Skip to content
2000
Volume 13, Issue 5
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Background

Increased intake of drugs worldwide and the subsequent advent of resistance to existing antibiotics have globally threatened health organizations. To combat the problem of these drug-resistant infections, as an alternative approach, graphene (GN)-related nanomaterials have attracted significant interest because of their effective anti-microbial potential. The present study shows the synthesis and characterization of nanocomposite of GN with carbon nitride viz. -CN, g-CN-Cu, and GN@-CN-Cu. Further, we investigated the anti-microbial potential of these nanocomposites against strains of Gram-negative and Gram-positive bacteria, viz., a multidrug-resistant strain of (MDRPA), a methicillin-resistant strain of ATCC33593 (MRSA), and an azole-sensitive fungal strain ( ATCC14053).

Methods

The morphological characterization of GN@-CN-Cu nanocomposite was executed by scanning electron microscopy, whereas the elemental analysis and their distribution were studied by energy-dispersive X-ray spectroscopy and elemental mapping methods. Furthermore, the anti-microbial and antibiofilm efficacies of -CN, g-CN-Cu, and GN@-CN-Cu nanocomposites were evaluated by disc diffusion, two-fold serial micro broth dilution, and 96 well microtiter plate methods.

Results

The ternary g-CN-Cu@GN, apart from the structures of g-CN-Cu, showed big sheets of GN. The observance of C, N, O, and Cu in the elemental analysis, as well as their uniform distribution in the mapping, indicated the successful fabrication of g-CN-Cu@GN. GN@-CN-Cu followed by g-CN-Cu and (-CN) exhibited significantly higher antimicrobial activity (zone of inhibition from 14.33 to 49.33 mm) against both the drug-resistant bacterial strains and azole-sensitive . MICs of nanocomposites ranged from 32 -256 µg/ml against the tested strains. Whereas all three nanocomposites at sub-MICs (0.25 A- and 0.5 A- MICs) showed concentration-dependent inhibition of biofilm formation in MDRPA, MRSA, and by allowing 11.35% to 32.59% biofilm formation.

Conclusion

Our study highlights the enhanced efficiency of GN@-CN-Cu nanocomposites as potential anti-microbial and antibiofilm agents to overcome the challenges of multi-drug-resistant bacteria and azole-sensitive fungi. Such kind of nanocomposites could be used to prevent nosocomial infections if coated on medical devices and food manufacturing instruments.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385318008240816043647
2025-10-01
2025-11-13
Loading full text...

Full text loading...

References

  1. GrayA. ShararaF. Global and regional sepsis and infectious syndrome mortality in 2019: A systematic analysis.Health Metrics and Evaluation2022
    [Google Scholar]
  2. WeiT. YuQ. ChenH. Responsive and synergistic anti-bacterial coatings: Fighting against bacteria in a smart and effective way.Adv. Healthc. Mater.201983180138110.1002/adhm.20180138130609261
    [Google Scholar]
  3. SuK. TanL. LiuX. CuiZ. ZhengY. LiB. HanY. LiZ. ZhuS. LiangY. FengX. WangX. WuS. Rapid photo-sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping.ACS Nano20201422077208910.1021/acsnano.9b0868631990179
    [Google Scholar]
  4. Hall-StoodleyL. CostertonJ.W. StoodleyP. Bacterial biofilms: from the Natural environment to infectious diseases.Nat. Rev. Microbiol.2004229510810.1038/nrmicro82115040259
    [Google Scholar]
  5. CarrascosaC. RaheemD. RamosF. SaraivaA. RaposoA. Microbial biofilms in the food industry—A comprehensive review.Int. J. Environ. Res. Public Health2021184201410.3390/ijerph1804201433669645
    [Google Scholar]
  6. SatpathyS. SenS.K. PattanaikS. RautS. Review on bacterial biofilm: An universal cause of contamination.Biocatal. Agric. Biotechnol.20167566610.1016/j.bcab.2016.05.002
    [Google Scholar]
  7. Van AckerH. Van DijckP. CoenyeT. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms.Trends Microbiol.201422632633310.1016/j.tim.2014.02.00124598086
    [Google Scholar]
  8. MujeebA.A. KhanN.A. JamalF. Badre AlamK.F. SaeedH. KazmiS. AlshameriA.W.F. KashifM. GhaziI. OwaisM. Olax scandens mediated biogenic synthesis of Ag-Cu nanocomposites: Potential against inhibition of drug-resistant microbes.Front Chem.2020810310.3389/fchem.2020.0010332185160
    [Google Scholar]
  9. WHO publishes list of bacteria for which new antibiotics are urgently needed.Saudi Med. J.2017
    [Google Scholar]
  10. BreijyehZ. JubehB. KaramanR. Resistance of gram-negative bacteria to current anti-bacterial agents and approaches to resolve it.Molecules2020256134010.3390/molecules2506134032187986
    [Google Scholar]
  11. ZhangY. WangY. Nonlinear optical properties of metal nanoparticles: A review.RSC Advances2017771451294514410.1039/C7RA07551K
    [Google Scholar]
  12. MaduraiveeranG. SasidharanM. GanesanV. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications.Biosens. Bioelectron.201810311312910.1016/j.bios.2017.12.03129289816
    [Google Scholar]
  13. YaqoobA.A. AhmadH. ParveenT. AhmadA. OvesM. IsmailI.M.I. QariH.A. UmarK. Mohamad IbrahimM.N. Recent advances in metal decorated nanomaterials and their various biological applications: A review.Front Chem.2020834110.3389/fchem.2020.0034132509720
    [Google Scholar]
  14. RaoP.V. NallappanD. MadhaviK. RahmanS. Jun WeiL. GanS.H. Phytochemicals and biogenic metallic nanoparticles as anticancer agents.Oxid. Med. Cell. Longev.2016201611510.1155/2016/368567127057273
    [Google Scholar]
  15. AzharuddinM. ZhuG.H. DasD. OzgurE. UzunL. TurnerA.P.F. PatraH.K. A repertoire of biomedical applications of noble metal nanoparticles.Chem. Commun. (Camb.)201955496964699610.1039/C9CC01741K31140997
    [Google Scholar]
  16. MauterM.S. ZuckerI. PerreaultF. WerberJ.R. KimJ.H. ElimelechM. The role of nanotechnology in tackling global water challenges.Nat. Sustain.20181416617510.1038/s41893‑018‑0046‑8
    [Google Scholar]
  17. PeriyasamiG. PalaniappanS. KaruppiahP. RahamanM. KarthikeyanP. AldalbahiA. Al-DhabiN.A. Biogenic silver nanoparticles fabricated by Euphorbia granulata 'forssk’s extract: Investigating the anti-microbial, radical scavenging, and catalytic activities.J. Nanomater.2022202211310.1155/2022/3864758
    [Google Scholar]
  18. RaiM. IngleA.P. BirlaS. YadavA. SantosC.A. Strategic role of selected noble metal nanoparticles in medicine.Crit. Rev. Microbiol.201642569671926089024
    [Google Scholar]
  19. VlamidisY. VolianiV. Bringing again noble metal nanoparticles to the forefront of cancer therapy.Front. Bioeng. Biotechnol.2018614310.3389/fbioe.2018.0014330349817
    [Google Scholar]
  20. LiuS. ZengT.H. HofmannM. BurcombeE. WeiJ. JiangR. KongJ. ChenY. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress.ACS Nano2011596971698010.1021/nn202451x21851105
    [Google Scholar]
  21. YangY. AsiriA.M. TangZ. DuD. LinY. Graphene based materials for biomedical applications.Mater. Today2013161036537310.1016/j.mattod.2013.09.004
    [Google Scholar]
  22. AnsariM.O. GauthamanK. EssaA. BencherifS.A. MemicA. Graphene and graphene-based materials in biomedical applications.Curr. Med. Chem.201926386834685010.2174/092986732666619070515585431284851
    [Google Scholar]
  23. AhmadV. AnsariM.O. Anti-microbial activity of graphene-based nanocomposites: synthesis, characterization, and their applications for human welfare.Nanomaterials (Basel)20221222400210.3390/nano1222400236432288
    [Google Scholar]
  24. WangY. LiJ. LiX. ShiJ. JiangZ. ZhangC.Y. Graphene-based nanomaterials for cancer therapy and anti-infections.Bioact. Mater.20221433534910.1016/j.bioactmat.2022.01.04535386816
    [Google Scholar]
  25. PhamV.T.H. TruongV.K. QuinnM.D.J. NotleyS.M. GuoY. BaulinV.A. Al KobaisiM. CrawfordR.J. IvanovaE.P. Graphene induces formation of pores that kill spherical and rod-shaped bacteria.ACS Nano2015988458846710.1021/acsnano.5b0336826166486
    [Google Scholar]
  26. MohammedH. KumarA. BekyarovaE. Al-HadeethiY. ZhangX. ChenM. AnsariM.S. CochisA. RimondiniL. Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials. A scope review.Front. Bioeng. Biotechnol.2020846510.3389/fbioe.2020.0046532523939
    [Google Scholar]
  27. ShariatiA. HosseiniS.M. CheginiZ. SeifalianA. ArabestaniM.R. Graphene-based materials for inhibition of wound infection and accelerating wound healing.Biomed. Pharmacother.202315811418410.1016/j.biopha.2022.11418436587554
    [Google Scholar]
  28. MagneT.M. de Oliveira VieiraT. AlencarL.M.R. JuniorF.F.M. Gemini-PiperniS. CarneiroS.V. FechineL.M.U.D. FreireR.M. GolokhvastK. MetrangoloP. FechineP.B.A. Santos-OliveiraR. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications.J. Nanostructure Chem.202212569372710.1007/s40097‑021‑00444‑334512930
    [Google Scholar]
  29. JiX. XuY. ZhangW. CuiL. LiuJ. Review of functionalization, structure and properties of graphene/polymer composite fibers.Compos., Part A Appl. Sci. Manuf.201687294510.1016/j.compositesa.2016.04.011
    [Google Scholar]
  30. YanK. MuC. MengL. FeiZ. DysonP.J. Recent advances in graphite carbon nitride-based nanocomposites: structure, antibacterial properties and synergies.Nanoscale Adv.20213133708372910.1039/D1NA00257K36133016
    [Google Scholar]
  31. Geetha BaiR. MuthoosamyK. ShiptonF.N. ManickamS. Acoustic cavitation induced generation of stabilizer-free, extremely stable reduced graphene oxide nanodispersion for efficient delivery of paclitaxel in cancer cells.Ultrason. Sonochem.20173612913810.1016/j.ultsonch.2016.11.02128069192
    [Google Scholar]
  32. HummersW.S.Jr OffemanR.E. Preparation of graphitic oxide.J. Am. Chem. Soc.1958806133910.1021/ja01539a017
    [Google Scholar]
  33. ZhangZ. OrtizO. GoyalR. KohnJ. Biodegradable polymers.Principles of Tissue Engineering201444147310.1016/B978‑0‑12‑398358‑9.00023‑9.
    [Google Scholar]
  34. BleichertP. Espírito SantoC. HanczarukM. MeyerH. GrassG. Inactivation of bacterial and viral biothreat agents on metallic copper surfaces.Biometals20142761179118910.1007/s10534‑014‑9781‑025100640
    [Google Scholar]
  35. ParraA. ToroM. JacobR. NavarreteP. TroncosoM. FigueroaG. Reyes-JaraA. Antimicrobial effect of copper surfaces on bacteria isolated from poultry meat.Braz J Microbiol.201849Suppl 111311810.1016/j.bjm.2018.06.008
    [Google Scholar]
  36. WeaverL. MichelsH.T. KeevilC.W. Survival of Clostridium difficile on copper and steel: Futuristic options for hospital hygiene.J. Hosp. Infect.200868214515110.1016/j.jhin.2007.11.01118207284
    [Google Scholar]
  37. ShalabyM.S. AbdallahH. ChettyR. KumarM. ShabanA.M. Silver nano-rods: Simple synthesis and optimization by experimental design methodology.Nano-Structures & Nano-Objects20191910034210.1016/j.nanoso.2019.100342
    [Google Scholar]
  38. MarcanoD.C. KosynkinD.V. BerlinJ.M. SinitskiiA. SunZ. SlesarevA. AlemanyL.B. LuW. TourJ.M. Improved synthesis of graphene oxide.ACS Nano2010484806481410.1021/nn100636820731455
    [Google Scholar]
  39. ZhangY. PanQ. ChaiG. LiangM. DongG. ZhangQ. QiuJ. Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine.Sci. Rep.201331194310.1038/srep0194323735995
    [Google Scholar]
  40. HassanI.A. SathasivamS. NairS.P. CarmaltC.J. Antimicrobial properties of copper-doped ZnO coatings under darkness and white light illumination.ACS Omega2017284556456210.1021/acsomega.7b0075930023724
    [Google Scholar]
  41. OvesM. AnsariM.O. AnsariM.S. MemićA. Graphene@Curcumin-Copper paintable coatings for the prevention of nosocomial microbial infection.Molecules2023286281410.3390/molecules2806281436985785
    [Google Scholar]
  42. M02-A12: Performance standards for anti-microbial disk susceptibility tests; Approved standard.CLSI2015Available from: https://clsi.org/media/1631/m02a12_sample.pdf
    [Google Scholar]
  43. M44-A2: Method for antifungal disk diffusion susceptibility testing of yeasts; Approved guideline.CLSI2009Available from: https://clsi.org/media/1634/m44a2_sample.pdf
    [Google Scholar]
  44. M07-A9. Methods for dilution anti-microbial susceptibility tests for bacteria that grow aerobically.CLSI2018Available from: https://clsi.org/media/1928/m07ed11_sample.pdf
    [Google Scholar]
  45. Reference method for broth dilution antifungal susceptibility testing of yeasts.CLSI2017Available from: https://clsi.org/media/1897/m27ed4_sample.pdf
    [Google Scholar]
  46. KhanM.S.A. MalikA. AhmadI. Anti-candidal activity of essential oils alone and in combination with amphotericin B or fluconazole against multi-drug resistant isolates of Candida albicans.Med. Mycol.2012501334210.3109/13693786.2011.58289021756200
    [Google Scholar]
  47. TiwariS.K. SahooS. WangN. HuczkoA. Graphene research and their outputs: Status and prospect.J. Sci. Adv. Mater. Devices202051102910.1016/j.jsamd.2020.01.006
    [Google Scholar]
  48. JanaA. ScheerE. PolarzS. Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields.Beilstein J. Nanotechnol.2017868871410.3762/bjnano.8.7428462071
    [Google Scholar]
  49. LozovskisP. JankauskaitėV. GuobienėA. KareivienėV. VitkauskienėA. Effect of graphene oxide and silver nanoparticles hybrid composite on P. aeruginosa strains with acquired resistance genes.Int. J. Nanomedicine2020155147516310.2147/IJN.S23574832764942
    [Google Scholar]
  50. KhanH.A. LeeY. ShaikM.R. SiddiqiN.J. SiddiquiM.R. AlrashoodS.T. AlharbiA.S. EkhzaimyA.A. Hybrid nanoparticles of manganese oxide and highly reduced graphene oxide for photodynamic therapy.Frontiers in Bioscience-Landmark20232811910.31083/j.fbl280101936722275
    [Google Scholar]
  51. AlqahtaniM.A. Al OthmanM.R. MohammedA.E. Bio fabrication of silver nanoparticles with antibacterial and cytotoxic abilities using lichens.Sci. Rep.20201011678110.1038/s41598‑020‑73683‑z33033304
    [Google Scholar]
  52. MumtazS. AliS. MumtazS. MughalT.A. TahirH.M. ShakirH.A. Chitosan conjugated silver nanoparticles: The versatile antibacterial agents.Polym. Bull.20238054719473610.1007/s00289‑022‑04321‑z
    [Google Scholar]
  53. JungW.K. KooH.C. KimK.W. ShinS. KimS.H. ParkY.H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli.Appl. Environ. Microbiol.20087472171217810.1128/AEM.02001‑0718245232
    [Google Scholar]
  54. ChenL. LiZ. ChenM. Facile production of silver-reduced graphene oxide nanocomposite with highly effective antibacterial performance.J. Environ. Chem. Eng.20197310316010.1016/j.jece.2019.103160
    [Google Scholar]
  55. RajagopalM. WalkerS. Envelope structures of Gram-positive bacteria.Curr. Top. Microbiol. Immunol.201740414426919863
    [Google Scholar]
  56. MaherC. HassanK.A. The Gram-negative permeability barrier: Tipping the balance of the in and the out.MBio2023146e01205-2310.1128/mbio.01205‑2337861328
    [Google Scholar]
  57. SubhashiniM. SangiliyandiG. Differential biological activities of silver nanoparticles against gramnegative and gram-positive bacteria: A novel approach for antimicrobial therapy.Nanobiomaterials in Anti-microbial Therapy.Amsterdam, The NetherlandsElsevier201619322710.1016/B978‑0‑323‑42864‑4.00006‑3.
    [Google Scholar]
  58. NikolicP. MudgilP. The cell wall, cell membrane and virulence factors of Staphylococcus aureus and their role in antibiotic resistance.Microorganisms202311225910.3390/microorganisms1102025936838224
    [Google Scholar]
  59. AkhavanO. GhaderiE. Toxicity of graphene and graphene oxide nanowalls against bacteria.ACS Nano20104105731573610.1021/nn101390x20925398
    [Google Scholar]
  60. BhattS. PathakR. PunethaV.D. PunethaM. Recent advances and mechanism of antimicrobial efficacy of graphene-based materials: A review.J. Mater. Sci.202358197839786710.1007/s10853‑023‑08534‑z37200572
    [Google Scholar]
  61. D’AmoraU. DacroryS. HasaninM.S. LongoA. SorienteA. KamelS. RaucciM.G. AmbrosioL. SciallaS. Advances in the physico-chemical, antimicrobial and angiogenic properties of graphene-oxide/cellulose nanocomposites for wound healing.Pharmaceutics202315233810.3390/pharmaceutics1502033836839660
    [Google Scholar]
  62. LiuS. NgA.K. XuR. WeiJ. TanC.M. YangY. ChenY. Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy.Nanoscale20102122744275010.1039/c0nr00441c20877897
    [Google Scholar]
  63. KangS. PinaultM. PfefferleL.D. ElimelechM. Single-walled carbon nanotubes exhibit strong antimicrobial activity.Langmuir200723178670867310.1021/la701067r17658863
    [Google Scholar]
  64. AriasL.R. YangL. Inactivation of bacterial pathogens by carbon nanotubes in suspensions.Langmuir20092553003301210.1021/la802769m19437709
    [Google Scholar]
  65. VecitisC.D. ZodrowK.R. KangS. ElimelechM. Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes.ACS Nano2010495471547910.1021/nn101558x20812689
    [Google Scholar]
  66. KangS. HerzbergM. RodriguesD.F. ElimelechM. Antibacterial effects of carbon nanotubes: Size does matter!Langmuir200824136409641310.1021/la800951v18512881
    [Google Scholar]
  67. ChenT. SongC. FanM. HongY. HuB. YuL. ShiW. In-situ fabrication of CuS/g-C 3 N 4 nanocomposites with enhanced photocatalytic H 2 -production activity via photoinduced interfacial charge transfer.Int. J. Hydrogen Energy20174217122101221910.1016/j.ijhydene.2017.03.188
    [Google Scholar]
  68. HarikumarP.S. Anti-bacterial activity of copper nanoparticles and copper nanocomposites against Escherichia Coli bacteria.Int. J. Sci.2016202839010.18483/ijSci.957
    [Google Scholar]
  69. WangB. WuL. SunA. LiuT. SunL. LiW. Preparation of a Cu 2 O/g-C 3 N 4 heterojunction with enhanced photocatalytic antibacterial activity under visible light.New J. Chem.20234729137971380910.1039/D3NJ02084C
    [Google Scholar]
  70. FanX. YahiaL.H. SacherE. Anti-microbial properties of the Ag, Cu nanoparticle system.Biology (Basel)202110213710.3390/biology1002013733578705
    [Google Scholar]
  71. NabilaM.I. KannabiranK. Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes.Biocatal. Agric. Biotechnol.201815566210.1016/j.bcab.2018.05.011
    [Google Scholar]
  72. NoyceJ.O. MichelsH. KeevilC.W. Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing.Appl. Environ. Microbiol.20067264239424410.1128/AEM.02532‑0516751537
    [Google Scholar]
  73. WilksS.A. MichelsH. KeevilC.W. The survival of Escherichia coli O157 on a range of metal surfaces.Int. J. Food Microbiol.2005105344545410.1016/j.ijfoodmicro.2005.04.02116253366
    [Google Scholar]
  74. de MiguelI. PrietoI. AlbornozA. SanzV. WeisC. TuronP. QuidantR. Plasmon-based biofilm inhibition on surgical implants.Nano Lett.20191942524252910.1021/acs.nanolett.9b0018730860848
    [Google Scholar]
  75. DhirS. Biofilm and dental implant: The microbial link.J. Indian Soc. Periodontol.201317151110.4103/0972‑124X.10746623633764
    [Google Scholar]
  76. LiS. LiuY. TianZ. LiuX. HanZ. RenL. Biomimetic superhydrophobic and antibacterial stainless-steel mesh via double-potentiostatic electrodeposition and modification.Surf. Coat. Tech.202040312635510.1016/j.surfcoat.2020.126355
    [Google Scholar]
  77. SahooJ. SarkhelS. MukherjeeN. JaiswalA. Nanomaterial-based antimicrobial coating for biomedical implants: New age solution for biofilm-associated infections.ACS Omega2022750459624598010.1021/acsomega.2c0621136570317
    [Google Scholar]
  78. PashkulevaI. MarquesA.P. VazF. ReisR.L. Surface modification of starch based biomaterials by oxygen plasma or UV-irradiation.J. Mater. Sci. Mater. Med.2010211213210.1007/s10856‑009‑3831‑019639265
    [Google Scholar]
  79. LiX. QiM. SunX. WeirM.D. TayF.R. OatesT.W. DongB. ZhouY. WangL. XuH.H.K. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities.Acta Biomater.20199462764310.1016/j.actbio.2019.06.02331212111
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385318008240816043647
Loading
/content/journals/pnt/10.2174/0122117385318008240816043647
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test