Skip to content
2000
Volume 13, Issue 5
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Multidrug-resistant is a serious public health problem with high fatality rates and difficult treatment. Conventional antimicrobials are limited in their effectiveness against MRSA due to developing resistance mechanisms and protective biofilms. Nanomaterials present a potential alternative since they offer targeted drug delivery and synergetic effects of nanoconjugates, eradicate biofilms, and use photothermal and photodynamic therapies. Furthermore, the discovery of nanovaccines holds the potential for enhancing immune responses against multidrug-resistant . Nanoparticles show considerable promise in the battle against multidrug-resistant , but significant obstacles remain, including determining their possible toxicity, scalability, and cost-effectiveness for widespread clinical application. However, by overcoming these barriers, nanomaterial-based techniques provide a viable route for tackling multidrug resistance in , opening the path for a future in which successful therapies are within reach.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385314186240522100239
2025-10-01
2025-11-14
Loading full text...

Full text loading...

References

  1. WHOAntimicrobial Resistance.Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance 2023
  2. ShawL. GolonkaE. PotempaJ. FosterS.J. The role and regulation of the extracellular proteases of Staphylococcus aureus.Microbiology2004150121722810.1099/mic.0.26634‑0 14702415
    [Google Scholar]
  3. ZunitaZ. BashirA. HafizalA. Occurrence of multidrug resistant Staphylococcus aureus in horses in Malaysia.Vet. World200816165167
    [Google Scholar]
  4. LuzzagoC. LocatelliC. FrancoA. Clonal diversity, virulence-associated genes and antimicrobial resistance profile of Staphylococcus aureus isolates from nasal cavities and soft tissue infections in wild ruminants in Italian Alps.Vet. Microbiol.20141701-215716110.1016/j.vetmic.2014.01.016 24565474
    [Google Scholar]
  5. BitrusA.A. PeterO.M. AbbasM.A. GoniM.D. Staphylococcus aureus: A review of antimicrobial resistance mechanisms.Veterinary Sciences: Research and Reviews2018424354
    [Google Scholar]
  6. CongY. YangS. RaoX. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features.J. Adv. Res.20202116917610.1016/j.jare.2019.10.005 32071785
    [Google Scholar]
  7. MirghaniR. SabaT. KhaliqH. Biofilms: Formation, drug resistance and alternatives to conventional approaches.AIMS Microbiol.20228323927710.3934/microbiol.2022019 36317001
    [Google Scholar]
  8. ChooE.J. ChambersH.F. Treatment of methicillin-resistant Staphylococcus aureus bacteremia.Infect. Chemother.201648426727310.3947/ic.2016.48.4.267 28032484
    [Google Scholar]
  9. ChambersH.F. BasuinoL. HamiltonS.M. ChooE.J. MoiseP. Daptomycin–β-lactam combinations in a rabbit model of daptomycin-nonsusceptible methicillin-resistant staphylococcus aureus endocarditis.Antimicrob. Agents Chemother.20166073976397910.1128/AAC.00589‑16 27090173
    [Google Scholar]
  10. DavisJ.S. SudA. O’SullivanM.V.N. Combination of vancomycin and β-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: A pilot multicenter randomized controlled trial.Clin. Infect. Dis.201662217318010.1093/cid/civ808 26349552
    [Google Scholar]
  11. JahanbakhshS. SinghN.B. YimJ. Impact of daptomycin dose exposure alone or in combination with β-lactams or rifampin against vancomycin-resistant enterococci in an in vitro biofilm model.Antimicrob. Agents Chemother.2020645e02074e1910.1128/AAC.02074‑19 32094136
    [Google Scholar]
  12. MakabentaJ.M.V. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections.Nat. Rev. Microbiol.2021231936
    [Google Scholar]
  13. Hall-StoodleyL. StoodleyP. Evolving concepts in biofilm infections.Cell. Microbiol.20091171034104310.1111/j.1462‑5822.2009.01323.x 19374653
    [Google Scholar]
  14. MbaI.E. NwezeE.I. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: Research progress, challenges, and prospects.World J. Microbiol. Biotechnol.202137610810.1007/s11274‑021‑03070‑x 34046779
    [Google Scholar]
  15. WangL. HuC. ShaoL. The antimicrobial activity of nanoparticles: Present situation and prospects for the future.Int. J. Nanomedicine2017121227124910.2147/IJN.S121956 28243086
    [Google Scholar]
  16. KumarM. CurtisA. HoskinsC. Application of nanoparticle technologies in the combat against anti-microbial resistance.Pharmaceutics2018117
    [Google Scholar]
  17. YuanZ. WenY. LiG. Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment.Bioresour. Technol.201825922823610.1016/j.biortech.2018.03.044 29567594
    [Google Scholar]
  18. MuthukrishnanL. Multidrug resistant tuberculosis – Diagnostic challenges and its conquering by nanotechnology approach – An overview.Chem. Biol. Interact.202133710939710.1016/j.cbi.2021.109397 33508305
    [Google Scholar]
  19. LongoG. Alonso-SarduyL. RioL.M. BizziniA. TrampuzA. NortzJ. Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors.Nat. Nanotechnol.20138522526
    [Google Scholar]
  20. HalwaniA.A. Development of pharmaceutical nanomedicines: From the bench to the market.Pharmaceutics202214110610.3390/pharmaceutics14010106 35057002
    [Google Scholar]
  21. AlbuquerqueA.J. Nanomaterials with antimicrobial properties: Applications in health sciences.In: Micobial pathogens and strategies for combating them Science, technology and education.Formatex Research Center20134773
    [Google Scholar]
  22. WeirE. LawlorA. WhelanA. ReganF. The use of nanoparticles in anti-microbial materials and their characterization.Analyst2008133783584510.1039/b715532h 18575632
    [Google Scholar]
  23. ArugueteD.M. KimB. HochellaM.F.Jr Antimicrobial nanotechnology: Its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology.Environ. Sci. Process. Impacts20131519310210.1039/C2EM30692A 24592430
    [Google Scholar]
  24. EsmaeillouM. ZarriniG. Ahangarzadeh RezaeeM. Shahbazi mojarradJ. BahadoriA. Vancomycin capped with silver nanoparticles as an antibacterial agent against multi-drug resistance bacteria.Adv. Pharm. Bull.20177347948310.15171/apb.2017.058 29071232
    [Google Scholar]
  25. WangH. WangM. XuX. GaoP. XuZ. ZhangQ. Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance.Nat. Commun.2021116
    [Google Scholar]
  26. ChiriacV. StratulatD.N. CalinG. NichitusS. BurluiV. StadoleanuC. Antimicrobial property of Zinc based nanoparticles.Mater. Sci. Eng.2016
    [Google Scholar]
  27. GattuR. RameshS.S. RameshS. Role of small molecules and nanoparticles in effective inhibition of microbial biofilms: A ray of hope in combating microbial resistance.Microb. Pathog.202418810654310.1016/j.micpath.2024.106543 38219923
    [Google Scholar]
  28. GaldieroS. FalangaA. VitielloM. CantisaniM. MarraV. GaldieroM. Silver nanoparticles as potential antiviral agents.Molecules2011161088948918
    [Google Scholar]
  29. KaittanisC. SantraS. PerezJ.M. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis.Adv. Drug Deliv. Rev.2010624-540842310.1016/j.addr.2009.11.013 19914316
    [Google Scholar]
  30. ChenX. SchluesenerH.J. Nanosilver: A nanoproduct in medical application.Toxicol. Lett.2008176111210.1016/j.toxlet.2007.10.004 18022772
    [Google Scholar]
  31. AderibigbeB. Metal-based nanoparticles for the treatment of infectious diseases.Molecules2017228137010.3390/molecules22081370 28820471
    [Google Scholar]
  32. DakalT.C. KumarA. MajumdarR.S. YadavV. Mechanistic basis of antimicrobial actions of silver nanoparticles.Front. Microbiol.2016117
    [Google Scholar]
  33. AbbaszadeganA. GhahramaniY. GholamiA. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study.J. Nanomater.201520151810.1155/2015/720654
    [Google Scholar]
  34. WadyA.F. MachadoA.L. FoggiC.C. Effect of a silver nanoparticles solution on Staphylococcus aureus and Candida spp.J. Nanomater.201420141710.1155/2014/545279
    [Google Scholar]
  35. KangJ. DietzM.J. HughesK. XingM. LiB. Silver nanoparticles present high intracellular and extracellular killing against Staphylococcus aureus.J. Antimicrob. Chemother.20197461578158510.1093/jac/dkz053 30778552
    [Google Scholar]
  36. NagalingamM. KalpanaV.M. RajeswariV.D. PanneerselvamA. Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-medicated biocompatible gold nanoparticles from Alternanthera bettzickiana.Biotechnol. Rep.201819
    [Google Scholar]
  37. HameedS. XieL. YingY. Shape-dependent significant physical multilation and antibacterial mechanisms of gold nanoparticles against foodborne bacterial pathogens(Escherichia coli, Pseudomonas aeruginosa and staphylococcus aureus) at lower concentrations.Mater. Sci. Eng. C2019141
    [Google Scholar]
  38. QingY. ChengL. LiR. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies.Int. J. Nanomedicine2018133311332710.2147/IJN.S165125 29892194
    [Google Scholar]
  39. Sánchez-LópezE. GomesD. EsteruelasG. BonillaL. Lopez-MachadoA.L. GalindoR. Metal-baed nanoparticles as antimicrobial agents: An overview.Nanomaterials2020102292
    [Google Scholar]
  40. KrukT. SzczepanowiczK. StefańskaJ. SochaR.P. WarszyńskiP. Synthesis and antimicrobial activity of monodisperse copper nanoparticles.Colloids Surf. B Biointerfaces2015128172210.1016/j.colsurfb.2015.02.009 25723345
    [Google Scholar]
  41. VargheseB. KurianM. KrishnaS. AthiraT.S. Biochemical synthesis of copper nanoparticles using Zingiber officinalis and Curcuma longa: Characterization and antibacterial activity study.Mater. Today Proc.20202530230610.1016/j.matpr.2020.01.476
    [Google Scholar]
  42. AnsariM.A. KhanH.M. KhanA.A. SultanA. AzamA. Characterization of clinical strains of MSSA, MRSA and MRSE isolated from skin and soft tissue infections and the antibacterial activity of ZnO nanoparticles.World J. Microbiol. Biotechnol.20122841605161310.1007/s11274‑011‑0966‑1 22805942
    [Google Scholar]
  43. RaufM.A. OwaisM. RajpootR. AhmadF. KhanN. ZubairS. Biomimetically synthesisez ZnO nanoparticles attain potent antibacterial activity against less suseceptible S.aureus skin infection in experimental animals.RSC Advances20173636136373
    [Google Scholar]
  44. KadiyalaU. Turali-EmreE.S. BahngJ.H. KotovN.A. VanEppsJ.S. Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA).Nanoscale201810104927493910.1039/C7NR08499D 29480295
    [Google Scholar]
  45. KimM.H. YamayoshiI. MathewS. LinH. NayfachJ. SimonS.I. Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection.Ann. Biomed. Eng.201341359860910.1007/s10439‑012‑0698‑x 23149904
    [Google Scholar]
  46. FangC.H. TsaiP.I. HuangS.W. Magnetic hyperthermia enhance the treatment efficacy of peri-implant osteomyelitis.BMC Infect. Dis.201717151610.1186/s12879‑017‑2621‑4 28743235
    [Google Scholar]
  47. RoyA.S. ParveenA. KoppalkarA.L. PrasadM.V.N.A. Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus Aureus.J. Biomater. Nanobiotechnol.20101374110.4236/jbnb.2010.11005
    [Google Scholar]
  48. GuptaN. DeoghareP.M. SinghP. SankhlaM.S. SononeS.S. PariharK. Carbon nanostruvtures for fighting antimicrobial resistant bacteria.In: Nano-Strategies for Addressing Antimicrobial Resistance, Nanotechnology in the life Sciences.Springer202236938310.1007/978‑3‑031‑10220‑2_11
    [Google Scholar]
  49. SaleemiM.A. KongY.L. YongP.V.C. WongE.H. An overview of antimicrobial properties of carbon nanotubes-based nanocomposites.Adv. Pharm. Bull.202212344946510.34172/apb.2022.049 35935059
    [Google Scholar]
  50. KumarA. DalalJ. DahiyaS. In situ decoration of silver nanoparticles on single-walled carbon nanotubes by microwave irradiation for enhanced and durable anti-bacterial finishing on cotton fabric.Ceram. Int.20194511011101910.1016/j.ceramint.2018.09.280
    [Google Scholar]
  51. NepalD. BalasubramanianS. SimonianA.L. DavisV.A. Strong antimicrobial coatings: Single-walled carbon nanotubes armored with biopolymers.Nano Lett.2008871896190110.1021/nl080522t 18507479
    [Google Scholar]
  52. SeoY. HwangJ. KimJ. JeongY. HwangM.P. ChoiJ. Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles.Int. J. Nanomedicine2014946214629 25336943
    [Google Scholar]
  53. DeryabinD.G. EfremovaL.V. VasilchenkoA.S. SaidakovaE.V. SizovaE.A. TroshinP.A. A Zeta potential value determines the aggregates’s size of penta-substituted [60] fullerene derivatives in aqueous suspension whereas positive charge is required for toxocity against bacterial cells.J. Nanobiotechnology2015113
    [Google Scholar]
  54. MizunoK. ZhiyentayevT. HuangvL. Antimicrobial photodynamic therapy with functionalized fullerenes: Quantitative structure-activity relationships.J. Nanomed. Nanotechnol.2011221910.4172/2157‑7439.1000109 21743839
    [Google Scholar]
  55. YousefiM. DadashpourM. HejaziM. Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria.Mater. Sci. Eng. C20177456858110.1016/j.msec.2016.12.125 28254332
    [Google Scholar]
  56. LiY. YuanH. von dem BusscheA. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites.Proc. Natl. Acad. Sci. USA201311030122951230010.1073/pnas.1222276110 23840061
    [Google Scholar]
  57. OvesM. RaufM.A. AnsariM.O. Graphene decorated zinc oxide and curcumin to disinfect the methicillin-resistant Staphylococcus aureus.Nanomaterials2020105100410.3390/nano10051004
    [Google Scholar]
  58. AlaviM. JabariE. JabbariE. Functionalized carbon-based nanomaterials and quantum dots with antibactrerial activity: A review.Expert Rev. Anti Infect. Ther.2020132
    [Google Scholar]
  59. ZhaoC. WangX. WuL. Nitrogen-doped carbon quantum dots as an antimicrobial agent against Staphylococcus for the treatment of infected wounds.Colloids Surf. B Biointerfaces2019179172710.1016/j.colsurfb.2019.03.042 30928801
    [Google Scholar]
  60. LiY.J. HarrounS.G. SuY.C. Synthesis of self‐assembled spermidine‐carbon quantum dots effective against multidrug‐resistant bacteria.Adv. Healthc. Mater.20165192545255410.1002/adhm.201600297 27448287
    [Google Scholar]
  61. ShresthaA. HamblinM.R. KishenA. Photoactivated rose bengal functionalized chitosan nanoparticles produce antibacterial/biofilm activity and stabilize dentin-collagen.Nanomedicine201410349150110.1016/j.nano.2013.10.010 24200522
    [Google Scholar]
  62. VerleeA. MinckeS. StevensC.V. Recent developments in antibacterial and antifungal chitosan and its derivatives.Carbohydr. Polym.201716426828310.1016/j.carbpol.2017.02.001 28325326
    [Google Scholar]
  63. ChakrabortyS.P. SahuS.K. PramanikP. RoyS. In vitro antimicrobial activity of nanoconjugated vancomycin against drug resistant Staphylococcus aureus.Int. J. Pharm.20124361-265967610.1016/j.ijpharm.2012.07.033 22841851
    [Google Scholar]
  64. PintoR.M. Lopes-de-CamposD. MartinsM.C.L. Van DijckP. NunesC. ReisS. Impact of nanosystems in Staphylococcus aureus biofilms treatment.FEMS Microbiol. Rev.201943662264110.1093/femsre/fuz021 31420962
    [Google Scholar]
  65. OnyejiC.O. NightingaleC.H. MarangosM.N. Enhanced killing of methicillin-resistantStaphylococcus aureus in human macrophages by liposome-entrapped vancomycin and teicoplanin.Infection199422533834210.1007/BF01715542 7843812
    [Google Scholar]
  66. HuhA.J. KwonY.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era.J. Control. Release2011156212814510.1016/j.jconrel.2011.07.002 21763369
    [Google Scholar]
  67. HsuC.Y. YangS.C. SungC.T. WengY.H. FangJ.Y. Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting.Int. J. Nanomedicine2017128227823810.2147/IJN.S147226 29184410
    [Google Scholar]
  68. ZhaoG. HuC. XueY. In vitro evaluation of chitosan‐coated liposome containing both coenzyme Q10 and alpha‐lipoic acid: Cytotoxicity, antioxidant activity, and antimicrobial activity.J. Cosmet. Dermatol.201817225826210.1111/jocd.12369 28722258
    [Google Scholar]
  69. MirzaieA. PeiroviN. AkbarzadehI. Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus.Bioorg. Chem.202010310423110.1016/j.bioorg.2020.104231 32882442
    [Google Scholar]
  70. WangZ. LiuX. PengY. Platensimycin-encapsulated liposomes or micelles as biosafe nanoantibiotics exhibited strong antibacterial activities against methicillin-resistant Staphylococcus aureus infection in mice.Mol. Pharm.20201772451246210.1021/acs.molpharmaceut.0c00194 32519867
    [Google Scholar]
  71. EssaD. KondiahP.P.D. ChoonaraY.E. PillayV. The design of poly(lactide-co-glycolide) nanocarriers for medical applications.Front. Bioeng. Biotechnol.20208484810.3389/fbioe.2020.00048 32117928
    [Google Scholar]
  72. LiuY. SunD. FanQ. The enhanced permeability and retention effect based nanomedicine at the site of injury.Nano Res.202013256456910.1007/s12274‑020‑2655‑6
    [Google Scholar]
  73. HasanN. CaoJ. LeeJ. Bacteria-targeted clindamycin loaded polymeric nanoparticles: Effect of surface charge on nanoparticle adhesion to MRSA, antibacterial activity, and wound healing.Pharmaceutics201911523610.3390/pharmaceutics11050236 31096709
    [Google Scholar]
  74. Nazarzadeh ZareE. Mansour LakourajM. MohseniM. Biodegradable polypyrrole/dextrin conductive nanocomposite: Synthesis, characterization, antioxidant and antibacterial activity.Synth. Met.201418791610.1016/j.synthmet.2013.09.045
    [Google Scholar]
  75. RobertsonJ. Gizdavic-NikolaidisM. NieuwoudtM.K. SwiftS. The antimicrobial action of polyaniline involves production of oxidative stress while functionalisation of polyaniline introduces additional mechanisms.PeerJ20186e513510.7717/peerj.5135 29967756
    [Google Scholar]
  76. PrasadP. SinghR. KamarajuS. SritharanV. GuptaS. ε-polylysine nanoconjugates: Value-added antimicrobials for drug-resistant bacteria.ACS Appl. Bio Mater.20203106688669610.1021/acsabm.0c00569 35019334
    [Google Scholar]
  77. ScolariI.R. PáezP.L. MusriM.M. PetitiJ.P. TorresA. GraneroG.E. Rifampicin loaded in alginate/chitosan nanoparticles as a promising pulmonary carrier against Staphylococcus aureus.Drug Deliv. Transl. Res.20201051403141710.1007/s13346‑019‑00705‑3 32363536
    [Google Scholar]
  78. LiuX. WangZ. FengX. Platensimycin-encapsulated poly(lactic- co -glycolic acid) and poly(amidoamine) dendrimers nanoparticles with enhanced anti-staphylococcal activity in vivo.Bioconjug. Chem.20203151425143710.1021/acs.bioconjchem.0c00121 32286051
    [Google Scholar]
  79. DurairajC. KadamR.S. ChandlerJ.W. HutchersonS.L. KompellaU.B. Nanosized dendritic polyguanidilyated translocators for enhanced solubility, permeability, and delivery of gatifloxacin.Invest. Ophthalmol. Vis. Sci.201051115804581610.1167/iovs.10‑5388 20484584
    [Google Scholar]
  80. FranciG. FalangaA. GaldieroS. Silver nanoparticles as potential antibacterial agents.Molecules20152058856887410.3390/molecules20058856 25993417
    [Google Scholar]
  81. MoronesJ.R. ElechiguerraJ.L. CamachoA. The bactericidal effect of silver nanoparticles.Nanotechnology200516102346235310.1088/0957‑4484/16/10/059 20818017
    [Google Scholar]
  82. HemegH. Nanomaterials for alternative antibacterial therapy.Int. J. Nanomedicine2017128211822510.2147/IJN.S132163 29184409
    [Google Scholar]
  83. PazliN.F.A.M. GhafarS.A.A. AnuarA.H.H. Mohamad HanafiahR. Inhibition mechanism of silver nanoparticle-kaempferol against methicillin-resistant Staphylococcus aureus.Arab. J. Chem.202417210548910.1016/j.arabjc.2023.105489
    [Google Scholar]
  84. ZhaoX. KuipersO.P. Synthesis of silver-nisin nanoparticles with low cytotoxicity as antimicrobials against biofilm-forming pathogens.Colloids Surf. B Biointerfaces202120611196510.1016/j.colsurfb.2021.111965 34237525
    [Google Scholar]
  85. TanaseC. BertaL. ComanN.A. Antibacterial and antioxidant potential of silver nanoparticles biosynthesized using the spruce bark extract.Nanomaterials2019911154110.3390/nano9111541 31671587
    [Google Scholar]
  86. HuqM.A. Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens.Int. J. Mol. Sci.2020214151010.3390/ijms21041510 32098417
    [Google Scholar]
  87. MurtazaM. AqibA.I. KhanS.R. Sodium alginate-based MgO nanoparticles coupled antibiotics as safe and effective antimicrobial candidates against staphylococcus aureus of houbara bustard birds.Biomedicines2023117195910.3390/biomedicines11071959 37509597
    [Google Scholar]
  88. AjayS. ChandraJ.N. MonikaR. Magnesium oxide nanoparticles (MgONPs): Green synthesis, characterization and antimicrobial activity.Res J Pharm Technol201912102019
    [Google Scholar]
  89. AnbumaniD. DhandapaniK. ManoharanJ. Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula leaf extract.J. King Saud Univ. Sci.202234310189610.1016/j.jksus.2022.101896
    [Google Scholar]
  90. HassanA. Al-SalmiF.A. SalehM.A. Inhibition mechanism of methicillin-resistant Staphylococcus aureus by zinc oxide nanorods via suppresses penicillin-binding protein 2a.ACS Omega20238119969997710.1021/acsomega.2c07142 36969461
    [Google Scholar]
  91. PatraP. MitraS. DebnathN. PramanikP. GoswamiA. Ciprofloxacin conjugated zinc oxide nanoparticle: A camouflage towards multidrug resistant bacteria.Bull. Mater. Sci.201437219920610.1007/s12034‑014‑0637‑6
    [Google Scholar]
  92. GuH. HoP.L. TongE. WangL. XuB. Presenting vancomycin on nanoparticles to enhance antimicrobial activities.Nano Lett.2003391261126310.1021/nl034396z
    [Google Scholar]
  93. KalitaS. KandimallaR. SharmaK.K. KatakiA.C. DekaM. KotokyJ. Amoxicillin functionalized gold nanoparticles reverts MRSA resistance.Mater. Sci. Eng. C20166172072710.1016/j.msec.2015.12.078
    [Google Scholar]
  94. SinghH. DuJ. SinghP. YiT.H. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications.In: Artif Cells Nanomed Biotechnol.201746(6)116370
    [Google Scholar]
  95. FolorunsoA. AkinteluS. OyebamijiA.K. Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata.J. Nanostructure Chem.20199211111710.1007/s40097‑019‑0301‑1
    [Google Scholar]
  96. HussainS.B. FatimaM. AslamA. NoorS. ZubairM. Studying the potential of copper nanoparticles synthesized from staphylococcus aureus against drug-resistant bacteria.Asian J Biochem Genet Mol Biol20231536581
    [Google Scholar]
  97. VariyathodyH. ArthanariM. MuruganM. KuppannanG. Evaluating the antibacterial profile of copper oxide nanoparticles – Vitamin E (CuO NPs-Vit E) complex against multidrug-resistant escherichia coli and staphylococcus aureus.J. Pure Appl. Microbiol.20231742080209710.22207/JPAM.17.4.01
    [Google Scholar]
  98. YeJ. HouF. ChenG. ZhongT. XueJ. YuF. Novel copper-containing ferrite nanoparticles exert lethality to MRSA by disrupting MRSA cell membrane permeability, depleting intercellular iron ions, and upergulating ROS levels.Front. Microbiol.202314
    [Google Scholar]
  99. CihalovaK. ChudobovaD. MichalekP. Staphylococcus aureus and MRSA growth and biofilm formation after treatment with antibiotics and SeNPs.Int. J. Mol. Sci.20151610246562467210.3390/ijms161024656 26501270
    [Google Scholar]
  100. JankauskaitĿV. VitkauskienĿA. LazauskasA. BaltrusaitisJ. ProsyĿevasI. AndruleviĿiusM. Bactericidal effect of graphene oxide/Cu/Ag nanoderivatives against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus.Int. J. Pharm.20165111909710.1016/j.ijpharm.2016.06.121 27370911
    [Google Scholar]
  101. Al-JumailiA. AlancherryS. BazakaK. JacobM. Review on the antimicrobial properties of carbon nanostructures.Materials2017109106610.3390/ma10091066 28892011
    [Google Scholar]
  102. Azizi-LalabadiM. HashemiH. FengJ. JafariS.M. Carbon nanomaterials against pathogens The antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites.Adv. Colloid Interface Sci.202028410225010.1016/j.cis.2020.102250 32966964
    [Google Scholar]
  103. HolubnychaV. KalinkevichO. IvashchenkoO. PogorielovM. Antibacterial activity of in situ prepared chitosan/silver nanoparticles solution against methicillin-resistant strains of staphylococcus aureus.Nanoscale Res. Lett.20181317110.1186/s11671‑018‑2482‑9 29500654
    [Google Scholar]
  104. YazdiA.M. HosseiniA. GheibihayatS.M. BeygiM. HaghiralsadatB.F. OroojalianF. Characterization, cell toxicity, and antimicrobial activity of a carvacrol-encapsulating nanoliposomal system against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli.Nanomed. J.202411193
    [Google Scholar]
  105. GuptaP.V. NirwaneA.M. BelubbiT. NagarsenkerM.S. Pulmonary delivery of synergistic combination of fluoroquinolone antibiotic complemented with proteolytic enzyme: A novel antimicrobial and antibiofilm strategy.Nanomedicine20171372371238410.1016/j.nano.2017.06.011 28648640
    [Google Scholar]
  106. ZhouT.H. SuM. ShangB.C. Nano-hydroxyapatite/β-tricalcium phosphate ceramics scaffolds loaded with cationic liposomal ceftazidime: Preparation, release characteristics in vitro and inhibition to Staphylococcus aureus biofilms.Drug Dev. Ind. Pharm.201238111298130410.3109/03639045.2011.648196 22257380
    [Google Scholar]
  107. BonventreP.F. GregoriadisG. Killing of intraphagocytic Staphylococcus aureus by dihydrostreptomycin entrapped within liposomes.Antimicrob. Agents Chemother.19781361049105110.1128/AAC.13.6.1049 79336
    [Google Scholar]
  108. DeesC. SchultzR.D. The mechanism of enhanced intraphagocytic killing of bacteria by liposomes containing antibiotics.Vet. Immunol. Immunopathol.199024213514610.1016/0165‑2427(90)90016‑L 2336788
    [Google Scholar]
  109. ImbuluzquetaE. GamazoC. ArizaJ. Blanco-PrietoM.J. Drug delivery systems for potential treatment of intracellular bacterial infections.Front. Biosci.201015139741710.2741/3627 20036827
    [Google Scholar]
  110. ThomasN. ThornC. RichterK. ThierryB. PrestidgeC. Efficacy of poly-lactic-co-glycolic acid micro- and nanoparticles of ciprofloxacin against bacterial biofilms.J. Pharm. Sci.2016105103115312210.1016/j.xphs.2016.06.022 27519649
    [Google Scholar]
  111. HassanD. OmoloC.A. FasikuV.O. Formulation of pH-responsive quatsomes from quaternary bicephalic surfactants and cholesterol for enhanced delivery of vancomycin against methicillin resistant Staphylococcus aureus.Pharmaceutics20201211109310.3390/pharmaceutics12111093 33202629
    [Google Scholar]
  112. XieS. YangF. TaoY. ChenD. QuW. HuangL. Enhanced intracellular delivery and antibacteria: Efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella.Sci. Rep.2017741104
    [Google Scholar]
  113. WangA.Z. LangerR. FarokhzadO.C. Nanoparticle delivery of cancer drugs.Annu. Rev. Med.201263118519810.1146/annurev‑med‑040210‑162544 21888516
    [Google Scholar]
  114. StojkovskaJ. KostićD. JovanovićŽ. Vukašinović-SekulićM. Mišković-StankovićV. ObradovićB. A comprehensive approach to in vitro functional evaluation of Ag/alginate nanocomposite hydrogels.Carbohydr. Polym.20141111330531410.1016/j.carbpol.2014.04.063 25037356
    [Google Scholar]
  115. CiandriniE. MorroniG. ArzeniD. Antimicrobial activity of different antimicrobial peptides (AMPs) against clinical methicillin-resistant staphylococcus aureus (MRSA).Curr. Top. Med. Chem.201918242116212610.2174/1568026618666181022140348 30345920
    [Google Scholar]
  116. Bin LiewK. Kumar JanakiramanA. SundarapandianR. A review and revisit of nanoparticles for antimicrobial drug delivery.J. Med. Life202215332833510.25122/jml‑2021‑0097 35449993
    [Google Scholar]
  117. NwabuifeJ.C. PantA.M. GovenderT. Liposomal delivery systems and their applications against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus.Adv. Drug Deliv. Rev.202117811386110.1016/j.addr.2021.113861 34242712
    [Google Scholar]
  118. VassalloA. SillettiM.F. FaraoneI. MilellaL. Nanoparticulate antibiotic systems as antibacterial agents and antibiotic delivery platforms to fight infections.J. Nanomater.2020202013110.1155/2020/6905631
    [Google Scholar]
  119. MakhathiniS.S. KalhapureR.S. JadhavM. Novel two-chain fatty acid-based lipids for development of vancomycin pH-responsive liposomes against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA).J. Drug Target.201927101094110710.1080/1061186X.2019.1599380 30901236
    [Google Scholar]
  120. ChangY.T. LinC.Y. ChenC.J. Neutrophil-targeted combinatorial nanosystems for suppressing bacteremia-associated hyperinflammation and MRSA infection to improve survival rates.Acta Biomater.202417433134410.1016/j.actbio.2023.11.040 38061677
    [Google Scholar]
  121. ThangamaniS. YounisW. SeleemM.N. Repurposing clinical molecule ebselen to combat drug resistant pathogens.PLoS One2015107e013387710.1371/journal.pone.0133877 26222252
    [Google Scholar]
  122. PeiY. MohamedM.F. SeleemM.N. YeoY. Particle engineering for intracellular delivery of vancomycin to methicillin-resistant Staphylococcus aureus (MRSA)-infected macrophages.J. Control. Release201726713314310.1016/j.jconrel.2017.08.007 28797580
    [Google Scholar]
  123. GarciaC.R. MalikM.H. BiswasS. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils.Biomater. Sci.202210363365310.1039/D1BM01537K 34994371
    [Google Scholar]
  124. KhairanK. Marfu’ahM. IdroesR. SriwatiR. DiahM. An oberview of essential oil-based nanoemulsion and their bioolgical activites against some microbial pathogenic.IOP Conf. Ser. Earth Environ. Sci.20241297
    [Google Scholar]
  125. WanY. WangX. YangL. Anti Staphylococcus aureus activity of shikonin @ chitosan nanoemulsion and its effect on the storage quality of pork.Food Control202415811020310.1016/j.foodcont.2023.110203
    [Google Scholar]
  126. FessehaYA ManayiaAH LiuPC Photoreactive silvercontaining supramolecular polymers that form self-assembled nanogels for efficient antibacterial treatment.J Colloid Interface Sci2024654Pt B9677810.1016/j.jcis.2023.10.11937898080
    [Google Scholar]
  127. ZouL.L. MaJ.L. WangT. YangT.B. LiuC.B. Cell-penetrating peptide-mediated therapeutic molecule delivery into the central nervous system.Curr. Neuropharmacol.201311219720810.2174/1570159X11311020006 23997754
    [Google Scholar]
  128. DarwishR.M. SalamaA.H. Study the effect of conjugate novel ultra-short antimicrobial peptide with silver nanoparticles against methicillin resistant S. aureus and ESBL E. coli.Antibiotics2022118102410.3390/antibiotics11081024 36009893
    [Google Scholar]
  129. LeiR. HouJ. ChenQ. Self-assembling myristoylated human α-defensin 5 as a next-generation nanobiotics potentiates therapeutic efficacy in bacterial infection.ACS Nano20181265284529610.1021/acsnano.7b09109 29856606
    [Google Scholar]
  130. ShangL. WuY. WeiN. Novel arginine end-tagging antimicrobial peptides to combat multidrug-resistant bacteria.ACS Appl. Mater. Interfaces202214124525810.1021/acsami.1c19305 34964342
    [Google Scholar]
  131. MoradiF. GhaediA. FooladfarZ. BazrgarA. Recent advance on nanoparticles or nanomaterials with anti-multidrug resistant bacteria and anti-bacterial biofilm properties: A systematic review.Heliyon2023911e2210510.1016/j.heliyon.2023.e22105 38034786
    [Google Scholar]
  132. OsmanN. OmoloC.A. GafarM.A. Niosomes modified with a novel pH-responsive coating (mPEG-OA) enhance the antibacterial and anti-biofilm activity of vancomycin against methicillin-resistant Staphylococcus aureus.Nano Express20245101500810.1088/2632‑959X/ad1d02
    [Google Scholar]
  133. JinY. ZhaoB. GuoW. LiY. MinJ. MiaoW. Penetration and photodynamic ablation of drug-resistant biofilm by cationic Iron oxide nanoparticles.J. Control. Release202234891192310.1016/j.jconrel.2022.06.038 35760234
    [Google Scholar]
  134. KhanF. ParkS.K. BamunuarachchiN.I. OhD. KimY.M. Caffeine-loaded gold nanoparticles: Antibiofilm and anti-persister activities against pathogenic bacteria.Appl. Microbiol. Biotechnol.202110593717373110.1007/s00253‑021‑11300‑3 33900427
    [Google Scholar]
  135. DeepikaM.S. ThangamR. SundarrajS. Co-delivery of diverse therapeutic compounds using peg–plga nanoparticle cargo against drug-resistant bacteria: An improved anti-biofilm strategy.ACS Appl. Bio Mater.20203138539910.1021/acsabm.9b00850 35019455
    [Google Scholar]
  136. CaoJ. ZhaoY. LiuY. Phosphorylcholine-based polymer encapsulated chitosan nanoparticles enhance the penetration of antimicrobials in a staphylococcal biofilm.ACS Macro Lett.20198665165710.1021/acsmacrolett.9b00142 35619519
    [Google Scholar]
  137. BaekJ.S. TanC.H. NgN.K.J. YeoY.P. RiceS.A. LooS.C.J. A programmable lipid-polymer hybrid nanoparticle system for localized, sustained antibiotic delivery to Gram-positive and Gram-negative bacterial biofilms.Nanoscale Horiz.20183330531110.1039/C7NH00167C 32254078
    [Google Scholar]
  138. LaraH.H. BlackD.M. MoonC. Activating a silver lipoate nanocluster with a penicillin backbone induces a synergistic effect against S. aureus biofilm.ACS Omega2019426219142192010.1021/acsomega.9b02908 31891070
    [Google Scholar]
  139. LiJ. NickelR. WuJ. LinF. van LieropJ. LiuS. A new tool to attack biofilms: Driving magnetic iron-oxide nanoparticles to disrupt the matrix.Nanoscale201911146905691510.1039/C8NR09802F
    [Google Scholar]
  140. WangW. ChengX. LiaoJ. Synergistic photothermal and photodynamic therapy for effective implant-related bacterial infection elimination and biofilm disruption using Cu 9 S 8 nanoparticles.ACS Biomater. Sci. Eng.20195116243625310.1021/acsbiomaterials.9b01280 33405531
    [Google Scholar]
  141. XieY. ZhengW. JiangX. Near-infrared light-activated phototherapy by gold nanoclusters for dispersing biofilms.ACS Appl. Mater. Interfaces20201289041904910.1021/acsami.9b21777 32011117
    [Google Scholar]
  142. AllahverdiyevA.M. KonK.V. AbamorE.S. BagirovaM. RafailovichM. Coping with antibiotic resistance: Combining nanoparticles with antibiotics and other antimicrobial agents.Expert Rev. Anti Infect. Ther.20119111035105210.1586/eri.11.121 22029522
    [Google Scholar]
  143. HuangH. LiuR. YangJ. Gold nanoparticles: Construction for drug delivery and application in cancer immunotherapy.Pharmaceutics2023157186810.3390/pharmaceutics15071868 37514054
    [Google Scholar]
  144. IhemeC.I. ElemikeE.E. IgweC.U. Synthesis, characterization, radical scavenging properties of zinc oxide nanoparticles and inhibitory effect of ZnONPs-ciprofloxacin nanoconjugates on multidrug-resistant Staphylococcus aureus (MRSA) enzyme.Inorg. Chem. Commun.202416011186410.1016/j.inoche.2023.111864
    [Google Scholar]
  145. SadeghiS. AgharaziF. HosseinzadehS.A. Gold nanoparticle conjugation enhances berberine’s antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA).Talanta2024268Pt 112535810.1016/j.talanta.2023.125358 37918244
    [Google Scholar]
  146. GoswamiS.R. SahareenT. SinghM. KumarS. Role of biogenic silver nanoparticles in disruption of cell-cell adhesion in Staphylococcus aureus and Escherichia coli biofilm.J. Ind. Eng. Chem.201418
    [Google Scholar]
  147. ShanmuganathanR. BrindhadeviK. Al-AnsariM.M. Al-HumaidL. BarathiS. LeeJ. In vitro investigation of silver nanoparticles synthesized using Gracilaria veruccosa – A seaweed against multidrug resistant Staphylococcus aureus.Environ. Res.202322711578210.1016/j.envres.2023.115782 36990196
    [Google Scholar]
  148. MathurA. PariharA.S. ModiS. Photodynamic therapy for ESKAPE pathogens: An emerging approach to combat antimicrobialn resistance (AMR). microbial.Pathogenesis202318310630710.1016/j.micpath.2023.106307 37604213
    [Google Scholar]
  149. LiuH. XingF. ZhouY. Nanomaterials-based photothermal therapies for antibacterial applications.Mater. Des.202323311223110.1016/j.matdes.2023.112231
    [Google Scholar]
  150. XuY. ZhangX. LiangS. NiuC. GuoJ. LuC. Near-infrared light and pH-responsive hyaluronic acid-enveloped ZIF-8 nanoparticles for the treatment of pneumonia caused by methicillin-resistant Staphylococcus aureus.Arab. J. Chem.202417110542610.1016/j.arabjc.2023.105426
    [Google Scholar]
  151. AlaghaH.Z. GülsoyM. Inactivation of planktonic cells and inhibitory effect on post-treatment biofilm formation of methicillin-resistant Staphylococcus aureus by photodynamic treatment with IR780 iodide loaded mesoporous silica nanoparticles and near infrared light.J. Microbiol. Methods202321110677310.1016/j.mimet.2023.106773 37354952
    [Google Scholar]
  152. WangC. XiaoR. YangQ. Green synthesis of epigallocatechin gallate-ferric complex nanoparticles for photothermal enhanced antibacterial and wound healing.Biomed. Pharmacother.202417111617510.1016/j.biopha.2024.116175 38266620
    [Google Scholar]
  153. ManjuK. RajS.N. RanjiniH.K. Nanovaccines to combat drug resistance: The next-generation immunisation.Futur J. Pharm. Sci.2023916410.1186/s43094‑023‑00515‑y
    [Google Scholar]
  154. RanjbariyanA. HaghighatS. YazdiM.H. Arbabi BidgoliS. Synthetic selenium nanoparticles as co-adjuvant improved immune responses against methicillin-resistant Staphylococcus aureus.World J. Microbiol. Biotechnol.20233911610.1007/s11274‑022‑03455‑6 36401129
    [Google Scholar]
  155. WangF. GaoW. ThamphiwatanaS. Hydrogel retaining toxin‐absorbing nanosponges for local treatment of methicillin‐resistant Staphylococcus aureus infection.Adv. Mater.201527223437344310.1002/adma.201501071 25931231
    [Google Scholar]
  156. ChenJ. AndlerS.M. GoddardJ.M. NugenS.R. RotelloV.M. Integrating recognition elements with nanomaterials for bacteria sensing.Chem. Soc. Rev.20174651272128310.1039/C6CS00313C 27942636
    [Google Scholar]
  157. AlexS. TiwariA. Functionalized gold nanoparticles: Synthesis, properties and applications—a review.J. Nanosci. Nanotechnol.20151531869189410.1166/jnn.2015.9718 26413604
    [Google Scholar]
  158. EissaS. ZourobM. A dual electrochemical/colorimetric magnetic nanoparticle/peptide-based platform for the detection of Staphylococcus aureus.Analyst2020145134606461410.1039/D0AN00673D 32451524
    [Google Scholar]
  159. ChenX. TangM. LiuY. HuangJ. LiuZ. TianH. Surface-enhanced Raman scattering method for the identification of methicillin-resistant Staphylococcus aureus using positively charged silver nanoparticles.Microchimica Acta201910.1007/s00604‑018‑3150‑6
    [Google Scholar]
  160. ChenJ. ZengY. ZhangD. QiP. LiuX. SongR. SERS immunoassay analysis of Escherichia coli and Staphylococcus aureus based on sandwich structured complex probe and target-induced strand displacment.Mikrochim. Acta202319717
    [Google Scholar]
  161. ZhangL. XuX. CaoL. Multi-aptamer–mediated hairpin allosteric and aptamer-assisted CRISPR system for detection of S. pneumoniae and S. aureus.Mikrochim. Acta202419112910.1007/s00604‑023‑06094‑2 38095724
    [Google Scholar]
  162. ChanP.H. ChenY.C. Human serum albumin stabilized gold nanoclusters as selective luminescent probes for Staphylococcus aureus and methicillin-resistant Staphylococcus aureus.Anal. Chem.201284218952895610.1021/ac302417k 23088348
    [Google Scholar]
  163. LimS.H. RyuY.C. HwangB.H. Aptamer-immobilized gold nanoparticles enable facile and on-site detection of Staphylococcus aureus.Biotechnol. Bioprocess Eng.; BBE202126110711310.1007/s12257‑020‑0161‑z
    [Google Scholar]
  164. LinX. IbarluceaB. PengT. ShenR. LiP. ZhangP. Two birds with one stone: A multifunctional nanoplatform for photothermal sensitive detection and real-time inactivation of Staphylococcus aureus with NIR responsive Cu2−XSe@Van NPs.Sens. Actuators B Chem.202338113347510.1016/j.snb.2023.133475
    [Google Scholar]
  165. WangJ.C. TungY.C. IchikiK. SakamotoH. YangT.H. SiS. Culture-freen detection of methicillin-resistant Staphylococcus aureus by using self-driving diffusometric DNA nanosensors.Biosens. Bioelectron.2020148
    [Google Scholar]
  166. CilogluF.U. CaliskanA. SaridagA.M. KilicI.H. TokmakciM. KahramanM. Drug-resistant Staphylococcus aureus bacteria detection by combining surface-enhanced Raman spectroscopy(SERS) and deep learning techniques.Sci. Rep.20211118444
    [Google Scholar]
  167. RanX. PuF. RenJ. QuX. A CuS-based chemical tongue chip for pattern recognition of proteins and antibiotic-resistant bacteria.Chem. Commun.201551132675267810.1039/C4CC08863H 25571982
    [Google Scholar]
  168. PebdeniA.B. MousavizadeganM. HosseiniM. Sensitive detection of S. Aureus using aptamer- and vancomycin-copper nanoclusters as dual recognition strategy.Food Chem.2021361130137
    [Google Scholar]
  169. LiuC.Y. HanY.Y. ShihP.H. Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers.Sci. Rep.2016612337510.1038/srep23375 26997474
    [Google Scholar]
  170. KearnsH. GoodacreR. JamiesonL.E. GrahamD. FauldsK. SERS detection of multiple antimicrobial-resistant payhogens using nanosensors.Anal. Chem.201789231266612673
    [Google Scholar]
  171. PramanikA. JonesS. PedrazaF. Fluorescent, magnetic multifunctional carbon dots for selective separation, identification, and eradication of drug-resistant superbugs.ACS Omega20172255456210.1021/acsomega.6b00518 28261690
    [Google Scholar]
  172. YangZ. WangY. ZhangD. A novel multifunctional electrochemical platform for simultaneous detection, elimination, and inactivation of pathogenic bacteria based on the Vancomycin-functionalised AgNPs/3D-ZnO nanorod arrays.Biosens. Bioelectron.20179824825310.1016/j.bios.2017.06.058 28688311
    [Google Scholar]
  173. PunjabiK. AdhikaryR.R. PatnaikA. Core–shell nanoparticles as platform technologies for paper based point-of-care devices to detect antimicrobial resistance.J. Mater. Chem. B Mater. Biol. Med.20208296296630610.1039/D0TB00731E 32441292
    [Google Scholar]
  174. YaohuaH. ChengchengW. BingB. MintongL. WangR. LiY. Detection of Staphylococcus Aureus using quantum dots as fluorescence labels.Int. J. Agric. Biol. Eng.2014717783
    [Google Scholar]
  175. SoaresJ.C. SoaresA.C. Popolin-NetoM. PaulovichF.V. OliveiraO.N.Jr MattosoL.H.C. Detection of Staphylococcus aureus in milk samples using impedance spectroscopy and data processing with information visualization techniques and multidimensional calibration space.Sensors and Actuators Reports2022410008310.1016/j.snr.2022.100083
    [Google Scholar]
  176. KhalandiB. AsadiN. MilaniM. A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria.Drug Res.20176727076 27824432
    [Google Scholar]
  177. GrumezescuA. Nanoscale fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology.LondonElsevier2018
    [Google Scholar]
  178. DengY. KizerM. RadaM. Intracellular delivery of nanomaterials via an inertial microfluidic cell hydroporator.Nano Lett.20181842705271010.1021/acs.nanolett.8b00704 29569926
    [Google Scholar]
  179. LeiR. WuC. YangB. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid in vivo screening method for nanotoxicity.Toxicol. Appl. Pharmacol.2008232229230110.1016/j.taap.2008.06.026 18706438
    [Google Scholar]
  180. CalfeeD.P. Trends in community versus health care-acquired methicillin-resistant Staphylococcus aureus infections.Curr. Infect. Dis. Rep.201719124810.1007/s11908‑017‑0605‑6 29101576
    [Google Scholar]
  181. MarraA. Animal models in drug development for MRSA.Methods Mol. Biol.2014108533334510.1007/978‑1‑62703‑664‑1_18 24085704
    [Google Scholar]
  182. ChenQ. LiJ. WuY. ShenF. YaoM. Biological responses of Gram-positive and Gram-negative bacteria to nZVI (Fe0), Fe2+ and Fe3+.RSC Advances2013333138351384210.1039/c3ra40570b
    [Google Scholar]
  183. ValentinE. Staphylococcus aureus bacterial resistance to silver nanoparticle: The emergence and the mechanisms of resistance.Doctor of Philosophy2020
    [Google Scholar]
  184. Salas-OrozcoM.F. Lorenzo-LealA.C. de Alba MonteroI. MarínN.P. SantanaM.A.C. BachH. Mechanism of escape from the antibacterial activity of metal-based nanoparticles in clinically relevant bacteria: A systematic review.Nanomedicine20245510271510.1016/j.nano.2023.102715 37907198
    [Google Scholar]
  185. KamatS. KumariM. Emergence of microbial resistance against nanoparticles: Mechanisms and strategies.Front. Microbiol.202314110261510.3389/fmicb.2023.1102615 36778867
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385314186240522100239
Loading
/content/journals/pnt/10.2174/0122117385314186240522100239
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test