Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Small extracellular vesicles called exosomes, which cells release, have drawn a lot of attention recently because of their ability to serve as therapeutic delivery systems for drugs and regenerative medicine applications. The investigation of plant-based exosomes as a cutting-edge platform for drug administration has emerged as an enticing research topic. A summary of the pharmaceutical feasibility of exosomes generated from plants and their uses in drug delivery along with regenerative medicine are the goals of this review study. Plant exosomes can be combined into nanoparticle-based medication delivery systems to increase their stability, targeting, and cargo delivery capabilities. By loading plant exosomes with therapeutic compounds and encapsulating them within nanoparticles, controlled release and targeted distribution to specific cells or tissues may be achieved. In gene therapy, plant exosomes can be modified to carry nucleic acids like plasmid DNA, siRNA, or miRNA. Effective gene delivery and therapeutic gene expression regulation can be accomplished by encasing nucleic acids in exosomes or surface-modifying exosomes to improve their interaction with target cells. In this review, we through the history and features of plant exosomes, examine how they differ from mammalian exosomes, and consider how they may be used for gene therapy, tissue regeneration, and targeted medication delivery. The difficulties and prospects for creating exosome-based plant medicines are also explored.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385305245240424093014
2024-06-04
2025-09-02
Loading full text...

Full text loading...

References

  1. AbrahamA.M. WiemannS. AmbreenG. Cucumber-derived exosome-like vesicles and plantcrystals for improved dermal drug delivery.Pharmaceutics202214347610.3390/pharmaceutics14030476 35335851
    [Google Scholar]
  2. AnQ. van BelA.J.E. HückelhovenR. Do plant cells secrete exosomes derived from multivesicular bodies?Plant Signal. Behav.2007214710.4161/psb.2.1.3596 19704795
    [Google Scholar]
  3. MeldolesiJ. Exosomes and ectosomes in intercellular communication.Curr. Biol.2018288R435R44410.1016/j.cub.2018.01.059 29689228
    [Google Scholar]
  4. Ayala-MarS. Donoso-QuezadaJ. VillanuevaG.R.C. GonzalezP.V.H. ValdezG.J. Recent advances and challenges in the recovery and purification of cellular exosomes.Electrophoresis20194023-243036304910.1002/elps.201800526 31373715
    [Google Scholar]
  5. StremerschS. VandenbrouckeR.E. Van WonterghemE. HendrixA. De SmedtS.C. RaemdonckK. Comparing exosome-like vesicles with liposomes for the functional cellular delivery of small RNAs.J. Control. Release2016232516110.1016/j.jconrel.2016.04.005 27072025
    [Google Scholar]
  6. ColomboM. RaposoG. ThéryC. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.Annu. Rev. Cell Dev. Biol.201430125528910.1146/annurev‑cellbio‑101512‑122326 25288114
    [Google Scholar]
  7. van NielG. D’AngeloG. RaposoG. Shedding light on the cell biology of extracellular vesicles.Nat. Rev. Mol. Cell Biol.201819421322810.1038/nrm.2017.125 29339798
    [Google Scholar]
  8. MiyazoeY. MiumaS. MiyaakiH. Extracellular vesicles from senescent hepatic stellate cells promote cell viability of hepatoma cells through increasing EGF secretion from differentiated THP-1 cells.Biomed. Rep.202012416317010.3892/br.2020.1279 32190304
    [Google Scholar]
  9. AnandP. SundaramC. JhuraniS. KunnumakkaraA.B. AggarwalB.B. Curcumin and cancer: An “old-age” disease with an “age-old” solution.Cancer Lett.2008267113316410.1016/j.canlet.2008.03.025 18462866
    [Google Scholar]
  10. YangT. MartinP. FogartyB. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio.Pharm. Res.20153262003201410.1007/s11095‑014‑1593‑y 25609010
    [Google Scholar]
  11. HaneyM.J. KlyachkoN.L. ZhaoY. Exosomes as drug delivery vehicles for Parkinson’s disease therapy.J. Control. Release2015207183010.1016/j.jconrel.2015.03.033 25836593
    [Google Scholar]
  12. WahlgrenJ. KarlsonT.D.L. BrisslertM. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes.Nucleic Acids Res.20124017e130e010.1093/nar/gks463 22618874
    [Google Scholar]
  13. KandimallaR. AqilF. TyagiN. GuptaR. Milk exosomes: A biogenic nanocarrier for small molecules and macromolecules to combat cancer.Am. J. Reprod. Immunol.2021852e1334910.1111/aji.13349 32966664
    [Google Scholar]
  14. KhanS. BennitH.F. WallN.R. The emerging role of exosomes in survivin secretion.Histol. Histopathol.20153014350 25020159
    [Google Scholar]
  15. DuanL. XuL. XuX. Exosome-mediated delivery of gene vectors for gene therapy.Nanoscale20211331387139710.1039/D0NR07622H 33350419
    [Google Scholar]
  16. SunK. ZhengX. JinH. YuF. ZhaoW. Exosomes as CNS drug delivery tools and their applications.Pharmaceutics20221410225210.3390/pharmaceutics14102252 36297688
    [Google Scholar]
  17. LiuT. LiT. ZhengY. Evaluating adipose‐derived stem cell exosomes as miRNA drug delivery systems for the treatment of bladder cancer.Cancer Med.202211193687369910.1002/cam4.4745 35441482
    [Google Scholar]
  18. OreficeN.S. Development of new strategies using extracellular vesicles loaded with exogenous nucleic acid.Pharmaceutics202012870510.3390/pharmaceutics12080705 32722622
    [Google Scholar]
  19. YangD. ZhangW. ZhangH. Progress, opportunity, and perspective on exosome isolation - Efforts for efficient exosome-based theranostics.Theranostics20201083684370710.7150/thno.41580 32206116
    [Google Scholar]
  20. ChenJ. LiP. ZhangT. Review on strategies and technologies for exosome isolation and purification.Front. Bioeng. Biotechnol.2022981197110.3389/fbioe.2021.811971 35071216
    [Google Scholar]
  21. KantarcıoğluM. YildirimG. OktarA.P. Coffee-derived exosome-like nanoparticles: Are they the secret heroes?Turk. J. Gastroenterol.202334216116910.5152/tjg.2022.21895 36262101
    [Google Scholar]
  22. TramsE.G. LauterC.J. SalemN.J. HeineU. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles.Biochim. Biophys. Acta Biomembr.19816451637010.1016/0005‑2736(81)90512‑5
    [Google Scholar]
  23. AndersonH.C. Vesicles associated with calcification in the matrix of epiphyseal cartilage.J. Cell Biol.1969411597210.1083/jcb.41.1.59 5775794
    [Google Scholar]
  24. ArroyoJ.D. ChevilletJ.R. KrohE.M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma.Proc. Natl. Acad. Sci.2011108125003500810.1073/pnas.1019055108 21383194
    [Google Scholar]
  25. JohnstoneR.M. AdamM. HammondJ.R. OrrL. TurbideC. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes).J. Biol. Chem.1987262199412942010.1016/S0021‑9258(18)48095‑7 3597417
    [Google Scholar]
  26. HenneW.M. StenmarkH. EmrS.D. Molecular mechanisms of the membrane sculpting ESCRT pathway.Cold Spring Harb. Perspect. Biol.201359a01676610.1101/cshperspect.a016766 24003212
    [Google Scholar]
  27. BoothA.M. FangY. FallonJ.K. YangJ.M. HildrethJ.E.K. GouldS.J. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane.J. Cell Biol.2006172692393510.1083/jcb.200508014 16533950
    [Google Scholar]
  28. JuS. MuJ. DoklandT. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis.Mol. Ther.20132171345135710.1038/mt.2013.64 23752315
    [Google Scholar]
  29. WangB. ZhuangX. DengZ.B. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit.Mol. Ther.201422352253410.1038/mt.2013.190 23939022
    [Google Scholar]
  30. TengY. Plant-derived exosomal microRNAs shape the gut microbiota.Cell Host Microbe2018245637652. e810.1016/j.chom.2018.10.001
    [Google Scholar]
  31. ZhuangX. TengY. SamykuttyA. Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression.Mol. Ther.20162419610510.1038/mt.2015.188 26444082
    [Google Scholar]
  32. HernandezP.D. VázquezG.C. JorgeI. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes.J. Biol. Chem.201328817116491166110.1074/jbc.M112.445304 23463506
    [Google Scholar]
  33. JimenezA.J. MaiuriP. Lafaurie-JanvoreJ. DivouxS. PielM. PerezF. ESCRT machinery is required for plasma membrane repair.Science20143436174124713610.1126/science.1247136 24482116
    [Google Scholar]
  34. SavinaA. FurlánM. VidalM. ColomboM.I. Exosome release is regulated by a calcium-dependent mechanism in K562 cells.J. Biol. Chem.200327822200832009010.1074/jbc.M301642200 12639953
    [Google Scholar]
  35. PerutF. RoncuzziL. AvnetS. Strawberry-derived exosome-like nanoparticles prevent oxidative stress in human mesenchymal stromal cells.Biomolecules20211118710.3390/biom11010087 33445656
    [Google Scholar]
  36. BaldiniN. TorreggianiE. RoncuzziL. PerutF. ZiniN. AvnetS. Exosome-like nanovesicles isolated from Citrus limon L. exert anti-oxidative effect.Curr. Pharm. Biotechnol.2018191187788510.2174/1389201019666181017115755 30332948
    [Google Scholar]
  37. KilasoniyaA. GaraevaL. ShtamT. Potential of plant exosome vesicles from grapefruit (Citrus× paradisi) and tomato (Solanum lycopersicum) juices as functional ingredients and targeted drug delivery vehicles.Antioxidants202312494310.3390/antiox12040943 37107317
    [Google Scholar]
  38. EmmanuelaN MuhammadDR Iriawati et al. Isolation of plant-derived exosome-like nanoparticles (PDENs) from Solanum nigrum L. berries and their effect on interleukin-6 expression as a potential anti-inflammatory agent.PLoS One2024191e029625910.1371/journal.pone.0296259 38175845
    [Google Scholar]
  39. OuX. WangH. TieH. Novel plant-derived exosome-like nanovesicles from Catharanthus roseus: Preparation, characterization, and immunostimulatory effect via TNF-α/NF-κB/PU.1 axis.J. Nanobiotechnology202321116010.1186/s12951‑023‑01919‑x 37210530
    [Google Scholar]
  40. ZhaoZ. YuS. LiM. GuiX. LiP. Isolation of exosome-like nanoparticles and analysis of microRNAs derived from coconut water based on small RNA high-throughput sequencing.J. Agric. Food Chem.201866112749275710.1021/acs.jafc.7b05614 29478310
    [Google Scholar]
  41. KimD-M. Skin improvement of the composition containing nano-exosome derived from Aloe vera bark callus as new type of transdermal delivery system.Asian J Beauty Cosmetol202321111713010.20402/ajbc.2023.0004
    [Google Scholar]
  42. De RobertisM. SarraA. D’OriaV. Blueberry-derived exosome-like nanoparticles counter the response to TNF-α-induced change on gene expression in EA. hy926 cells.Biomolecules202010574210.3390/biom10050742 32397678
    [Google Scholar]
  43. DuanT. WangX. DongX. Broccoli-derived exosome-like nanoparticles alleviate loperamide-induced constipation, in correlation with regulation on gut microbiota and tryptophan metabolism.J. Agric. Food Chem.20237144165681658010.1021/acs.jafc.3c04150 37875137
    [Google Scholar]
  44. KoçakP. The effect of wheat (Triticum aestivum L.) derived exosomes on wound healing.Available from: https://acikbilim.yok.gov.tr/handle/20.500.12812/741133
    [Google Scholar]
  45. LouG. ChenZ. ZhengM. LiuY. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases.Exp. Mol. Med.2017496e346e610.1038/emm.2017.63 28620221
    [Google Scholar]
  46. CaiY. ZhangL. ZhangY. LuR. Plant-derived exosomes as a drug-delivery approach for the treatment of inflammatory bowel disease and colitis-associated cancer.Pharmaceutics202214482210.3390/pharmaceutics14040822 35456656
    [Google Scholar]
  47. ZhangZ. YuY. ZhuG. The emerging role of plant-derived exosomes-like nanoparticles in immune regulation and periodontitis treatment.Front. Immunol.20221389674510.3389/fimmu.2022.896745 35757759
    [Google Scholar]
  48. TengY. XuF. ZhangX. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12.Mol. Ther.20212982424244010.1016/j.ymthe.2021.05.005 33984520
    [Google Scholar]
  49. RezaieJ. FeghhiM. EtemadiT. A review on exosomes application in clinical trials: Perspective, questions, and challenges.Cell Commun. Signal.202220114510.1186/s12964‑022‑00959‑4 36123730
    [Google Scholar]
  50. WangY. YangM. ShiH. GeS. WangX. YuJ. Photoelectrochemical detection of exosomal miRNAs by combining target-programmed controllable signal quenching engineering.Anal. Chem.20229473082309010.1021/acs.analchem.1c04086 35133793
    [Google Scholar]
  51. LiZ. WangH. YinH. BennettC. ZhangH. GuoP. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression.Sci. Rep.2018811464410.1038/s41598‑018‑32953‑7 30279553
    [Google Scholar]
  52. de JongW.H. BormP.J. Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine20083213314910.2147/IJN.S596 18686775
    [Google Scholar]
  53. FedericiC. PetrucciF. CaimiS. Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin.PLoS One201492e8819310.1371/journal.pone.0088193 24516610
    [Google Scholar]
  54. IessiE. LogozziM. LuginiL. Acridine orange/exosomes increase the delivery and the effectiveness of acridine orange in human melanoma cells: A new prototype for theranostics of tumors.J. Enzyme Inhib. Med. Chem.201732164865710.1080/14756366.2017.1292263 28262028
    [Google Scholar]
  55. KamerkarS. LeBleuV.S. SugimotoH. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.Nature2017546765949850310.1038/nature22341 28607485
    [Google Scholar]
  56. SunH. BhandariK. BurrolaS. WuJ. DingW.Q. Pancreatic ductal cell-derived extracellular vesicles are effective drug carriers to enhance paclitaxel’s efficacy in pancreatic cancer cells through clathrin-mediated endocytosis.Int. J. Mol. Sci.2022239477310.3390/ijms23094773 35563165
    [Google Scholar]
  57. ShaoH. ImH. CastroC.M. BreakefieldX. WeisslederR. LeeH. New technologies for analysis of extracellular vesicles.Chem. Rev.201811841917195010.1021/acs.chemrev.7b00534 29384376
    [Google Scholar]
  58. HalperinW. JensenW.A. Ultrastructural changes during growth and embryogenesis in carrot cell cultures.J. Ultrastruct. Res.1967183-442844310.1016/S0022‑5320(67)80128‑X 6025110
    [Google Scholar]
  59. ParkH.J. KimD.H. ParkS.J. KimJ.M. RyuJ.H. Ginseng in traditional herbal prescriptions.J. Ginseng Res.201236322524110.5142/jgr.2012.36.3.225 23717123
    [Google Scholar]
  60. AbelsE.R. BreakefieldX.O. Introduction to extracellular vesicles: Biogenesis, RNA cargo selection, content, release, and uptake.Cell. Mol. Neurobiol.201636330131210.1007/s10571‑016‑0366‑z 27053351
    [Google Scholar]
  61. DoyleL. WangM. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis.Cells20198772710.3390/cells8070727 31311206
    [Google Scholar]
  62. YueB. YangH. WangJ. Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis.Cell Prolif.2020537e1285710.1111/cpr.12857 32578911
    [Google Scholar]
  63. HuQ. SuH. LiJ. Clinical applications of exosome membrane proteins.Precis. Clin. Med.202031546610.1093/pcmedi/pbaa007 32257533
    [Google Scholar]
  64. ThéryC. WitwerK.W. AikawaE. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the misev2014 guidelines.J. Extracell. Vesicles201871153575010.1080/20013078.2018.1535750 30637094
    [Google Scholar]
  65. LuanX. GuanY.Y. LovellJ.F. Tumor priming using metronomic chemotherapy with neovasculature-targeted, nanoparticulate paclitaxel.Biomaterials201695607310.1016/j.biomaterials.2016.04.008 27130953
    [Google Scholar]
  66. ChowT-H. LinY.Y. HwangJ.J. Improvement of biodistribution and therapeutic index via increase of polyethylene glycol on drug-carrying liposomes in an HT-29/luc xenografted mouse model.Anticancer Res.200929621112120 19528471
    [Google Scholar]
  67. HoodJ.L. Post isolation modification of exosomes for nanomedicine applications.Nanomedicine201611131745175610.2217/nnm‑2016‑0102 27348448
    [Google Scholar]
  68. MorishitaM. TakahashiY. MatsumotoA. NishikawaM. TakakuraY. Exosome-based tumor antigens–adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA.Biomaterials2016111556510.1016/j.biomaterials.2016.09.031 27723556
    [Google Scholar]
  69. MahaweniN.M. Kaijen-LambersM.E.H. DekkersJ. AertsJ.G.J.V. HegmansJ.P.J.J. Tumour‐derived exosomes as antigen delivery carriers in dendritic cell‐based immunotherapy for malignant mesothelioma.J. Extracell. Vesicles2013212249210.3402/jev.v2i0.22492 24223258
    [Google Scholar]
  70. LiY.J. WuJ.Y. LiuJ. Artificial exosomes for translational nanomedicine.J. Nanobiotechnology202119124210.1186/s12951‑021‑00986‑2 34384440
    [Google Scholar]
  71. JohnsenK.B. GudbergssonJ.M. SkovM.N. PilgaardL. MoosT. DurouxM. A comprehensive overview of exosomes as drug delivery vehicles - Endogenous nanocarriers for targeted cancer therapy.Biochim. Biophys. Acta2014184617587 24747178
    [Google Scholar]
  72. FernandesM. LopesI. TeixeiraJ. BotelhoC. GomesA.C. Exosome-like nanoparticles: A new type of nanocarrier.Curr. Med. Chem.202027233888390510.2174/0929867326666190129142604 30706777
    [Google Scholar]
  73. HanY. JonesT.W. DuttaS. Overview and update on methods for cargo loading into extracellular vesicles.Processes20219235610.3390/pr9020356 33954091
    [Google Scholar]
  74. DixonC.L. Sheller-MillerS. SaadeG.R. Amniotic fluid exosome proteomic profile exhibits unique pathways of term and preterm labor.Endocrinology201815952229224010.1210/en.2018‑00073 29635386
    [Google Scholar]
  75. BalajL. LessardR. DaiL. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences.Nat. Commun.20112118010.1038/ncomms1180 21285958
    [Google Scholar]
  76. StoorvogelW. StrousG.J. GeuzeH.J. OorschotV. SchwartztA.L. Late endosomes derive from early endosomes by maturation.Cell199165341742710.1016/0092‑8674(91)90459‑C 1850321
    [Google Scholar]
  77. MathivananS. LimJ.W.E. TauroB.J. JiH. MoritzR.L. SimpsonR.J. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature.Mol. Cell. Proteomics20109219720810.1074/mcp.M900152‑MCP200 19837982
    [Google Scholar]
  78. DinhP.U.C. PaudelD. BrochuH. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis.Nat. Commun.2020111106410.1038/s41467‑020‑14344‑7 32111836
    [Google Scholar]
  79. WebbR.L. KaiserE.E. ScovilleS.L. Human neural stem cell extracellular vesicles improve tissue and functional recovery in the murine thromboembolic stroke model.Transl. Stroke Res.20189553053910.1007/s12975‑017‑0599‑2 29285679
    [Google Scholar]
  80. GalletR. DawkinsJ. ValleJ. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction.Eur. Heart J.2017383201211 28158410
    [Google Scholar]
  81. HaD. YangN. NaditheV. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges.Acta Pharm. Sin. B20166428729610.1016/j.apsb.2016.02.001 27471669
    [Google Scholar]
  82. KouM. HuangL. YangJ. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: A next generation therapeutic tool?Cell Death Dis.202213758010.1038/s41419‑022‑05034‑x 35787632
    [Google Scholar]
  83. UygurA. LeeR.T. Mechanisms of cardiac regeneration.Dev. Cell201636436237410.1016/j.devcel.2016.01.018 26906733
    [Google Scholar]
  84. CoresJ. HensleyM.T. KinlawK. Safety and efficacy of allogeneic lung spheroid cells in a mismatched rat model of pulmonary fibrosis.Stem Cells Transl. Med.20176101905191610.1002/sctm.16‑0374 28783251
    [Google Scholar]
  85. AshurC. FrishmanW.H. Cardiosphere-derived cells and ischemic heart failure.Cardiology2018261821 29206745
    [Google Scholar]
  86. ZannaN. FocaroliS. MerlettiniA. Thixotropic peptide-based physical hydrogels applied to three-dimensional cell culture.ACS Omega2017252374238110.1021/acsomega.7b00322 30023662
    [Google Scholar]
  87. GaoQ. HeY. FuJ. LiuA. MaL. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery.Biomaterials20156120321510.1016/j.biomaterials.2015.05.031 26004235
    [Google Scholar]
  88. MihicA. CuiZ. WuJ. A conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct.Circulation2015132877278410.1161/CIRCULATIONAHA.114.014937 26304669
    [Google Scholar]
  89. MorseM.A. GarstJ. OsadaT. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer.J. Transl. Med.200531910.1186/1479‑5876‑3‑9 15723705
    [Google Scholar]
  90. BesseB. CharrierM. LapierreV. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC.OncoImmunology201654e107100810.1080/2162402X.2015.1071008 27141373
    [Google Scholar]
  91. EscudierB. DorvalT. ChaputN. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: Results of thefirst phase I clinical trial.J. Transl. Med.2005311010.1186/1479‑5876‑3‑10 15740633
    [Google Scholar]
  92. LaiP. ChenX. GuoL. A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD.J. Hematol. Oncol.201811113510.1186/s13045‑018‑0680‑7 30526632
    [Google Scholar]
  93. ÁlvarezV. Sánchez-MargalloF.M. Macías-GarcíaB. The immunomodulatory activity of extracellular vesicles derived from endometrial mesenchymal stem cells on CD4+ T cells is partially mediated by TGFbeta.J. Tissue Eng. Regen. Med.201812102088209810.1002/term.2743 30058282
    [Google Scholar]
  94. DuY. ZhuansunY. ChenR. LinL. LinY. LiJ. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma.Exp. Cell Res.2018363111412010.1016/j.yexcr.2017.12.021 29277503
    [Google Scholar]
  95. SilvaA.K.A. LucianiN. GazeauF. Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting.Nanomedicine201511364565510.1016/j.nano.2014.11.009 25596340
    [Google Scholar]
  96. LaiR.C. ChenT.S. LimS.K. Mesenchymal stem cell exosome: A novel stem cell-based therapy for cardiovascular disease.Regen. Med.20116448149210.2217/rme.11.35 21749206
    [Google Scholar]
  97. WieringL. TackeF. Treating inflammation to combat non-alcoholic fatty liver disease.J. Endocrinol.20222561e220194 36259984
    [Google Scholar]
  98. KeatingA. Mesenchymal stromal cells: New directions.Cell Stem Cell201210670971610.1016/j.stem.2012.05.015 22704511
    [Google Scholar]
  99. OrtegaO.L. GarcíaL.F. de FrutosG.M. Role of exosomes as a treatment and potential biomarker for stroke.Transl. Stroke Res.201910324124910.1007/s12975‑018‑0654‑7 30105420
    [Google Scholar]
  100. AryaniA. DeneckeB. Exosomes as a nanodelivery system: A key to the future of neuromedicine?Mol. Neurobiol.201653281883410.1007/s12035‑014‑9054‑5 25502465
    [Google Scholar]
  101. KorbekandiH. AsghariG. ChitsaziM.R. Bahri NajafiR. BadiiA. IravaniS. Green biosynthesis of silver nanoparticles using Althaea officinalis radix hydroalcoholic extract.Artif. Cells Nanomed. Biotechnol.201644120921510.3109/21691401.2014.936064 25058031
    [Google Scholar]
  102. Nguyen CaoT.G. KangJ.H. YouJ.Y. Safe and targeted sonodynamic cancer therapy using biocompatible exosome-based nanosonosensitizers.ACS Appl. Mater. Interfaces20211322255752558810.1021/acsami.0c22883 34033477
    [Google Scholar]
  103. ShkrylY. TsydeneshievaZ. DegtyarenkoA. Plant exosomal vesicles: Perspective information nanocarriers in biomedicine.Appl. Sci.20221216826210.3390/app12168262
    [Google Scholar]
  104. WangY. WeiY. LiaoH. Plant exosome-like nanoparticles as biological shuttles for transdermal drug delivery.Bioengineering202310110410.3390/bioengineering10010104 36671676
    [Google Scholar]
  105. ChenN. SunJ. ZhuZ. CribbsA.P. XiaoB. Edible plant-derived nanotherapeutics and nanocarriers: Recent progress and future directions.Expert Opin. Drug Deliv.202219440941910.1080/17425247.2022.2053673 35285349
    [Google Scholar]
  106. MehryabF. RabbaniS. ShahhosseiniS. Exosomes as a next-generation drug delivery system: An update on drug loading approaches, characterization, and clinical application challenges.Acta Biomater.2020113426210.1016/j.actbio.2020.06.036 32622055
    [Google Scholar]
  107. LuanX. SansanaphongprichaK. MyersI. ChenH. YuanH. SunD. Engineering exosomes as refined biological nanoplatforms for drug delivery.Acta Pharmacol. Sin.201738675476310.1038/aps.2017.12 28392567
    [Google Scholar]
  108. ShaoJ. ZaroJ. ShenY. Advances in exosome-based drug delivery and tumor targeting: from tissue distribution to intracellular fate.Int. J. Nanomedicine2020159355937110.2147/IJN.S281890 33262592
    [Google Scholar]
  109. MondalJ. PillarisettiS. JunnuthulaV. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications.J. Control. Release20233531127114910.1016/j.jconrel.2022.12.027 36528193
    [Google Scholar]
  110. LogozziM. Di RaimoR. MizzoniD. FaisS. The potentiality of plant-derived nanovesicles in human health—a comparison with human exosomes and artificial nanoparticles.Int. J. Mol. Sci.2022239491910.3390/ijms23094919 35563310
    [Google Scholar]
  111. ShingeS.A.U. XiaoY. XiaJ. LiangY. DuanL. New insights of engineering plant exosome-like nanovesicles as a nanoplatform for therapeutics and drug delivery.EVCNA20223215016210.20517/evcna.2021.25
    [Google Scholar]
  112. SantillánM.A. ValdezG.J. Novel technologies for exosome and exosome-like nanovesicle procurement and enhancement.Biomedicines2023115148710.3390/biomedicines11051487 37239158
    [Google Scholar]
  113. DengZ. RongY. TengY. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase.Mol. Ther.20172571641165410.1016/j.ymthe.2017.01.025 28274798
    [Google Scholar]
  114. LiuB. LuY. ChenX. Protective role of shiitake mushroom-derived exosome-like nanoparticles in D-galactosamine and lipopolysaccharide-induced acute liver injury in mice.Nutrients202012247710.3390/nu12020477 32069862
    [Google Scholar]
  115. DadH.A. GuT.W. ZhuA.Q. HuangL.Q. PengL.H. Plant exosome-like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms.Mol. Ther.2021291133110.1016/j.ymthe.2020.11.030 33278566
    [Google Scholar]
  116. ManF. WangJ. LuR. Techniques and applications of animal-and plant-derived exosome-based drug delivery system.J. Biomed. Nanotechnol.202016111543156910.1166/jbn.2020.2993 33461649
    [Google Scholar]
  117. XiX-M. XiaS-J. LuR. Drug loading techniques for exosome-based drug delivery systems.Pharmazie20217626167 33714281
    [Google Scholar]
  118. LiuJ. XiangJ. JinC. Medicinal plant-derived mtDNA via nanovesicles induces the cGAS-STING pathway to remold tumor-associated macrophages for tumor regression.J. Nanobiotechnology20232117810.1186/s12951‑023‑01835‑0 36879291
    [Google Scholar]
  119. XiongY. LinZ. BuP. A whole‐course‐repair system based on neurogenesis‐angiogenesis crosstalk and macrophage reprogramming promotes diabetic wound healing.Adv. Mater.20233519221230010.1002/adma.202212300 36811203
    [Google Scholar]
  120. DeshayesS. MorrisM.C. DivitaG. HeitzF. Cell-penetrating peptides: Tools for intracellular delivery of therapeutics.Cell. Mol. Life Sci.200562161839184910.1007/s00018‑005‑5109‑0 15968462
    [Google Scholar]
  121. WolfJ.M. CasadevallA. Challenges posed by extracellular vesicles from eukaryotic microbes.Curr. Opin. Microbiol.201422737810.1016/j.mib.2014.09.012 25460799
    [Google Scholar]
  122. WilliamsC. RoyoF. OlaizolaA.O. Glycosylation of extracellular vesicles: Current knowledge, tools and clinical perspectives.J. Extracell. Vesicles201871144298510.1080/20013078.2018.1442985 29535851
    [Google Scholar]
  123. EstradaL.H. ChuS. ChampionJ.A. Protein nanoparticles for intracellular delivery of therapeutic enzymes.J. Pharm. Sci.201410361863187110.1002/jps.23974 24740820
    [Google Scholar]
  124. ProkopA. DavidsonJ.M. Nanovehicular intracellular delivery systems.J. Pharm. Sci.20089793518359010.1002/jps.21270 18200527
    [Google Scholar]
  125. SrivastavaA. FilantJ. MoxleyK. SoodA. McMeekinS. RameshR. Exosomes: A role for naturally occurring nanovesicles in cancer growth, diagnosis and treatment.Curr. Gene Ther.201515218219210.2174/1566523214666141224100612 25537774
    [Google Scholar]
  126. RahmatiS. KarimiH. AlizadehM. Prospects of plant-derived exosome-like nanocarriers in oncology and tissue engineering.Hum. Cell202337112113810.1007/s13577‑023‑00994‑4 37878214
    [Google Scholar]
  127. NematiM. SinghB. MirR.A. Plant-derived extracellular vesicles: A novel nanomedicine approach with advantages and challenges.Cell Commun. Signal.20222016910.1186/s12964‑022‑00889‑1 35606749
    [Google Scholar]
  128. PopowskiK. LutzH. HuS. GeorgeA. DinhP.U. ChengK. Exosome therapeutics for lung regenerative medicine.J. Extracell. Vesicles202091178516110.1080/20013078.2020.1785161 32944172
    [Google Scholar]
  129. RaimondoS. NaselliF. FontanaS. Citrus limon -derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death.Oncotarget2015623195141952710.18632/oncotarget.4004 26098775
    [Google Scholar]
  130. FanS.J. ChenJ.Y. TangC.H. ZhaoQ.Y. ZhangJ.M. QinY.C. Edible plant extracellular vesicles: An emerging tool for bioactives delivery.Front. Immunol.202213102841810.3389/fimmu.2022.1028418 36569896
    [Google Scholar]
  131. HwangJ.H. ParkY.S. KimH.S. Yam-derived exosome-like nanovesicles stimulate osteoblast formation and prevent osteoporosis in mice.J. Control. Release202335518419810.1016/j.jconrel.2023.01.071 36736431
    [Google Scholar]
  132. ŞahinF. KoçakP. GüneşM.Y. Özkanİ. YıldırımE. KalaE.Y. In vitro wound healing activity of wheat-derived nanovesicles.Appl. Biochem. Biotechnol.2019188238139410.1007/s12010‑018‑2913‑1 30474796
    [Google Scholar]
  133. VishnubhatlaI. CortelingR. StevanatoL. HicksC. SindenJ. The development of stem cell-derived exosomes as a cell-free regenerative medicine.J. Circ. Biomark.20143210.5772/58597
    [Google Scholar]
  134. SarasatiA. SyahruddinM.H. NuryantiA. Plant-derived exosome-like nanoparticles for biomedical applications and regenerative therapy.Biomedicines2023114105310.3390/biomedicines11041053 37189671
    [Google Scholar]
  135. KahrobaH. TaghipourD.Y. Exosomal Nrf2: From anti-oxidant and anti-inflammation response to wound healing and tissue regeneration in aged-related diseases.Biochimie2020171-17210310910.1016/j.biochi.2020.02.011 32109502
    [Google Scholar]
  136. JuY. HuY. YangP. XieX. FangB. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration.Mater. Today Bio20231810052210.1016/j.mtbio.2022.100522 36593913
    [Google Scholar]
  137. XuX.H. YuanT.J. DadH.A. Plant exosomes as novel nanoplatforms for microRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo.Nano Lett.202121198151815910.1021/acs.nanolett.1c02530 34586821
    [Google Scholar]
  138. YıldırımM. ÜnsalN. KabataşB. ErenO. ŞahinF. Effect of Solanum lycopersicum and Citrus limon–derived exosome-like vesicles on chondrogenic differentiation of adipose-derived stem cells.Appl. Biochem. Biotechnol.2024196120321910.1007/s12010‑023‑04491‑0 37103740
    [Google Scholar]
  139. TianY. LiS. SongJ. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy.Biomaterials20143572383239010.1016/j.biomaterials.2013.11.083 24345736
    [Google Scholar]
  140. HaneyM.J. ZhaoY. HarrisonE.B. Specific transfection of inflamed brain by macrophages: A new therapeutic strategy for neurodegenerative diseases.PLoS One201384e6185210.1371/journal.pone.0061852 23620794
    [Google Scholar]
  141. Alvarez-ErvitiL. SeowY. YinH. BettsC. LakhalS. WoodM.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes.Nat. Biotechnol.201129434134510.1038/nbt.1807 21423189
    [Google Scholar]
  142. ParkY.S. KimH.W. HwangJ.H. Plum-derived exosome-like nanovesicles induce differentiation of osteoblasts and reduction of osteoclast activation.Nutrients2023159210710.3390/nu15092107 37432256
    [Google Scholar]
  143. TiD. HaoH. FuX. HanW. Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation.Sci. China Life Sci.201659121305131210.1007/s11427‑016‑0240‑4 27864711
    [Google Scholar]
  144. WangY. WangJ. MaJ. ZhouY. LuR. Focusing on future applications and current challenges of plant derived extracellular vesicles.Pharmaceuticals202215670810.3390/ph15060708 35745626
    [Google Scholar]
  145. Kimiz-GebologluI. OncelS.S. Exosomes: Large-scale production, isolation, drug loading efficiency, and biodistribution and uptake.J. Control. Release202234753354310.1016/j.jconrel.2022.05.027 35597405
    [Google Scholar]
  146. QuQ. FuB. LongY. LiuZ.Y. TianX.H. Current strategies for promoting the large-scale production of exosomes.Curr. Neuropharmacol.20232191964197910.2174/1570159X21666230216095938 36797614
    [Google Scholar]
  147. BlazquezR. MargalloS.F.M. de la RosaO. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells.Front. Immunol.2014555610.3389/fimmu.2014.00556 25414703
    [Google Scholar]
  148. ZhuM. LiS. LiS. Strategies for engineering exosomes and their applications in drug delivery.J. Biomed. Nanotechnol.202117122271229710.1166/jbn.2021.3196 34974854
    [Google Scholar]
  149. YimN. RyuS.W. ChoiK. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein–protein interaction module.Nat. Commun.2016711227710.1038/ncomms12277 27447450
    [Google Scholar]
  150. WangC. XuM. FanQ. LiC. ZhouX. Therapeutic potential of exosome‐based personalized delivery platform in chronic inflammatory diseases.Asian J. Pharm. Sci.202318110077210.1016/j.ajps.2022.100772 36896446
    [Google Scholar]
  151. NamG.H. ChoiY. KimG.B. KimS. KimS.A. KimI.S. Emerging prospects of exosomes for cancer treatment: From conventional therapy to immunotherapy.Adv. Mater.20203251200244010.1002/adma.202002440 33015883
    [Google Scholar]
  152. BasuA. NampornT. RuenraroengsakP. Critical review in designing plant-based anticancer nanoparticles against hepatocellular carcinoma.Pharmaceutics2023156161110.3390/pharmaceutics15061611 37376061
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385305245240424093014
Loading
/content/journals/pnt/10.2174/0122117385305245240424093014
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test