraine ; non-ionic surfactant ; nanovesicles ; Ethanol injection method
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test