Skip to content
2000
Volume 13, Issue 5
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Aim

Nanotechnology is considered as one of the fastest-developing areas in the biomedicine field. Hence, the green synthesis of silver nanoparticles from seed extract was carried out in this study.

Methods

The synthesized nanoparticles were characterized by UV-Vis spectroscopy, FTIR (Fourier transform infrared), FE-SEM (Field Emission scanning electron microscope), AFM (Atomic Force Microscope), XRD (X-ray diffraction), and EDX (Energy dispersive X-Ray). Their antioxidant and anti-inflammatory activity were evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl), PM (Phosphomolybdenum) assay, and albumin denaturation assay. Further, the antibacterial activity of the nanoparticles was studied against Gram-positive and Gram-negative bacteria using the agar well diffusion method. In addition, the antidiabetic activity of nanoparticles was studied by α-amylase and α-glucosidase inhibition assays.

Results

The surface plasmon resonance at 430 nm confirmed the formation of silver nanoparticles. They were stable and spherical in shape, with sizes ranging from 30 to 90 nm. The DPPH inhibition % of silver nanoparticles varied from 7.91±0.39% to 68.35±0.76%. The % inhibition of albumin denaturation was comparable to the diclofenac. Further, the results of antibacterial activity revealed that the zone of inhibition for all the test bacteria varied from 14.33±0.58 to 25.33±0.58 mm, where was more susceptible. In addition, the % inhibition of -amylase and -glucosidase varied from 19.91±0.15% to 61.43±0.31% and 15.26±0.11% to 55.38±0.20%, respectively.

Conclusion

This study is the first attempt of utilizing the silver nanoparticles synthesized from seed extract for antidiabetic activity. The study suggests that these nanoparticles could be well utilized in pharmaceutical industries as an efficient antioxidant, anti-inflammatory, antibacterial, and antidiabetic drug.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385316957240710045706
2025-10-01
2025-11-13
Loading full text...

Full text loading...

References

  1. SahuT. RatreY.K. ChauhanS. BhaskarL.V.K.S. NairM.P. VermaH.K. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science.J. Drug Deliv. Sci. Technol.20216310248710.1016/j.jddst.2021.102487
    [Google Scholar]
  2. SinghN.A. Nanotechnology innovations, industrial applications and patents.Environ. Chem. Lett.201715218519110.1007/s10311‑017‑0612‑8
    [Google Scholar]
  3. KuppusamyP. YusoffM.M. ManiamG.P. GovindanN. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications: An updated report.Saudi Pharm. J.201624447348410.1016/j.jsps.2014.11.013 27330378
    [Google Scholar]
  4. TalibK. OraibiA.G. AbassG.I. Synthesis of bio-active silver nanoparticles against human lung cancer cell line (A549) with little toxicity to normal cell line (WRL68).Arch. Razi Inst.202378516241637
    [Google Scholar]
  5. Abduladheem JabbarR. Neima HussienN. Investigation of antioxidant and cytotoxicity effects of silver nanoparticles produced by biosynthesis using Lactobacillus gasseri.Arch. Razi Inst.2021764781793 35096314
    [Google Scholar]
  6. YingS. GuanZ. OfoegbuP.C. Green synthesis of nanoparticles: Current developments and limitations.Environ. Technol. Innov.20222610233610.1016/j.eti.2022.102336
    [Google Scholar]
  7. HabibullahG. ViktorovaJ. RumlT. Current strategies for noble metal nanoparticle synthesis.Nanoscale Res. Lett.20211614710.1186/s11671‑021‑03480‑8 33721118
    [Google Scholar]
  8. ZhangX.F. LiuZ.G. ShenW. GurunathanS. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches.Int. J. Mol. Sci.2016179153410.3390/ijms17091534 27649147
    [Google Scholar]
  9. Ghaffari-MoghaddamM. Hadi-DabanlouR. KhajehM. RakhshanipourM. ShameliK. Green synthesis of silver nanoparticles using plant extracts.Korean J. Chem. Eng.201431454855710.1007/s11814‑014‑0014‑6
    [Google Scholar]
  10. GreulichC. BraunD. PeetschA. The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range.RSC Advances20122176981698710.1039/c2ra20684f
    [Google Scholar]
  11. NagimeP.V. SinghS. ShaikhN.M. Biogenic fabrication of silver nanoparticles using Calotropis procera flower extract with enhanced biomimetics attributes.Materials20231611405810.3390/ma16114058 37297192
    [Google Scholar]
  12. BurdușelA.C. GherasimO. GrumezescuA.M. MogoantăL. FicaiA. AndronescuE. Biomedical applications of silver nanoparticles: an up-to-date overview.Nanomaterials20188968110.3390/nano8090681 30200373
    [Google Scholar]
  13. SinghS. ChunglokW. NwaborO.F. UshirY.V. SinghS. PanpipatW. Hydrophilic biopolymer matrix antibacterial peel-off facial mask functionalized with biogenic nanostructured material for cosmeceutical applications.J. Polym. Environ.202230393895310.1007/s10924‑021‑02249‑5
    [Google Scholar]
  14. SyukriD.M. NwaborO.F. SinghS. Antibacterial-coated silk surgical sutures by ex situ deposition of silver nanoparticles synthesized with Eucalyptus camaldulensis eradicates infections.J. Microbiol. Methods202017410595510.1016/j.mimet.2020.105955 32442657
    [Google Scholar]
  15. SyukriD.M. SinghS. NwaborO.F. OntongJ.C. DejyongK. SunghanJ. Prevention of post-operative bacterial colonization on mice buccal mucosa using biogenic silver nanoparticles-coated nylon sutures.Regen. Eng. Transl. Med.202410.1007/s40883‑024‑00335‑3
    [Google Scholar]
  16. ArokiasamyP. SalviS. SelvamaniY. Global burden of diabetes mellitus. Handbook of Global Health.ChamSpringer International Publishing2021144
    [Google Scholar]
  17. KhanH.M.S. MurtazaG. UsmanM. Evidence based study of side effects of drugs used in the treatment of diabetes mellitus.Afr. J. Pharm. Pharmacol.201262418051808
    [Google Scholar]
  18. EnglerC. LeoM. PfeiferB. Long-term trends in the prescription of antidiabetic drugs: real-world evidence from the Diabetes Registry Tyrol 2012–2018.BMJ Open Diabetes Res. Care202081e00127910.1136/bmjdrc‑2020‑001279 32873600
    [Google Scholar]
  19. TorabianF. Akhavan RezayatA. Ghasemi NourM. Administration of silver nanoparticles in diabetes mellitus: A systematic review and meta-analysis on animal studies.Biol. Trace Elem. Res.202220041699170910.1007/s12011‑021‑02776‑1 34114175
    [Google Scholar]
  20. PaulS. SarkarI. SarkarN. Silver nanoparticles in diabetes mellitus: therapeutic potential and mechanistic insights.Bull. Natl. Res. Cent.20244813310.1186/s42269‑024‑01182‑6
    [Google Scholar]
  21. PrasadR SwamyVS Antibacterial activity of silver nanoparticles synthesized by bark extract of syzygium cumini.JNanopart20132013
    [Google Scholar]
  22. MadaniB. MirshekariA. YahiaE.M. GoldingJ.B. HajivandS. DastjerdyA.M. Jamun (Syzygium cumini L. Skeels): A promising fruit for the future.Hortic. Rev.202148275
    [Google Scholar]
  23. SrivastavaS. ChandraD. Pharmacological potentials of Syzygium cumini: A review.J. Sci. Food Agric.20139392084209310.1002/jsfa.6111 23460190
    [Google Scholar]
  24. KavitalA. HiremathM.B. Phytochemical screening and biological activities of Syzygium cumini seed extracts.Plant Biosyst.202315761203121010.1080/11263504.2023.2259375
    [Google Scholar]
  25. KavitalA. HiremathM.B. Vishwanath SwamyA.H.M. PatilS.B. Hypoglycemic activity of Syzygium cumini (L.) Skeels seed extracts: An approach to in vitro, in vivo, and in silico studies.J. Biomol. Struct. Dyn.202311110.1080/07391102.2023.2268218 37819095
    [Google Scholar]
  26. RashidF JavaidA Mahmood-ur-Rahman, Integrating pharmacological and computational approaches for the phytochemical analysis of Syzygium cumini and its anti-diabetic potential.Molecules20222717573410.3390/molecules27175734 36080496
    [Google Scholar]
  27. MahindrakarK.V. RathodV.K. Ultrasonic assisted aqueous extraction of catechin and gallic acid from Syzygium cumini seed kernel and evaluation of total phenolic, flavonoid contents and antioxidant activity.Chem. Eng. Process.202014910784110.1016/j.cep.2020.107841
    [Google Scholar]
  28. Hemlata, Meena PR, Singh AP, Tejavath KK. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines.ACS Omega20205105520552810.1021/acsomega.0c00155 32201844
    [Google Scholar]
  29. SinghN. RajiniP.S. Free radical scavenging activity of an aqueous extract of potato peel.Food Chem.200485461161610.1016/j.foodchem.2003.07.003
    [Google Scholar]
  30. PrietoP. PinedaM. AguilarM. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E.Anal. Biochem.1999269233734110.1006/abio.1999.4019 10222007
    [Google Scholar]
  31. SaleemA. SaleemM. AkhtarM.F. Antioxidant, anti-inflammatory and antiarthritic potential of Moringa oleifera Lam: An ethnomedicinal plant of Moringaceae family.S. Afr. J. Bot.202012824625610.1016/j.sajb.2019.11.023
    [Google Scholar]
  32. AnsariM.A. KhanH.M. KhanA.A. SultanA. AzamA. Synthesis and characterization of the antibacterial potential of ZnO nanoparticles against extended-spectrum β-lactamases-producing Escherichia coli and Klebsiella pneumoniae isolated from a tertiary care hospital of North India.Appl. Microbiol. Biotechnol.201294246747710.1007/s00253‑011‑3733‑1 22159886
    [Google Scholar]
  33. WickramaratneM.N. PunchihewaJ.C. WickramaratneD.B.M. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina.BMC Complement. Altern. Medi.2016161
    [Google Scholar]
  34. IndrianingsihA.W. TachibanaS. ItohK. In vitro evaluation of antioxidant and α-glucosidase inhibitory assay of several tropical and subtropical plants.Procedia Environ. Sci.20152863964810.1016/j.proenv.2015.07.075
    [Google Scholar]
  35. XuL. WangY.Y. HuangJ. ChenC.Y. WangZ.X. XieH. Silver nanoparticles: Synthesis, medical applications and biosafety.Theranostics202010208996903110.7150/thno.45413 32802176
    [Google Scholar]
  36. YusufM. Silver nanoparticles: Synthesis and applications.Handbook of Ecomat201930234356
    [Google Scholar]
  37. LuG.W. GaoP. Emulsions and microemulsions for topical and transdermal drug delivery. Handbook of Non-Invasive Drug Delivery Systems.William Andrew2010599410.1016/B978‑0‑8155‑2025‑2.10003‑4
    [Google Scholar]
  38. LingegowdaD.C. KumarJ.K. PrasadA.D. ZareiM. GopalS. FTIR spectroscopic studies on cleome gynandra-Comparative analysis of functional group before and after extraction.Rom. J. Biophys.201222137
    [Google Scholar]
  39. AshokkumarR. RamaswamyM. Phytochemical screening by FTIR spectroscopic analysis of leaf extracts of selected Indian medicinal plants.Int. J. Curr. Microbiol. Appl. Sci.20143395406
    [Google Scholar]
  40. DhivyaS.M. KalaichelviK. UV-Vis spectroscopic and FTIR analysis of Sarcostemma brevistigma, wight. and arn.Int. J. Herb. Med.2017946
    [Google Scholar]
  41. ShafaghatA. Synthesis and characterization of silver nanoparticles by phytosynthesis method and their biological activity.Synth. React. Inorg. Met.-Org. Nano-Me. Chem.201545381
    [Google Scholar]
  42. TheivasanthiT. AlagarM. Electrolytic synthesis and characterizations of silver nanopowder.arXiv:111102602011
    [Google Scholar]
  43. El-NaggarN.E.A. HusseinM.H. El-SawahA.A. Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity.Sci. Rep.2017711084410.1038/s41598‑017‑11121‑3 28883419
    [Google Scholar]
  44. MarimuthuS. RahumanA.A. RajakumarG. Evaluation of green synthesized silver nanoparticles against parasites.Parasitol. Res.201110861541154910.1007/s00436‑010‑2212‑4 21181192
    [Google Scholar]
  45. ElumalaiD. HemavathiM. DeepaaC.V. KaleenaP.K. Evaluation of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vectors.Parasite Epidemiol. Control201724152610.1016/j.parepi.2017.09.001 29774292
    [Google Scholar]
  46. MustaphaT. IthninN.R. OthmanH. Abu HasanZ.I. MisniN. Bio-fabrication of silver nanoparticles using Citrus aurantifolia fruit peel extract (CAFPE) and the role of plant extract in the synthesis.Plants2023128164810.3390/plants12081648 37111871
    [Google Scholar]
  47. Femi-AdepojuA.G. DadaA.O. OtunK.O. AdepojuA.O. FatobaO.P. Green synthesis of silver nanoparticles using terrestrial fern (Gleichenia Pectinata (Willd.) C. Presl.): characterization and antimicrobial studies.Heliyon201954e0154310.1016/j.heliyon.2019.e01543 31049445
    [Google Scholar]
  48. BindhuM.R. UmadeviM. Surface plasmon resonance optical sensor and antibacterial activities of biosynthesized silver nanoparticles.Spectrochim. Acta A Mol. Biomol. Spectrosc.201412159660410.1016/j.saa.2013.11.019 24291437
    [Google Scholar]
  49. SahaN. TrivediP. Dutta GuptaS. Surface plasmon resonance (SPR) based optimization of biosynthesis of silver nanoparticles from rhizome extract of Curculigo orchioides Gaertn. and its antioxidant potential.J. Cluster Sci.20162761893191210.1007/s10876‑016‑1050‑7
    [Google Scholar]
  50. IderM. AbderrafiK. EddahbiA. OuaskitS. KassibaA. Silver metallic nanoparticles with surface plasmon resonance: Synthesis and characterizations.J. Cluster Sci.20172831051106910.1007/s10876‑016‑1080‑1
    [Google Scholar]
  51. BanerjeeJ. NarendhirakannanR.T. Biosynthesis of silver nanoparticles from Syzygium cumini (L.) seed extract and evaluation of their in vitro antioxidant activities.Dig. J. Nanomater. Biostruct.20116961
    [Google Scholar]
  52. AtaleN. SaxenaS. NirmalaJ.G. NarendhirakannanR.T. MohantyS. RaniV. Synthesis and characterization of Sygyzium cumini nanoparticles for its protective potential in high glucose-induced cardiac stress: A green approach.Appl. Biochem. Biotechnol.201718131140115410.1007/s12010‑016‑2274‑6 27734287
    [Google Scholar]
  53. MendhulkarV.D. KharatS.N. MahadikS.R. Plant extract mediated AgNPs synthesis in Averrhoa bilimbi and Syzygium cumini leaf extract, their characterization and antioxidant potential assessment.Der Pharma Chem2018102433
    [Google Scholar]
  54. MadakkaM. JayarajuN. RajeshN. Evaluating the antimicrobial activity and antitumor screening of green synthesized silver nanoparticles compounds, using Syzygium jambolanum, towards MCF7 cell line (Breast cancer cell line).J. Photochem. Photobiol.2021610002810.1016/j.jpap.2021.100028
    [Google Scholar]
  55. ChakravartyA. AhmadI. SinghP. Green synthesis of silver nanoparticles using fruits extracts of Syzygium cumini and their bioactivity.Chem. Phys. Lett.202279513949310.1016/j.cplett.2022.139493
    [Google Scholar]
  56. MittalD. NarangK. Leekha KapinderA. KumarK. VermaA.K. Elucidation of biological activity of silver based nanoparticles using plant constituents of Syzygium cumini. Inter.J. Nanosci. Nanotechnol.201915189
    [Google Scholar]
  57. MekkyA.E. NashaatM.N. MohamedS. ShehataM. Bio-fabrication of silver nanoparticles using Antioxidants-rich Syzygium cumin L. leaves extract with the evaluation of its antibacterial, and anti-inflammatory activity.Al-AzharJ Agricult Res2023483460474
    [Google Scholar]
  58. Ebanda KediP.B. Eya’ane MevaF. KotsediL. NguemfoE.L. ZangueuC.B. NtoumbaA.A. Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract.Int. J. Nanomedicine201813853710.2147/IJN.S174530 30587976
    [Google Scholar]
  59. JainA. AnithaR. RajeshkumarS. Anti inflammatory activity of Silver nanoparticles synthesised using Cumin oil.Res J Pharm Technol20191262790279310.5958/0974‑360X.2019.00469.4
    [Google Scholar]
  60. TyavambizaC. ElbagoryA.M. MadieheA.M. MeyerM. MeyerS. The antimicrobial and anti-inflammatory effects of silver nanoparticles synthesised from Cotyledon orbiculata aqueous extract.Nanomaterials2021115134310.3390/nano11051343 34065254
    [Google Scholar]
  61. KediP.B.E. NangaC.C. GbambieA.P. DeliV. MevaF.E.A. MohamedH.E.A. Biosynthesis of silver nanoparticles from Microsorum punctatum (l.) copel fronds extract and an in-vitro anti-inflammation study.J Nanotechnol Res2020222541
    [Google Scholar]
  62. PrabakaranA.S. ManiN. Anti-inflammatory activity of silver nanoparticles synthesized from Eichhornia crassipes: An in vitro study.J. Pharmacogn. Phytochem.201982556
    [Google Scholar]
  63. ChirumamillaP. VankudothS. DharavathS.B. DasariR. TaduriS. In vitro anti-inflammatory activity of green synthesized silver nanoparticles and leaf methanolic extract of Solanum khasianum Clarke.Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci.202292230130710.1007/s40011‑021‑01337‑9
    [Google Scholar]
  64. SalayováA. BedlovičováZ. DaneuN. Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy.Nanomaterials2021114100510.3390/nano11041005 33919801
    [Google Scholar]
  65. KorshedP. LiL. LiuZ. MironovA. WangT. Size‐dependent antibacterial activity for laser‐generated silver nanoparticles.J. Interdiscip. Nanomed.201941243310.1002/jin2.54
    [Google Scholar]
  66. de Carvalho BernardoW.L. BoriolloM.F.G. TononC.C. Antimicrobial effects of silver nanoparticles and extracts of Syzygium cumini flowers and seeds: Periodontal, cariogenic and opportunistic pathogens.Arch. Oral Biol.202112510510110.1016/j.archoralbio.2021.105101 33676363
    [Google Scholar]
  67. OjoO.A. OyinloyeB.E. OjoA.B. Green‐route mediated synthesis of silver nanoparticles (AgNPs) from Syzygium cumini (L.) Skeels polyphenolic‐rich leaf extracts and investigation of their antimicrobial activity.IET Nanobiotechnol.201812330531010.1049/iet‑nbt.2017.0127
    [Google Scholar]
  68. LogeswariP. SilambarasanS. AbrahamJ. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property.J. Saudi Chem. Soc.201519331131710.1016/j.jscs.2012.04.007
    [Google Scholar]
  69. RizwanM HussainM Muhammad, Green synthesis and antimicrobial evaluation of silver nanoparticles mediated by leaf extract of Syzygium cumini against poultry pathogens.Micro & Nano Lett.202015960060510.1049/mnl.2019.0617
    [Google Scholar]
  70. JalalM. AnsariM.A. AlzohairyM.A. Anticandidal activity of biosynthesized silver nanoparticles: effect on growth, cell morphology, and key virulence attributes of Candida species.Int. J. Nanomedicine2019144667467910.2147/IJN.S210449 31308652
    [Google Scholar]
  71. ĆorkovićI. Gašo-SokačD. PichlerA. ŠimunovićJ. KopjarM. Dietary polyphenols as natural inhibitors of α-amylase and α-glucosidase.Life20221211169210.3390/life12111692 36362847
    [Google Scholar]
  72. ChinnasamyG. ChandrasekharanS. BhatnagarS. Biosynthesis of silver nanoparticles from Melia azedarach: Enhancement of antibacterial, wound healing, antidiabetic and antioxidant activities.Int. J. Nanomed201920199823
    [Google Scholar]
  73. PerumalsamyR. KrishnadhasL. Anti-diabetic activity of silver nanoparticles synthesized from the hydroethanolic extract of Myristica fragrans seeds.Appl. Biochem. Biotechnol.202219431136114810.1007/s12010‑022‑03825‑8 35091876
    [Google Scholar]
  74. JiniD. SharmilaS. Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity.Mater. Today Proc.20202243243810.1016/j.matpr.2019.07.672
    [Google Scholar]
  75. NaveedM. BatoolH. RehmanS. Characterization and evaluation of the antioxidant, antidiabetic, anti-inflammatory, and cytotoxic activities of silver nanoparticles synthesized using Brachychiton populneus leaf extract.Processes2022108152110.3390/pr10081521
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385316957240710045706
Loading
/content/journals/pnt/10.2174/0122117385316957240710045706
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test