Skip to content
2000
Volume 13, Issue 5
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Background

The necessity for extended drug discharge to alleviate pain without adverse effects underscores the importance of innovative drug delivery systems. Achieving sustained pain relief without compromising patient safety is a critical objective in healthcare. By extending the duration of drug action while suppressing side effects, such systems offer enhanced therapeutic outcomes and improved patient quality of life.

Objective

This study endeavors to develop and appraise an innovative implantable drug delivery system by integrating NSAID-loaded gelatin microcapsules into a gelatin scaffold designed to augment drug delivery efficiency and sustain drug release.

Methods

Piroxicam-loaded microcapsules with a 1:1 ratio of poly lactic acid and poly lacto glycolic acid showed smaller particle size, good yield, entrapment efficiency, and discharge. They were selected to make gelatin scaffolds with Box Behnken Design using Design Expert software for optimization. The better scaffolds were made in the form of rod-shaped sub-dermal implants. The primary focus of the investigation was the evaluation of critical parameters, specifically entrapment efficiency and drug discharge properties as dependent variables.

Results

Microcapsules with a 1:1 ratio of PLA and PLGA showed smaller particle sizes, good yield, entrapment efficiency, and discharge. Notably, the Design Expert-driven optimization yields highly favorable results. Furthermore, the scaffolds loaded with microcapsules exhibited favorable physicochemical assets, including drug discharge, for an extended period, underscoring their versatility for drug delivery.

Conclusion

By employing Design Expert software for optimization, the study demonstrates promising results, particularly in sustained pain management for arthritis, potentially improving therapeutic outcomes and patient quality of life. The study concludes that the prepared implants (holding scaffolds impregnated with piroxicam-loaded microcapsules) can be promising for relieving arthritis all day.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385332757241104104727
2024-12-10
2025-12-26
Loading full text...

Full text loading...

References

  1. RuanL. SuM. QinX. Progress in the application of sustained-release drug microspheres in tissue engineering.Mater. Today Bio20221610039410.1016/j.mtbio.2022.100394
    [Google Scholar]
  2. SuY. ZhangB. SunR. PLGA-based biodegradable microspheres in drug delivery: Recent advances in research and application.Drug Deliv.20212811397141810.1080/10717544.2021.1938756
    [Google Scholar]
  3. ZhangQ. ChengX. WangC. RaoA.M. LuB. Sulfur-assisted large-scale synthesis of graphene microspheres for superior potassium-ion batteries.Energy Environ. Sci.202114296597410.1039/D0EE03203D
    [Google Scholar]
  4. GurungB.D. KakarS. An overview on microcapsules.Int J Health Clin Res2020311124
    [Google Scholar]
  5. GashimovaU. GuliyevaR. JavadovaK. IbishovaA. PanakhovaE. Histological examination of retinal function and the effects of curcuma longa on memory correction in experimental olfactory bulbectomy rat models.Advances in Biology & Earth Sciences20249121622210.62476/abes9216
    [Google Scholar]
  6. MiryusifovaK. MalikovaG. AllahverdiyevaA. HuseynovaN. UmudluA. The saffron effects on the dynamics of experimental epilepsy.Advances in Biology & Earth Sciences20249119620210.62476/abes9196
    [Google Scholar]
  7. KaradağM. OmarovaS. USE OF Prunus armeniaca L. Seed oil and pulp in health and cosmetic products.Advances in Biology & Earth Sciences20249Special Issue10511010.62476/abess105
    [Google Scholar]
  8. ScarpignatoC. Piroxicam-β-cyclodextrin: a GI safer piroxicam.Curr. Med. Chem.201320192415243710.2174/09298673113209990115
    [Google Scholar]
  9. ZhaoJ.H. MaS. LiC.Y. ZhangH.C. ZhaoL.J. ZhangZ.Y. Clinically approved small-molecule drugs for the treatment of rheumatoid arthritis.Eur. J. Med. Chem.202325611543410.1016/j.ejmech.2023.115434
    [Google Scholar]
  10. FerreiraS.L.C. BrunsR.E. FerreiraH.S. Box-Behnken design: An alternative for the optimization of analytical methods.Anal. Chim. Acta2007597217918610.1016/j.aca.2007.07.011
    [Google Scholar]
  11. BohrA. KristensenJ. StrideE. DyasM. EdirisingheM. Preparation of microspheres containing low solubility drug compound by electrohydrodynamic spraying.Int. J. Pharm.20114121-2596710.1016/j.ijpharm.2011.04.005
    [Google Scholar]
  12. DhaddeG.S. MaliH.S. RautI.D. NitalikarM.M. BhutkarM.A. A review on microcapsules: Types, method of preparation, characterization and application.Asian Journal of Pharmacy and Technology202111214915510.52711/2231‑5713.2021.00025
    [Google Scholar]
  13. ZhangZ. FengY. WangL. LiuD. QinC. ShiY. A review of preparation methods of porous skin tissue engineering scaffolds.Mater. Today Commun.20223210410910.1016/j.mtcomm.2022.104109
    [Google Scholar]
  14. SilvestroI. FrancoliniI. Di LisioV. Preparation and characterization of TPP-chitosan crosslinked scaffolds for tissue engineering.Materials202013163577358410.3390/ma13163577
    [Google Scholar]
  15. LiuS. ZhengY. WuZ. HuJ. LiuR. Preparation and characterization of aspirin-loaded polylactic acid/graphene oxide biomimetic nanofibrous scaffolds.Polymer (Guildf.)202021112309310.1016/j.polymer.2020.123093
    [Google Scholar]
  16. ChenS.L. YuanG. HuC.T. Preparation and size determination of monodisperse silica microspheres for particle size certified reference materials.Powder Technol.20112071-323223710.1016/j.powtec.2010.11.004
    [Google Scholar]
  17. RojekB. WesolowskiM. A combined differential scanning calorimetry and thermogravimetry approach for the effective assessment of drug substance-excipient compatibility.J. Therm. Anal. Calorim.2023148384585810.1007/s10973‑022‑11849‑9
    [Google Scholar]
  18. CanbayH.S. DoğantürkM. Compatibility studies of sildenafil with different excipients by using TGA, DSC, XRD and FTIR.Celal Bayar University Journal of Science201915440140710.18466/cbayarsci.599436
    [Google Scholar]
  19. PaulJ. RomeisS. TomasJ. PeukertW. A review of models for single particle compression and their application to silica microspheres.Adv. Powder Technol.201425113615310.1016/j.apt.2013.09.009
    [Google Scholar]
  20. BabuG.N. MenakaM. AhadH.A. Neem fruit Mucilage-Aided Mucoadhesive Microcapsules of Acyclovir using 32 factorial design with design-expert software.Appl. Biol. Res.20222411727
    [Google Scholar]
  21. MundarintiS.H.B. AhadH.A. Impact of Pistacia lentiscus plant gum on particle size and swelling index in central composite designed amoxycillin trihydrate mucoadhesive microcapsules.Indian Journal of Pharmaceutical Education and Research202357376377210.5530/ijper.57.3.93
    [Google Scholar]
  22. DhakarR.C. MauryaS.D. SalujaV. From formulation variables to drug entrapment efficiency of microcapsules: A technical review.J. Drug Deliv. Ther.201226128133
    [Google Scholar]
  23. Hindustan AbdulA. Golla BalaA. ChintaginjalaH. ManchikantiS.P. KamsaliA. DasariR.R. Equator assessment of nanoparticles using the design-expert software.Int J Pharm Sci Nanotechnol2019131476622[IJPSN].10.37285/ijpsn.2020.13.1.5
    [Google Scholar]
  24. SilvaR. FerreiraH. CarvalhoA.C. GomesA.C. Cavaco-PauloA. Protein microspheres as suitable devices for piroxicam release.Colloids Surf. B Biointerfaces20129227728510.1016/j.colsurfb.2011.11.050
    [Google Scholar]
  25. IshaqB.M. AhadH.A. MuneerS. PraveenaS. Colourimetric assay of atomoxetine hydrochloride by simple aurum coupling reaction in bulk and tablet dosage form.Glob. J. Med. Res.2013137074
    [Google Scholar]
  26. MuneerS. AhadH.A. BonnothC.S.K. A novel stability indicating RP-HPLC assay method development and validation for the quantification of Cyamemazine Tartrate in bulk and its pharmaceutical dosage form.Asian J Pharm Anal20188316917310.5958/2231‑5675.2018.00031.5
    [Google Scholar]
  27. GuptaV. KhanY. BerklandC.J. LaurencinC.T. DetamoreM.S. Microsphere-based scaffolds in regenerative engineering.Annu. Rev. Biomed. Eng.201719113516110.1146/annurev‑bioeng‑071516‑044712
    [Google Scholar]
  28. HoodaA. NandaA. JainM. KumarV. RatheeP. Optimization and evaluation of gastroretentive ranitidine HCl microspheres by using design expert software.Int. J. Biol. Macromol.201251569170010.1016/j.ijbiomac.2012.07.030
    [Google Scholar]
  29. FontesG.C. FinotelliP.V. RossiA.M. Rocha-LeãoM. Optimization of penicillin G microencapsulation with OSA starch by factorial design.Chem. Eng. Trans.20122710.3303/CET1227415
    [Google Scholar]
  30. DraghiL. RestaS. PirozzoloM.G. TanziM.C. Microspheres leaching for scaffold porosity control.J. Mater. Sci. Mater. Med.200516121093109710.1007/s10856‑005‑4711‑x
    [Google Scholar]
  31. SivasankaranS. JonnalagaddaS. Advances in controlled release hormonal technologies for contraception: A review of existing devices, underlying mechanisms, and future directions.J. Control. Release202133079781110.1016/j.jconrel.2020.12.044
    [Google Scholar]
  32. BabuGN MuthukaruppanM AhadHA Impact of azadirachta indica fruit mucilage on particle size and swelling index in central composite designed Acyclovir mucoadhesive microspheres.Baghdad Sci J2023202042510.21123/bsj.2022.6786
    [Google Scholar]
  33. BharadwazA. DharS. JayasuriyaA.C. Full factorial design of experiment-based and response surface methodology approach for evaluating variation in uniaxial compressive mechanical properties, and biocompatibility of photocurable PEGDMA-based scaffolds.Biomed. Mater.202318202501910.1088/1748‑605X/acb7bd
    [Google Scholar]
  34. JiangZ. ZhengZ. YuS. Nanofiber scaffolds as drug delivery systems promoting wound healing.Pharmaceutics20231571829183610.3390/pharmaceutics15071829
    [Google Scholar]
  35. MasoodS.A. MaheenS. KhanH.U. In vitro/in vivo evaluation of statistically engineered alginate scaffold reinforced with dual drugs loaded silica nanoparticles for enhanced fungal therapeutics.Alex. Eng. J.20226154041405610.1016/j.aej.2021.09.027
    [Google Scholar]
  36. ShahbazN. IqbalZ. NasirF. KhanF.U. HassanA.M. KhanS.I. Simultaneous determination of piroxicam and 5-hydroxypiroxicam: HPLC/UV method development, validation and application for pharmacokinetic evaluation in Pakistani population.J. Chem. Soc. Pak.2018405856865
    [Google Scholar]
  37. IndolfiC. De RosaS. ColomboA. Bioresorbable vascular scaffolds — basic concepts and clinical outcome.Nat. Rev. Cardiol.2016131271972910.1038/nrcardio.2016.151
    [Google Scholar]
  38. ChenB.Z. YangY. WangB.B. AshfaqM. GuoX.D. Self-implanted tiny needles as alternative to traditional parenteral administrations for controlled transdermal drug delivery.Int. J. Pharm.201955633834810.1016/j.ijpharm.2018.12.019
    [Google Scholar]
  39. HeM. YangG. ZhaoX. ZhangS. GaoY. Intradermal implantable PLGA microneedles for etonogestrel sustained release.J. Pharm. Sci.202010961958196610.1016/j.xphs.2020.02.009
    [Google Scholar]
  40. Vadaye KheiryE. Fazly BazzazB.S. KerachianM.A. Implantation of stem cells on synthetic or biological scaffolds: An overview of bone regeneration.Biotechnol. Genet. Eng. Rev.202137223826810.1080/02648725.2021.2003590
    [Google Scholar]
  41. KastelloriziosM. BurgessD.J. In vitro drug release testing and in vivo/in vitro correlation for long acting implants and injections. Long Acting Injections and Implants Advances in Delivery Science and Technology.Boston, MA.Springer2012
    [Google Scholar]
  42. HaiderA. HaiderS. Rao KummaraM. Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review.J. Saudi Chem. Soc.202024218621510.1016/j.jscs.2020.01.002
    [Google Scholar]
  43. WangX. BurgessD.J. Drug release from in situ forming implants and advances in release testing.Adv. Drug Deliv. Rev.202117811391210.1016/j.addr.2021.113912
    [Google Scholar]
  44. SilverF.H. ShahR. Measurement of mechanical properties of natural and engineered implants.Adv Tissue Eng Regener Med201611202510.15406/atroa.2016.01.00004
    [Google Scholar]
  45. MircioiuC. VoicuV. AnutaV. Mathematical modeling of release kinetics from supramolecular drug delivery systems.Pharmaceutics201911314014810.3390/pharmaceutics11030140
    [Google Scholar]
  46. PanotopoulosG.P. HaidarZ.S. Mathematical modeling for pharmaco-kinetic and -dynamic predictions from controlled drug release nanosystems: A comparative parametric study.Scientifica (Cairo)2019201911510.1155/2019/9153876
    [Google Scholar]
  47. JafariS. SoleimaniM. BadinezhadM. Application of different mathematical models for further investigation of in vitro drug release mechanisms based on magnetic nano-composite.Polym. Bull.20227921021103810.1007/s00289‑021‑03537‑9
    [Google Scholar]
  48. WangJ. WitteF. XiT. Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials.Acta Biomater.20152123724910.1016/j.actbio.2015.04.011
    [Google Scholar]
  49. SunY. JensenH. PetersenN.J. LarsenS.W. ØstergaardJ. Concomitant monitoring of implant formation and drug release of in situ forming poly (lactide-co-glycolide acid) implants in a hydrogel matrix mimicking the subcutis using UV–vis imaging.J. Pharm. Biomed. Anal.20181509510610.1016/j.jpba.2017.11.065
    [Google Scholar]
  50. ThangarajuP. VarthyaS.B. Biological Evaluation of Medical Devices. Medical Device Guidelines and Regulations Handbook.ChamSpringer202216318710.1007/978‑3‑030‑91855‑2_11
    [Google Scholar]
  51. FarooqA. YarM. KhanA.S. Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration.Mater. Sci. Eng. C20155610411310.1016/j.msec.2015.06.006
    [Google Scholar]
  52. UlumM.F. ArafatA. NovianaD. In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications.Mater. Sci. Eng. C20143633634410.1016/j.msec.2013.12.022
    [Google Scholar]
  53. MarcoI. FeyerabendF. Willumeit-RömerR. Van der BiestO. Degradation testing of Mg alloys in Dulbecco’s modified eagle medium: Influence of medium sterilization.Mater. Sci. Eng. C201662687810.1016/j.msec.2016.01.039
    [Google Scholar]
  54. PiccoC.J. UtomoE. McCleanA. Development of 3D-printed subcutaneous implants using concentrated polymer/drug solutions.Int. J. Pharm.202363112247710.1016/j.ijpharm.2022.122477
    [Google Scholar]
  55. WrightM.A. MillerA.J. DongX. Reducing peri-implant capsule thickness in submuscular rodent model of breast reconstruction with delayed radiotherapy.J. Surg. Res.202329115816610.1016/j.jss.2023.04.015
    [Google Scholar]
  56. StewartS.A. Domínguez-RoblesJ. DonnellyR.F. LarrañetaE. Evaluation of sterilisation techniques for 3D-printed implantable devices.RPS Pharm. Pharmacol. Rep.202321rqad00310.1093/rpsppr/rqad003
    [Google Scholar]
  57. YangY. LiuF.J. LiuQ.F. Study on Histocompatibility and Carcinogenicity of silicone gel-filled breast implants after radiation sterilization.Adv. Mat. Res.201259052553010.4028/www.scientific.net/AMR.590.525
    [Google Scholar]
  58. ManeaA. BranS. BaciutM. ArmenceaG. PopD. BerceP. Sterilization protocol for porous dental implants made by selective laser melting.Clujul Med.201891445246210.15386/cjmed‑997
    [Google Scholar]
  59. SkelleyN.W. HagertyM.P. StannardJ.T. FeltzK.P. MaR. Sterility of 3D-printed orthopedic implants using fused deposition modeling.Orthopedics2020431465110.3928/01477447‑20191031‑07
    [Google Scholar]
  60. Al-ShannaqR. KurdiJ. Al-MuhtasebS. DickinsonM. FaridM. Supercooling elimination of phase change materials (PCMs) microcapsules.Energy20158765466210.1016/j.energy.2015.05.033
    [Google Scholar]
  61. BabuG.N. MuthukarupanM. AhadH.A. SreedharV. Fabrication and preliminary assessment of neem fruit Mucilage as Mucoadhesive Abetting assets with Methpol-934P for Acyclovir delivery from Mucoadhesive Microcapsules.Biomed. Pharmacol. J.20221542179218410.13005/bpj/2554
    [Google Scholar]
  62. IsikliC. HasirciV. HasirciN. Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications.J. Tissue Eng. Regen. Med.20126213514310.1002/term.406
    [Google Scholar]
  63. CampiglioC.E. Contessi NegriniN. FarèS. DraghiL. Cross-linking strategies for electrospun gelatin scaffolds.Materials20191215247610.3390/ma12152476
    [Google Scholar]
  64. WuX. LiuY. LiX. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method.Acta Biomater.2010631167117710.1016/j.actbio.2009.08.041
    [Google Scholar]
  65. AbpeikarZ. JavdaniM. MirzaeiS.A. Macroporous scaffold surface modified with biological macromolecules and piroxicam-loaded gelatin nanofibers toward meniscus cartilage repair.Int. J. Biol. Macromol.20211831327134510.1016/j.ijbiomac.2021.04.151
    [Google Scholar]
  66. MuhindoD. AshourE.A. AlmutairiM. RepkaM.A. Development and evaluation of raloxifene hydrochloride-loaded subdermal implants using hot-melt extrusion technology.Int. J. Pharm.202262212183410.1016/j.ijpharm.2022.121834
    [Google Scholar]
  67. ReddyB.S. InK.H. PanigrahiB.B. PaturiU.M.R. ChoK.K. ReddyN.S. Modeling tensile strength and suture retention of polycaprolactone electrospun nanofibrous scaffolds by artificial neural networks.Mater. Today Commun.20212610211510.1016/j.mtcomm.2021.102115
    [Google Scholar]
  68. GobinA.S. FroudeV.E. MathurA.B. Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration.J. Biomed. Mater. Res. A200574346547310.1002/jbm.a.30306
    [Google Scholar]
  69. KarakeçiliA. TopuzB. KorpayevS. ErdekM. Metal-organic frameworks for on-demand pH controlled delivery of vancomycin from chitosan scaffolds.Mater. Sci. Eng. C201910511009810.1016/j.msec.2019.110098
    [Google Scholar]
  70. GarciaC. GallardoA. LópezD. Smart pH-responsive antimicrobial hydrogel scaffolds prepared by additive manufacturing.ACS Appl. Bio Mater.2018151337134710.1021/acsabm.8b00297
    [Google Scholar]
  71. WillerthS.M. Sakiyama-ElbertS.E. Approaches to neural tissue engineering using scaffolds for drug delivery.Adv. Drug Deliv. Rev.2007594-532533810.1016/j.addr.2007.03.014
    [Google Scholar]
  72. DoratiR. DeTrizioA. ModenaT. Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy.Pharmaceuticals20171049610510.3390/ph10040096
    [Google Scholar]
  73. ZielińskaA. KarczewskiJ. EderP. Scaffolds for drug delivery and tissue engineering: The role of genetics.J. Control. Release202335920722310.1016/j.jconrel.2023.05.042
    [Google Scholar]
  74. FuP.S. WangJ.C. LaiP.L. Effects of gamma radiation on the sterility assurance, antibacterial ability, and biocompatibility of impregnated hydrogel macrosphere protein and drug release.Polymers202113693894510.3390/polym13060938
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385332757241104104727
Loading
/content/journals/pnt/10.2174/0122117385332757241104104727
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): discharge; Entrapment; implants; microcapsules; piroxicam; scaffolds
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test