Skip to content
2000
Volume 13, Issue 5
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

The potential use of nanoparticle-based formulations is being explored rapidly for drug delivery in ocular treatment. Despite having several advancements in the area of ocular therapy, the pharmacokinetics-based formulation development for pediatric ocular treatment is still not in proper focus. There are an inadequate number of degenerative ocular ailments with childhood onset. The purpose of this review is to focus on the pharmacokinetics studies of nanoparticle-based formulations for treating ocular diseases and problems associated with the ocular treatment of the pediatric population. Recent studies on pharmaceutical modeling of ocular formulations have also been discussed. Nanoparticle-based formulations were collected by conducting a literature survey on PubMed, Science Direct, and other portals. In this review, we have explored in detail the explanation behind the inequality among available ocular treatment regimens for youngsters as well as adults by specifically focusing on those diseases that can be distressing for children. Latest innovative developments and advancements in drug delivery systems and challenges in their usage particularly for young infant patients were also discussed. It can be concluded that the bioavailability of ocular formulations and their effect on ocular cells can be further enhanced manifolds by the development of nanoparticles-based formulations.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385307184240826041920
2025-10-01
2025-11-14
Loading full text...

Full text loading...

References

  1. YellepeddiV.K. JosephA. NanceE. Pharmacokinetics of nanotechnology-based formulations in pediatric populations.Adv. Drug Deliv. Rev.2019151-152445510.1016/j.addr.2019.08.00831494124
    [Google Scholar]
  2. van Riet-NalesD.A. SchobbenA.F.A.M. VromansH. EgbertsT.C.G. RademakerC.M.A. Safe and effective pharmacotherapy in infants and preschool children: Importance of formulation aspects.Arch. Dis. Child.2016101766266910.1136/archdischild‑2015‑30822726979250
    [Google Scholar]
  3. GerrardS.E. WalshJ. BowersN. SalunkeS. HershensonS. Innovations in pediatric drug formulations and administration technologies for low resource settings.Pharmaceutics2019111051810.3390/pharmaceutics1110051831597277
    [Google Scholar]
  4. FortinguerraF. ClavennaA. BonatiM. Ocular medicines in children: The regulatory situation related to clinical research.BMC Pediatr.201212182010.1186/1471‑2431‑12‑822264311
    [Google Scholar]
  5. AchouriD. AlhanoutK. PiccerelleP. AndrieuV. Recent advances in ocular drug delivery.Drug Dev. Ind. Pharm.201339111599161710.3109/03639045.2012.73651523153114
    [Google Scholar]
  6. JohnM GaccheRN Nano-formulations for ophthalmic treatments.Arch. Pharm. Pharma. Sci.20171028035
    [Google Scholar]
  7. SoutoE.B. Dias-FerreiraJ. López-MachadoA. EttchetoM. CanoA. Camins EspunyA. EspinaM. GarciaM.L. Sánchez-LópezE. Advanced formulation approaches for ocular drug delivery: State-of-the-art and recent patents.Pharmaceutics201911946010.3390/pharmaceutics1109046031500106
    [Google Scholar]
  8. TomlinsonA. TreesG.R. OcchipintiJ.R. Tear production and evaporation in the normal eye.Ophthalmic Physiol. Opt.1991111444710.1111/j.1475‑1313.1991.tb00193.x2034454
    [Google Scholar]
  9. GaudanaR. AnanthulaH.K. ParenkyA. MitraA.K. Ocular drug delivery.AAPS J.201012334836010.1208/s12248‑010‑9183‑320437123
    [Google Scholar]
  10. AgrahariV. MandalA. AgrahariV. TrinhH.M. JosephM. RayA. HadjiH. MitraR. PalD. MitraA.K. A comprehensive insight on ocular pharmacokinetics.Drug Deliv. Transl. Res.20166673575410.1007/s13346‑016‑0339‑227798766
    [Google Scholar]
  11. SuzukiG. KunikaneE. ShinnoK. KozaiS. KurataM. KawamuraA. Ocular and systemic pharmacokinetics of brimonidine and timolol after topical administration in rabbits: Comparison between fixed-combination and single drugs.Ophthalmol. Ther.20209111512510.1007/s40123‑020‑00229‑x31953739
    [Google Scholar]
  12. GoughG. SzapacsM. ShahT. ClementsP. StrubleC. WilsonR. Ocular tissue distribution and pharmacokinetic study of a small 13kDa domain antibody after intravitreal, subconjuctival and eye drop administration in rabbits.Exp. Eye Res.2018167141710.1016/j.exer.2017.10.02129074387
    [Google Scholar]
  13. RuponenM. UrttiA. Undefined role of mucus as a barrier in ocular drug delivery.Eur. J. Pharm. Biopharm.20159644244610.1016/j.ejpb.2015.02.03225770770
    [Google Scholar]
  14. Van SantvlietL. LudwigA. Determinants of eye drop size.Surv. Ophthalmol.200449219721310.1016/j.survophthal.2003.12.00914998692
    [Google Scholar]
  15. McGheeC.N. Pharmacokinetics of ophthalmic corticosteroids.Br. J. Ophthalmol.1992761168168410.1136/bjo.76.11.6811477046
    [Google Scholar]
  16. SheybaniN.D. YangH. Pediatric ocular nanomedicines: Challenges and opportunities.Chin. Chem. Lett.20172891817182110.1016/j.cclet.2017.07.02229147075
    [Google Scholar]
  17. ShahidE. ShaikhA. AzizS. RehmanA. Frequency of ocular diseases in infants at a tertiary care hospital.Korean J. Ophthalmol.201933328729310.3341/kjo.2017.014231179661
    [Google Scholar]
  18. FarkouhA. FrigoP. CzejkaM. Systemic side effects of eye drops: A pharmacokinetic perspective.Clin. Ophthalmol.2016102433244110.2147/OPTH.S11840927994437
    [Google Scholar]
  19. PattonT.F. RobinsonJ.R. Pediatric dosing considerations in ophthalmology.J. Pediatr. Ophthalmol.19761331711781018198
    [Google Scholar]
  20. FriedmanT.S. PattonT.F. Differences in ocular penetration of pilocarpine in rabbits of different ages.J. Pharm. Sci.19766571095109610.1002/jps.2600650742957125
    [Google Scholar]
  21. HanS.B. YangH.K. HyonJ.Y. HwangJ.M. Children with dry eye type conditions may report less severe symptoms than adult patients.Graefes Arch. Clin. Exp. Ophthalmol.2013251379179610.1007/s00417‑012‑2097‑222790310
    [Google Scholar]
  22. du ToitL.C. PillayV. ChoonaraY.E. GovenderT. CarmichaelT. Ocular drug delivery – A look towards nanobioadhesives.Expert Opin. Drug Deliv.201181719410.1517/17425247.2011.54214221174606
    [Google Scholar]
  23. DuaH.S. FarajL.A. SaidD.G. GrayT. LoweJ. Human corneal anatomy redefined: A novel pre-Descemet’s layer (Dua’s layer).Ophthalmology201312091778178510.1016/j.ophtha.2013.01.01823714320
    [Google Scholar]
  24. AlmeidaH. AmaralM.H. LobãoP. LoboJ.M.S. In situ gelling systems: A strategy to improve the bioavailability of ophthalmic pharmaceutical formulations.Drug Discov. Today201419440041210.1016/j.drudis.2013.10.00124120893
    [Google Scholar]
  25. Salazar-BookamanM.M. WainerI. PatilP.N. Relevance of drug-melanin interactions to ocular pharmacology and toxicology.J. Ocul. Pharmacol. Ther.199410121723910.1089/jop.1994.10.2178207328
    [Google Scholar]
  26. BarotM. PatelM. KwatraD. MitraA.K. Transporter–metabolism interplay in the eye.Ocular Transporters and ReceptorsWoodhead Publishing Series in Biomedicine2013229248
    [Google Scholar]
  27. DhananjayP. Ramya KrishnaV. Aswani DuttV. MitraA.K. Biology of ocular transporters: Efflux and influx transporters in the eye.Ocular transporters and receptors.CambridgeWoodhead Publishing2013378410.1533/9781908818317.37
    [Google Scholar]
  28. RameshY. KothapalliC.B. ReddigariJ.R.P. A novel approaches on Ocular drug delivery system.J. Drug Deliv. Ther.20177611712410.22270/jddt.v7i6.1512
    [Google Scholar]
  29. KumaranK.S. KarthikaK. PadmapreethaJ. Comparative review on conventional and advanced ocular drug delivery formulations.Int. J. Pharm. Pharm. Sci.20102415
    [Google Scholar]
  30. AndersonS.A. RaderR.K. WestlinW.F. NullC. JacksonD. LanzaG.M. WicklineS.A. KotykJ.J. Magnetic resonance contrast enhancement of neovasculature with? v?3-targeted nanoparticles.Magn. Reson. Med.200044343343910.1002/1522‑2594(200009)44:3<433::AID‑MRM14>3.0.CO;2‑910975896
    [Google Scholar]
  31. DongC.M. QiuK.Y. GuZ.W. FengX.D. Synthesis of Star-Shaped Poly(ε-caprolactone)- b -poly( dl -lactic acid- alt -glycolic acid) with Multifunctional Initiator and Stannous Octoate Catalyst.Macromolecules200134144691469610.1021/ma010005w
    [Google Scholar]
  32. VegaE. EgeaM.A. VallsO. EspinaM. GarcíaM.L. Flurbiprofen loaded biodegradable nanoparticles for ophtalmic administration.J. Pharm. Sci.200695112393240510.1002/jps.2068516886193
    [Google Scholar]
  33. ParveenS. SahooS.K. Evaluation of cytotoxicity and mechanism of apoptosis of doxorubicin using folate-decorated chitosan nanoparticles for targeted delivery to retinoblastoma.Cancer Nanotechnol.201011-6476210.1007/s12645‑010‑0006‑026069479
    [Google Scholar]
  34. YangX. PatelS. ShengY. PalD. MitraA.K. Statistical design for formulation optimization of hydrocortisone butyrate-loaded PLGA nanoparticles.AAPS PharmSciTech201415356958710.1208/s12249‑014‑0072‑424504495
    [Google Scholar]
  35. KellyS.J. HiraniA. ShahidadpuryV. SolankiA. HalaszK. Varghese GuptaS. MadowB. SutariyaV. Aflibercept nanoformulation inhibits VEGF expression in ocular in vitro model: A preliminary report.Biomedicines2018639210.3390/biomedicines603009230208574
    [Google Scholar]
  36. HosoyaH. DobroffA.S. DriessenW.H.P. CristiniV. BrinkerL.M. StaquiciniF.I. Cardó-VilaM. D’AngeloS. FerraraF. PronethB. LinY.S. DunphyD.R. DograP. MelanconM.P. StaffordR.J. MiyazonoK. GelovaniJ.G. KataokaK. BrinkerC.J. SidmanR.L. ArapW. PasqualiniR. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.Proc. Natl. Acad. Sci. USA201611371877188210.1073/pnas.152579611326839407
    [Google Scholar]
  37. GilaniS.J. JumahM.N. ZafarA. ImamS.S. YasirM. KhalidM. AlshehriS. GhuneimM.M. AlbohairyF.M. Formulation and evaluation of nano lipid carrier-based ocular gel system: Optimization to antibacterial activity.Gels20228525510.3390/gels805025535621552
    [Google Scholar]
  38. YoussefA.A.A. DudhipalaN. MajumdarS. Dual drug loaded lipid nanocarrier formulations for topical ocular applications.Int. J. Nanomedicine2022172283229910.2147/IJN.S36074035611213
    [Google Scholar]
  39. SantonocitoD. Vivero-LopezM. LauroM.R. TorrisiC. CastelliF. SarpietroM.G. PugliaC. Design of nanotechnological carriers for ocular delivery of mangiferin: Preformulation study.Molecules2022274132810.3390/molecules2704132835209120
    [Google Scholar]
  40. KalamM.A. IqbalM. AlshememryA. AlkholiefM. AlshamsanA. Fabrication and characterization of tedizolid phosphate nanocrystals for topical ocular application: Improved solubilization and in vitro drug release.Pharmaceutics2022147132810.3390/pharmaceutics1407132835890223
    [Google Scholar]
  41. Varela-FernándezR. García-OteroX. Díaz-ToméV. RegueiroU. López-LópezM. González-BarciaM. Isabel LemaM. Javier Otero-EspinarF. Lactoferrin-loaded nanostructured lipid carriers (NLCs) as a new formulation for optimized ocular drug delivery.Eur. J. Pharm. Biopharm.202217214415610.1016/j.ejpb.2022.02.01035183717
    [Google Scholar]
  42. JacintoT.A. OliveiraB. MiguelS.P. RibeiroM.P. CoutinhoP. Ciprofloxacin-loaded zein/hyaluronic acid nanoparticles for ocular mucosa delivery.Pharmaceutics2022148155710.3390/pharmaceutics1408155735893813
    [Google Scholar]
  43. NemrA.A. El-MahroukG.M. BadieH.A. Hyaluronic acid-enriched bilosomes: An approach to enhance ocular delivery of agomelatine via D-optimal design: Formulation, in vitro characterization, and in vivo pharmacodynamic evaluation in rabbits.Drug Deliv.20222912343235610.1080/10717544.2022.210051335869684
    [Google Scholar]
  44. YoussefA.A.A. ThakkarR. SenapatiS. JoshiP.H. DudhipalaN. MajumdarS. Design of topical moxifloxacin mucoadhesive nanoemulsion for the management of ocular bacterial infections.Pharmaceutics2022146124610.3390/pharmaceutics1406124635745818
    [Google Scholar]
  45. HamedR. Abu KwiakA.D. Al-AdhamiY. HammadA.M. ObaidatR. AbusaraO.H. HuwaijR.A. Microemulsions as lipid nanosystems loaded into thermoresponsive in situ microgels for local ocular delivery of prednisolone.Pharmaceutics2022149197510.3390/pharmaceutics1409197536145726
    [Google Scholar]
  46. AhmedS. AminM.M. El-KoranyS.M. SayedS. Corneal targeted fenticonazole nitrate-loaded novasomes for the management of ocular candidiasis: Preparation, in vitro characterization, ex vivo and in vivo assessments.Drug Deliv.20222912428244110.1080/10717544.2022.210360035880688
    [Google Scholar]
  47. BhattacharyyaS RanaD BhattacharyyaSN Determination of heat of formation of associated systems by calorimetry.J. Indian Chem. Soc.199774210310710.5281/zenodo.5875144
    [Google Scholar]
  48. BhattacharyyaS RanaD BhattacharyyaSN A thermodynamic study of molecular association by gas liquid chromatography.J. Indian Chem. Soc.199774645646310.5281/zenodo.5880620
    [Google Scholar]
  49. BhatacharyyaS RanaD BhattacharyyaSN A Thermodynamic study of molecular association by gas-liquid chromatography: trilaurylamine-alcohol systems.J. Indian Chem. Soc.199774754855110.5281/zenodo.5901630
    [Google Scholar]
  50. RanaD. BagK. BhattacharyyaS.N. MandalB.M. Miscibility of poly(styrene-co-butyl acrylate) with poly(ethyl methacrylate): Existence of both UCST and LCST.J. Polym. Sci., B, Polym. Phys.200038336937510.1002/(SICI)1099‑0488(20000201)38:3<369::AID‑POLB3>3.0.CO;2‑W
    [Google Scholar]
  51. RanaD. MandalB.M. BhattacharyyaS.N. Analogue calorimetry of polymer blends: Poly(styrene-co-acrylonitrile) and poly(phenyl acrylate) or poly(vinyl benzoate).Polymer (Guildf.)199637122439244310.1016/0032‑3861(96)85356‑0
    [Google Scholar]
  52. RanaD. MandalB.M. BhattacharyyaS.N. Miscibility and phase diagrams of poly(phenyl acrylate) and poly(styrene-co-acrylonitrile) blends.Polymer19933471454145910.1016/0032‑3861(93)90861‑4
    [Google Scholar]
  53. BhattacharyaC. MaitiN. MandalB.M. BhattacharyyaS.N. Thermodynamic characterization of miscible blends from very similar polymers by inverse gas chromatography. The poly(ethyl acrylate)-poly(vinyl propionate) system.Macromolecules198922104062406810.1021/ma00200a043
    [Google Scholar]
  54. SinghA.K. YadavT.P. PandeyB. GuptaV. SinghS.P. Engineering nanomaterials for smart drug release: Recent advances and challenges.Applications of Targeted Nano Drugs and Delivery SystemsElsevier2019411449
    [Google Scholar]
  55. VermaR. MittalV. PandeyP. BhatiaS. BhatiaM. KaravasiliC. BehlT. Al-HarrasiA. TagdeP. KumarM. KaushikD. Exploring the role of self-nanoemulsifying systems in drug delivery: Challenges, issues, applications and recent advances.Curr. Drug Deliv.20232091241126110.2174/156720181966622051912500335598245
    [Google Scholar]
  56. SimonnetJT SonnevilleO LegretS Nanoemulsion based on ethoxylated fatty ethers or on ethoxylated fatty esters and its uses in the cosmetics, dermatological and/or ophthalmological.U.S. Patent 6375960B1,2002
  57. PatnaikS.K. HalderN. ChawlaB. MaithaniD. ThavarajV. BiswasN.R. VelpandianT. Comparison of ocular pharmacokinetics of etoposide and its nanoemulsion after subtenon administration in rabbits.J. Basic Clin. Physiol. Pharmacol.20193052018010810.1515/jbcpp‑2018‑010831494629
    [Google Scholar]
  58. HenostrozaMA MeloKJ YukuyamaMN LöbenbergR Bou-ChacraNA Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis.Colloids Surf. A20201247
    [Google Scholar]
  59. KaushikD. RaniA. VermaR. MittalV. BhattS. KumarM. TiwariA. TiwariV. PandeyP. Formulation development and optimization of rosuvastatin loaded nanosuspension for enhancing dissolution rate.Curr. Drug Ther.2023181758710.2174/1574885517666220822104652
    [Google Scholar]
  60. BoddedaB. BodduP. AvasaralaH. JayantiV. Design and ocular tolerance of flurbiprofen loaded nanosuspension.Pharm. Nanotechnol.201531566710.2174/2211738503666150630185230
    [Google Scholar]
  61. El-FekyG.S. ZayedG.A. FarragA.R. Optimization of an ocular nanosuspension formulation for acyclovir using factorial design.Int. J. Pharm. Pharm. Sci.201351213219
    [Google Scholar]
  62. KaushikD. VermaR. KumarK. BhattS. YadavM. KumarM. TagdeP. RajinikanthP.S. TiwariA. TiwariV. NagpalD. MittalV. Untangling breast cancer: Trailing towards nanoformulations-based drug development.Recent Pat. Nanotechnol.20231710.2174/187221051766623073109104637519201
    [Google Scholar]
  63. VermaR. RaoL. KumarH. BansalN. DeepA. ParasharJ. YadavM. MittalV. KaushikD. Applications of nanomedicine in brain tumor therapy: Nanocarrier based drug delivery platforms, challenges, and perspectives.Recent Pat. Nanotechnol.20231810.2174/011872210524448223101710285737937554
    [Google Scholar]
  64. MeisnerD. MezeiM. Liposome ocular delivery systems.Adv. Drug Deliv. Rev.1995161759310.1016/0169‑409X(95)00016‑Z
    [Google Scholar]
  65. LaiS. WeiY. WuQ. ZhouK. LiuT. ZhangY. JiangN. XiaoW. ChenJ. LiuQ. YuY. Liposomes for effective drug delivery to the ocular posterior chamber.J. Nanobiotechnology20191716410.1186/s12951‑019‑0498‑731084611
    [Google Scholar]
  66. VermaR. RaoL. NagpalD. YadavM. KumarV. KumarV. KumarH. ParasharJ. BansalN. KumarM. PandeyP. MittalV. KaushikD. Emerging nanotechnology-based therapeutics: A new insight into promising drug delivery system for lung cancer therapy.Recent Pat. Nanotechnol.202310.2174/187221051766623061315484737537775
    [Google Scholar]
  67. EnyediL.B. FreedmanS.F. Latanoprost for the treatment of pediatric glaucoma.Surv. Ophthalmol.200247Suppl. 1S129S13210.1016/S0039‑6257(02)00303‑X12204709
    [Google Scholar]
  68. FathallaD. FouadE.A. SolimanG.M. Latanoprost niosomes as a sustained release ocular delivery system for the management of glaucoma.Drug Dev. Ind. Pharm.202046580681310.1080/03639045.2020.175530532281424
    [Google Scholar]
  69. MilivojevićN. CarvalhoM.R. CaballeroD. RadisavljevićS. RadoićićM. ŽivanovićM. KunduS.C. ReisR.L. FilipovićN. OliveiraJ.M. Evaluation of novel dendrimer-gold complex nanoparticles for theranostic application in oncology.Nanomedicine202419648349710.2217/nnm‑2023‑035538275157
    [Google Scholar]
  70. YavuzB Bozdağ PehlivanS ÜnlüN. Dendrimeric systems and their applications in ocular drug delivery.Sci. World J.2013201310.1155/2013/732340
    [Google Scholar]
  71. VandammeT.F. BrobeckL. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide.J. Control. Release20051021233810.1016/j.jconrel.2004.09.01515653131
    [Google Scholar]
  72. LópezE.S. MachadoA.L.L. VidalL.B. González-PizarroR. SilvaA.D. SoutoE.B. Lipid nanoparticles as carriers for the treatment of neurodegeneration associated with Alzheimer’s disease and glaucoma: Present and future challenges.Curr. Pharm. Des.202026121235125010.2174/138161282666620021810123132067607
    [Google Scholar]
  73. MinochaN. SharmaN. VermaR. KaushikD. PandeyP. Solid lipid nanoparticles: Peculiar strategy to deliver bio-proactive molecules.Recent Pat. Nanotechnol.202317322824210.2174/187221051666622031714335135301957
    [Google Scholar]
  74. YadavM. SchiavoneN. AranguezA.I. GiansantiF. PapucciL. Perez de LaraM.J. SinghM. KaurI.P. Atorvastatin-loaded solid lipid nanoparticles as eye drops: Proposed treatment option for age-related macular degeneration (AMD).Drug Deliv. Transl. Res.2020126
    [Google Scholar]
  75. YuS. TanG. LiuD. YangX. PanW. Nanostructured lipid carrier (NLC)-based novel hydrogels as potential carriers for nepafenac applied after cataract surgery for the treatment of inflammation: Design, characterization and in vitro cellular inhibition and uptake studies.RSC Advances2017727166681667710.1039/C7RA00552K
    [Google Scholar]
  76. L KissE. BerkóS. GácsiA. KovácsA. KatonaG. SoósJ. CsányiE. GrófI. HarazinA. DeliM.A. Budai-SzűcsM. Design, optimization of nanostructured lipid carrier containing dexamethasone for ophthalmic use.Pharmaceutics2019111267910.3390/pharmaceutics1112067931847336
    [Google Scholar]
  77. ShinC. MarcanoD. HenrikssonJ. AcharyaG. PflugfelderS.C. Nanowafer drug delivery for restoration of healthy ocular surface in dry eye condition.Invest. Ophthalmol. Vis. Sci.2015567321
    [Google Scholar]
  78. OnugwuA.L. NwagwuC.S. OnugwuO.S. EchezonaA.C. AgboC.P. IhimS.A. EmehP. NnamaniP.O. AttamaA.A. KhutoryanskiyV.V. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases.J. Control. Release202335446548810.1016/j.jconrel.2023.01.01836642250
    [Google Scholar]
  79. CiolinoJ.B. HoareT.R. IwataN.G. BehlauI. DohlmanC.H. LangerR. KohaneD.S. A drug-eluting contact lens.Invest. Ophthalmol. Vis. Sci.20095073346335210.1167/iovs.08‑282619136709
    [Google Scholar]
  80. ChaudharyR. MishraR. Nano-formulations: Recent trends for ocular bioavailability enhancement.J. Drug Deliv. Ther.2022122-S22523310.22270/jddt.v12i2‑S.5301
    [Google Scholar]
  81. LiX. ZhangZ. ChenH. Development and evaluation of fast forming nano-composite hydrogel for ocular delivery of diclofenac.Int. J. Pharm.201344819610010.1016/j.ijpharm.2013.03.02423524120
    [Google Scholar]
  82. XinS. ZengZ. ZhouX. LuoW. ShiX. WangQ. DengH. DuY. Recyclable Saccharomyces cerevisiae loaded nanofibrous mats with sandwich structure constructing via bio-electrospraying for heavy metal removal.J. Hazard. Mater.2017324Pt B36537210.1016/j.jhazmat.2016.10.07027847250
    [Google Scholar]
  83. Thakur SinghR.R. TekkoI. McAvoyK. McMillanH. JonesD. DonnellyR.F. Minimally invasive microneedles for ocular drug delivery.Expert Opin. Drug Deliv.201714452553710.1080/17425247.2016.121846027485251
    [Google Scholar]
  84. DonnellyR.F. SinghT.R.R. WoolfsonA.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety.Drug Deliv.201017418720710.3109/1071754100366779820297904
    [Google Scholar]
  85. AkhterM.H. AhmadI. AlshahraniM.Y. Al-HarbiA.I. KhalilullahH. AfzalO. AltamimiA.S.A. Najib UllahS.N.M. OjhaA. KarimS. Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system.Gels2022828210.3390/gels802008235200463
    [Google Scholar]
  86. MandalA. GoteV. PalD. OgundeleA. MitraA.K. Ocular pharmacokinetics of a topical ophthalmic nanomicellar solution of cyclosporine (Cequa®) for dry eye disease.Pharm. Res.20193623610.1007/s11095‑018‑2556‑530617777
    [Google Scholar]
  87. CamposE.J. CamposA. MartinsJ. AmbrósioA.F. Opening eyes to nanomedicine: Where we are, challenges and expectations on nanotherapy for diabetic retinopathy.Nanomedicine20171362101211310.1016/j.nano.2017.04.00828428052
    [Google Scholar]
  88. MukkerJ.K. SinghR.S.P. Pharmacokinetic modeling in nano-formulations: Concept, implementation and challenges.Curr. Pharm. Des.201924435175518010.2174/138161282566619013014131030706804
    [Google Scholar]
  89. Le MerdyM. FanJ. BolgerM.B. LukacovaV. SpiresJ. TsakalozouE. PatelV. XuL. StewartS. ChockalingamA. NarayanasamyS. RouseR. MattaM. BabiskinA. KozakD. ChoiS. ZhangL. LionbergerR. ZhaoL. Application of mechanistic ocular absorption modeling and simulation to understand the impact of formulation properties on ophthalmic bioavailability in rabbits: A case study using dexamethasone suspension.AAPS J.20192146510.1208/s12248‑019‑0334‑x31111305
    [Google Scholar]
  90. ZhaoL. SeoP. LionbergerR. Current scientific considerations to verify physiologically‐based pharmacokinetic models and their implications for locally acting products.CPT Pharmacometrics Syst. Pharmacol.20198634735110.1002/psp4.1242131355547
    [Google Scholar]
  91. DjebliN. KhierS. GriguerF. CoutantA.L. TavernierA. FabreG. LericheC. FabreD. Ocular drug distribution after topical administration: population pharmacokinetic model in rabbits.Eur. J. Drug Metab. Pharmacokinet.2017421596810.1007/s13318‑016‑0319‑426820265
    [Google Scholar]
  92. VellonenK.S. SoiniE.M. del AmoE.M. UrttiA. Prediction of ocular drug distribution from systemic blood circulation.Mol. Pharm.20161392906291110.1021/acs.molpharmaceut.5b0072926674753
    [Google Scholar]
  93. MoriA. YabutaC. KishimotoY. KozaiS. OhtoriA. ShearerT.R. AzumaM. In silico ocular pharmacokinetic modeling: delivery of topical FK962 to retina.J. Ocul. Pharmacol. Ther.201733755656610.1089/jop.2016.013628598703
    [Google Scholar]
  94. del AmoE.M. UrttiA. Rabbit as an animal model for intravitreal pharmacokinetics: Clinical predictability and quality of the published data.Exp. Eye Res.201513711112410.1016/j.exer.2015.05.00325975234
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385307184240826041920
Loading
/content/journals/pnt/10.2174/0122117385307184240826041920
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test