Skip to content
2000
Volume 13, Issue 5
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Purpose

Since wounds are a primary source of infection, it is desirable to have a wound dressing that prevents infectious processes during the tissue regeneration phase. In this regard, silver nanoparticles, oregano essential oil, and chitosan have been utilized due to their antimicrobial activity. This work focused on the preparation of a composite containing these three components, intended to provide protection for wounds, especially by exerting antimicrobial effects.

Methods

A composite based on chitosan nanoparticles loaded with oregano essential oil (OEO) and silver nanoparticles was fabricated through the casting-solvent evaporation method. The films were prepared from a suspension of chitosan nanoparticles. The nanoparticles were characterized by size and entrapment efficiency. The surface of the films was observed by SEM, and the mechanical resistance, occlusive capacity, and antimicrobial activity against , and were evaluated. The release of OEO from the films was studied using Franz-type cells.

Results

A composite was successfully prepared from a dispersion of OEO-loaded chitosan nanoparticles (147.8 nm, PDI = 0.35; entrapment efficiency = 80.9%; loading capacity = 38%) and silver nanoparticles (19.6 nm, PDI = 0.4). A film could be formed that made the composite by pouring the chitosan nanoparticle dispersion directly into molds. The composite presented advantageous characteristics, such as being semi-occlusive (occlusion factor ~ 40% and reduction in TEWL of 18%), allowing the sustained release of OEO (about 0.2 mgcm-2h-1 during 8 h), and having antimicrobial activity for the three strains evaluated.

Conclusion

The prepared composite can be considered a potential candidate for dressing materials intended to prevent and treat wound infections.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385315666240708060501
2025-10-01
2025-11-13
Loading full text...

Full text loading...

References

  1. ZahidM. LodhiM. RehanZ.A. Sustainable development of Chitosan/Calotropis procera-based hydrogels to stimulate formation of granulation tissue and angiogenesis in wound healing applications.Molecules20212611328410.3390/molecules26113284 34072397
    [Google Scholar]
  2. SonnemannK.J. BementW.M. Wound repair: Toward understanding and integration of single-cell and multicellular wound responses.Annu. Rev. Cell Dev. Biol.201127123726310.1146/annurev‑cellbio‑092910‑154251 21721944
    [Google Scholar]
  3. PatruleaV OstafeV BorchardG JordanO Chitosan as a starting material for wound healing applications.Eur J Pharm Biopharm201597Pt B4172610.1016/j.ejpb.2015.08.00426614560
    [Google Scholar]
  4. DreifkeM.B. JayasuriyaA.A. JayasuriyaA.C. Current wound healing procedures and potential care.Mater. Sci. Eng. C20154865166210.1016/j.msec.2014.12.068 25579968
    [Google Scholar]
  5. ArchanaD. DuttaJ. DuttaP.K. Evaluation of chitosan nano dressing for wound healing: Characterization, in vitro and in vivo studies.Int. J. Biol. Macromol.20135719320310.1016/j.ijbiomac.2013.03.002 23518244
    [Google Scholar]
  6. HutmacherD.W. Scaffold design and fabrication technologies for engineering tissues — state of the art and future perspectives.J. Biomater. Sci. Polym. Ed.200112110712410.1163/156856201744489 11334185
    [Google Scholar]
  7. ArumugamM. MurugesanB. BalasekarP. Silk fibroin and gelatin composite nanofiber combined with silver and gold nanoparticles for wound healing accelerated by reducing the inflammatory response.Process Biochem.202313411610.1016/j.procbio.2023.10.017
    [Google Scholar]
  8. IswaryaS. BharathiM. HariramN. TheivasanthiT. GopinathS.C.B. Solid polymer electrolyte and antimicrobial performance of Polyvinyl alcohol/Silver nanoparticles composite film.Results Chem.2024710143110.1016/j.rechem.2024.101431
    [Google Scholar]
  9. KumarA. ShahS.R. JayeoyeT.J. Biogenic metallic nanoparticles: Biomedical, analytical, food preservation, and applications in other consumable products.Front. Nanotechnol.20235117514910.3389/fnano.2023.1175149
    [Google Scholar]
  10. FengQ. FanB. HeY.C. MaC. Antibacterial, antioxidant and fruit packaging ability of biochar-based silver nanoparticles-polyvinyl alcohol-chitosan composite film.Int. J. Biol. Macromol.2024256Pt 212829710.1016/j.ijbiomac.2023.128297 38007019
    [Google Scholar]
  11. KulikouskayaV. HileuskayaK. KraskouskiA. Chitosan‐capped silver nanoparticles: A comprehensive study of polymer molecular weight effect on the reaction kinetic, physicochemical properties, and synergetic antibacterial potential.SPE Polym.202232779010.1002/pls2.10069
    [Google Scholar]
  12. LiuS. ZhaoY. XuM. Antibacterial photodynamic properties of silver nanoparticles-loaded curcumin composite material in chitosan-based films.Int. J. Biol. Macromol.2024256Pt 112801410.1016/j.ijbiomac.2023.128014 37951439
    [Google Scholar]
  13. TylkowskiB. TrojanowskaA. NowakM. MarciniakL. JastrzabR. Applications of silver nanoparticles stabilized and/or immobilized by polymer matrixes.Phys. Sci. Rev.20172710.1515/psr‑2017‑0024
    [Google Scholar]
  14. AranazI. HarrisR. Navarro-GarcíaF. HerasA. AcostaN. Chitosan based films as supports for dual antimicrobial release.Carbohydr. Polym.201614640241010.1016/j.carbpol.2016.03.064 27112890
    [Google Scholar]
  15. CiftciF. Bioadhesion, antimicrobial activity, and biocompatibility evaluation bacterial cellulose based silver nanoparticle bioactive composite films.Process Biochem.20241379911010.1016/j.procbio.2023.12.021
    [Google Scholar]
  16. DuB. PanL. ZhengM. ZhangB. HuY. Preparation of AgNPs/oregano essential oil composite film and its antibacterial application in the conservation of paper relics.Inorg. Chem. Commun.202416011200810.1016/j.inoche.2023.112008
    [Google Scholar]
  17. SayfutdinovaA.R. CherednichenkoK.A. BezdomnikovA.A. Antibacterial composites based on halloysite with silver nanoparticles and polyoxometalates.JCIS Open20231210009810.1016/j.jciso.2023.100098
    [Google Scholar]
  18. LiangH. MirinejadM.S. AsefnejadA. Fabrication of tragacanthin gum-carboxymethyl chitosan bio-nanocomposite wound dressing with silver-titanium nanoparticles using freeze-drying method.Mater. Chem. Phys.202227912577010.1016/j.matchemphys.2022.125770
    [Google Scholar]
  19. EsmaeiliA. AsgariA. In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles.Int. J. Biol. Macromol.20158128329010.1016/j.ijbiomac.2015.08.010 26257380
    [Google Scholar]
  20. HuJ. ZhuH. FengY. Emulsions containing composite (clove, oregano, and cinnamon) essential oils: Phase inversion preparation, physicochemical properties and antibacterial mechanism.Food Chem.202342113620110.1016/j.foodchem.2023.136201 37105117
    [Google Scholar]
  21. LeeJ.Y. GarciaC.V. ShinG.H. KimJ.T. Antibacterial and antioxidant properties of hydroxypropyl methylcellulose-based active composite films incorporating oregano essential oil nanoemulsions.Lebensm. Wiss. Technol.201910616417110.1016/j.lwt.2019.02.061
    [Google Scholar]
  22. HosseiniS.F. ZandiM. RezaeiM. FarahmandghaviF. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study.Carbohydr. Polym.2013951505610.1016/j.carbpol.2013.02.031 23618238
    [Google Scholar]
  23. ScandorieiroS. de CamargoL.C. LancherosC.A.C. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains.Front. Microbiol.2016776010.3389/fmicb.2016.00760 27242772
    [Google Scholar]
  24. BegumT. FollettP.A. MahmudJ. Silver nanoparticles-essential oils combined treatments to enhance the antibacterial and antifungal properties against foodborne pathogens and spoilage microorganisms.Microb. Pathog.202216410541110.1016/j.micpath.2022.105411 35066069
    [Google Scholar]
  25. QinC. LiZ. ZhangJ. MengH. ZhuC. Preparation, physicochemical properties, antioxidant, and antibacterial activities of quaternized hawthorn pectin films incorporated with thyme essential oil.Food Packag. Shelf Life20244110123510.1016/j.fpsl.2023.101235
    [Google Scholar]
  26. KeawchaoonL. YoksanR. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles.Colloids Surf. B Biointerfaces201184116317110.1016/j.colsurfb.2010.12.031 21296562
    [Google Scholar]
  27. PrateepchanachaiS. ThakhiewW. DevahastinS. SoponronnaritS. Mechanical properties improvement of chitosan films via the use of plasticizer, charge modifying agent and film solution homogenization.Carbohydr. Polym.201717425326110.1016/j.carbpol.2017.06.069 28821066
    [Google Scholar]
  28. GevorgyanS. SchubertR. FalkeS. LorenzenK. TrchounianK. BetzelC. Structural characterization and antibacterial activity of silver nanoparticles synthesized using a low-molecular-weight Royal Jelly extract.Sci. Rep.20221211407710.1038/s41598‑022‑17929‑y 35982108
    [Google Scholar]
  29. WoranuchS. YoksanR. Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation.Carbohydr. Polym.201396257858510.1016/j.carbpol.2012.08.117 23768603
    [Google Scholar]
  30. KalaycıoğluZ. TorlakE. Akın-EvingürG. Özenİ. ErimF.B. Antimicrobial and physical properties of chitosan films incorporated with turmeric extract.Int. J. Biol. Macromol.201710188288810.1016/j.ijbiomac.2017.03.174 28366856
    [Google Scholar]
  31. López-GarcíaR. Ganem-RonderoA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Occlusive effect and penetration enhancement ability.J Cosmet, Dermatol Sci Appl201552627210.4236/jcdsa.2015.52008
    [Google Scholar]
  32. Bernal-ChávezS. Pérez-CarretoL. Nava-ArzaluzM. Ganem-RonderoA. Alkylglycerol derivatives, a new class of skin penetration modulators.Molecules201722118510.3390/molecules22010185 28117757
    [Google Scholar]
  33. MeherA. TandiA. MoharanaS. Silver nanoparticle for biomedical applications: A review.Hybrid Advances2024610018410.1016/j.hybadv.2024.100184
    [Google Scholar]
  34. NarayananV. GovindasamyC. ShanmugasundramE. GanesanV. RajamohanR. ThambusamyS. Preparation of gallic acid functionalized polyvinyl alcohol/β ‐cyclodextrin‐silver nanoparticles cast film as an antimicrobial and antioxidant agent.J. Appl. Polym. Sci.202314045e5465210.1002/app.54652
    [Google Scholar]
  35. RoyC. GandhiA. MannaS. JanaS. Fabrication and evaluation of carboxymethyl guar gum-chitosan interpenetrating polymer network (IPN) nanoparticles for controlled drug delivery.Med. Novel Technol. Dev20242210030010.1016/j.medntd.2024.100300
    [Google Scholar]
  36. LiuF. LiJ. WangB. Green biosynthesis and characterization of organic fructus mori-composite silver nanoparticles: Enhanced antioxidant and antibacterial activities.Mater. Today Commun.20243910883710.1016/j.mtcomm.2024.108837
    [Google Scholar]
  37. SinghS. NwaborO.F. SukriD.M. Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application.Int. J. Biol. Macromol.202221623525010.1016/j.ijbiomac.2022.06.172 35780920
    [Google Scholar]
  38. PathakC. VaidyaF.U. PandeyS.M. Mechanism for development of nano based drug delivery system.Micro and Nano Technologies.Amsterdam, The NetherlandsElsevier20193567
    [Google Scholar]
  39. XuX. LiQ. DongW. Cinnamon cassia oil chitosan nanoparticles: Physicochemical properties and anti-breast cancer activity.Int. J. Biol. Macromol.20232241065107810.1016/j.ijbiomac.2022.10.191 36367479
    [Google Scholar]
  40. TavaresW.S. BarretoG.A.V. PintoE.P. SilvaP.G.B. SousaF.F.O. Influence of gelatin on the functional characteristics and wound healing potential of chitosan/zein films loaded with ellagic acid nanoparticles.J. Drug Deliv. Sci. Technol.20238810494210.1016/j.jddst.2023.104942
    [Google Scholar]
  41. ČajkoK. Lukić-PetrovićS. ĆelićN. NogaP. VaňaD. Influence of different metal concentrations on the morphology of Ag–As2Ch3 thin films analyzed by Rutherford Backscattering Spectrometry and Energy Dispersive Spectroscopy.Appl. Surf. Sci.202051014543010.1016/j.apsusc.2020.145430
    [Google Scholar]
  42. Bernal-ChávezS.A. Alcalá-AlcaláS. CerecedoD. Ganem-RonderoA. Platelet lysate-loaded PLGA nanoparticles in a thermo-responsive hydrogel intended for the treatment of wounds.Eur. J. Pharm. Sci.202014610523110.1016/j.ejps.2020.105231 32007518
    [Google Scholar]
  43. PatilN. WairkarS. Chitosan and α-cellulose-based mupirocin topical film-forming spray: Optimization, in vitro characterization, antimicrobial studies and wound healing activity.Int. J. Biol. Macromol.2024254Pt 112762210.1016/j.ijbiomac.2023.127622 37890752
    [Google Scholar]
  44. Villanueva-MartínezA. Hernández-RizoL. Ganem-RonderoA. Evaluating two nanocarrier systems for the transdermal delivery of sodium alendronate.Int. J. Pharm.202058211931210.1016/j.ijpharm.2020.119312 32278052
    [Google Scholar]
  45. SganzerlaW.G. CastroL.E.N. da RosaC.G. Production of nanocomposite films functionalized with silver nanoparticles bioreduced with Rosemary (Rosmarinus officinalis L.) essential oil.J. Agri. Food Res.20231110047910.1016/j.jafr.2022.100479
    [Google Scholar]
  46. PatzeltA. LademannJ. RichterH. In vivo investigations on the penetration of various oils and their influence on the skin barrier.Skin Res. Technol.201218336436910.1111/j.1600‑0846.2011.00578.x 22092829
    [Google Scholar]
  47. ZhangY. HuoM. ZhouJ. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles.AAPS J.201012326327110.1208/s12248‑010‑9185‑1 20373062
    [Google Scholar]
  48. RamosM. FortunatiE. PeltzerM. JimenezA. KennyJ.M. GarrigósM.C. Characterization and disintegrability under composting conditions of PLA-based nanocomposite films with thymol and silver nanoparticles.Polym. Degrad. Stabil.201613221010.1016/j.polymdegradstab.2016.05.015
    [Google Scholar]
  49. AcevedoD. NavarroM. MonroyL. Composición química del aceite esencial de hojas de orégano (origanum vulgare).Inf. Tecnol.201324491010.4067/S0718‑07642013000400005
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385315666240708060501
Loading
/content/journals/pnt/10.2174/0122117385315666240708060501
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test