Skip to content
2000
Volume 13, Issue 5
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Cancer is classified as having one of the highest mortality rates on a global scale, presenting a significant challenge in its treatment, especially when conventional chemotherapy methodologies are used. Conversely, there is a growing interest in utilizing herbal medicine as an alternative to the treatment of cancer because of its lack of adverse effects compared to contemporary medical strategies. The incorporation of nanotechnology into therapy has attracted attention owing to its efficacy in the treatment of various illnesses. Phytosomes play a crucial role in the treatment of cancer by enhancing the characteristics of drugs and nanostructures within carriers to enable targeted drug delivery. The establishment of chemical bonds between phospholipid molecules and bioactive compounds from plants ensures the stability of phytosomes, thus establishing them as an innovative mechanism for drug delivery systems that transport plant-derived constituents to specific areas. This mini-overview discusses the potential phytosome complexes, uses, drawbacks, patents, challenges, and prospects of phytosomes in cancer treatment. Thus, numerous phytosomal formulations incorporating plant-derived components have exhibited promising anticancer properties, with several formulations currently undergoing clinical trials.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385304559240626101716
2025-10-01
2025-11-14
Loading full text...

Full text loading...

References

  1. TzakosA.G. BriasoulisE. ThalhammerT. JägerW. ApostolopoulosV. Novel oncology therapeutics: Targeted drug delivery for cancer.J. Drug Deliv.201320131510.1155/2013/91830424251041
    [Google Scholar]
  2. Cancer Key facts.Available from: https://www.who.int/news-room/fact-sheets/detail/cancer [cited 2024 Mar 7].
  3. Projected cancer burden increase in 2050.Available from: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services [cited 2024 May 20].
  4. CharmsazS. CollinsD. PerryA. PrencipeM. Novel strategies for cancer treatment: Highlights from the 55th IACR annual conference.Cancers2019118112510.3390/cancers1108112531394729
    [Google Scholar]
  5. FarhoodB. RaeiB. MalekzadehR. ShirvaniM. NajafiM. MortezazadehT. A review of incidence and mortality of colorectal, lung, liver, thyroid, and bladder cancers in Iran and compared to other countries.Contemp. Oncol.201923171510.5114/wo.2019.8411231061631
    [Google Scholar]
  6. HafezD.A. ElkhodairyK.A. TelebM. ElzoghbyA.O. Nanomedicine-based approaches for improved delivery of phyto-therapeutics for cancer therapy.Expert Opin. Drug Deliv.202017327928510.1080/17425247.2020.172354231997666
    [Google Scholar]
  7. KumarS. BaldiA. SharmaD.K. Phytosomes: A modernistic approach for novel herbal drug delivery-enhancing bioavailability and revealing endless frontier of phytopharmaceuticals.J. Dev. Drugs20209218Available from: https://www.longdom.org/open-access/phytosomes-a-modernistic-approach-for-novel-herbal-drug-deliveryenhancing-bioavailability-and-revealing-endless-frontier.pdf
    [Google Scholar]
  8. IoeleG ChieffalloM OcchiuzziMA De LucaM GarofaloA RagnoG Anticancer Drugs: Recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties.Molecules20222717
    [Google Scholar]
  9. MarquesA.C. CostaP.C. VelhoS. AmaralM.H. Lipid nanoparticles functionalized with antibodies for anticancer drug therapy.Pharmaceutics202315121610.3390/pharmaceutics1501021636678845
    [Google Scholar]
  10. AjithS. AlmomaniF. ElhissiA. HusseiniG.A. Nanoparticle-based materials in anticancer drug delivery: Current and future prospects.Heliyon2023911e2122710.1016/j.heliyon.2023.e2122737954330
    [Google Scholar]
  11. KumarB. SinghS. SkvortsovaI. KumarV. Promising targets in anti-cancer drug development: Recent updates.Curr. Med. Chem.201724424729475228393696
    [Google Scholar]
  12. UpaseA.U. BhusnureO.G. GholveS.B. GiramP.S. WattamwarP.B. A review on Phytosome loaded with novel herbal drug and their formulation, standardization and applications.J. Drug Deliv. Ther.201993-s765769
    [Google Scholar]
  13. ZhaoMH YuanL MengLY QiuJL WangC Quercetin-loaded mixed micelles exhibit enhanced cytotoxic efficacy in non-small cell lung cancer in vitro.Exp Ther Med20171465503
    [Google Scholar]
  14. SalehiB. MachinL. MonzoteL. Sharifi-RadJ. EzzatS.M. SalemM.A. MerghanyR.M. El MahdyN.M. KılıçC.S. SytarO. Sharifi-RadM. SharopovF. MartinsN. MartorellM. ChoW.C. Therapeutic potential of quercetin: New insights and perspectives for human health.ACS Omega2020520118491187210.1021/acsomega.0c0181832478277
    [Google Scholar]
  15. BabazadehA. ZeinaliM. HamishehkarH. Nano-phytosome: A developing platform for herbal anti-cancer agents in cancer therapy.Curr. Drug Targets201819217018010.2174/138945011866617050809525028482783
    [Google Scholar]
  16. SainiV. BalaR. AroraS. SindhuR.K. Phyto-phospholipids complexes as a potential carrier for bioactives having hepatoprotective activity.Plant Arch.202020238353844
    [Google Scholar]
  17. LuM. QiuQ. LuoX. LiuX. SunJ. WangC. LinX. DengY. SongY. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents.Asian. J. Pharmac. Sci.201914326527410.1016/j.ajps.2018.05.01132104457
    [Google Scholar]
  18. GandhiA. DuttaA. PalA. BakshiP. Recent trends of phytosomes for delivering herbal extract with improved bioavailability.J. Pharmacogn. Phytochem.201214614Available from: https://www.phytojournal.com/archives/2012.v1.i4.25/recent-trends-of-phytosomes-for-delivering-herbal-extract-with-improved-bioavailability%0Awww.phytojournal.comwww.phytojournal.com
    [Google Scholar]
  19. Fiuza SanhaA.M. Kumar SharmaP. KumarS. Phytosome as a prominent option in drug delivery for the treatment of the diseases: A review.Indo. Glob. J. Pharmac. Sci.20188311912310.35652/IGJPS.2018.119123
    [Google Scholar]
  20. ChaturvediM. SinhalA. KumarM. SaifiA. Recent development in novel drug delivery systems of herbal drugs.Int. J. Green. Pharm.2011528710.4103/0973‑8258.85155
    [Google Scholar]
  21. HebbarS. MathiasA.C. Phytosomes: A novel molecular nano complex between phytomolecule and phospholipid as a value added herbal drug delivery system.Int. J. Pharmac. Sci. Rev. Res.20185118490Available from: www.globalresearchonline.net
    [Google Scholar]
  22. JainP. TaleuzzamanM. KalaC. Kumar GuptaD. AliA. AslamM. Quality by design (Qbd) assisted development of phytosomal gel of aloe vera extract for topical delivery.J. Lipos. Res.2020314381388Available from: https://www.tandfonline.com/doi/abs/10.1080/08982104.2020.1849279
    [Google Scholar]
  23. DeshpandeP.K. Kumar PathakA. GothalwalR. Phytosomes: A noval drug delivery system for phytoconstituents.J New Biol Reports201433212220Available from: www.indena.com
    [Google Scholar]
  24. KareparambanJ.A. NikamP.H. JadhavA.P. KadamV.J. Phytosome: A novel revolution in herbal drugs.Int. J. Res. Pharm. Chem.201222299310
    [Google Scholar]
  25. KaduA.S. ApteM. Phytosome: A novel approach to enhance.Asian J. Pharm.201720172453461
    [Google Scholar]
  26. BA.K. HabbuP. TT. LL. HullattiP. SR.K. Phytosomes as novel drug delivery system for herbal medicine : A review.System. Rev. Pharm.2016815710.5530/srp.2017.1.2
    [Google Scholar]
  27. SarohaKamal WaliyanParul PahwaRakesh PalShweta SinghInderbir KumarManish Phytosomes: A promising strategy for enhanced therapeutic beneϐits of phytochemicals.Int. J. Res. Pharmac. Sci.202011SPL 417
    [Google Scholar]
  28. SinghD. Phytosomes: An advanced drug delivery system for herbal drug.Glob. J. Pharm. Pharmac. Sci.2018611210.19080/GJPPS.2018.06.555679
    [Google Scholar]
  29. KarimiN. GhanbarzadehB. HamishehkarH. KeivaniF. PezeshkiA. GholianM.M. Phytosome and liposome: The beneficial encapsulation systems in drug delivery and food application.Appl Food Biotechnol.2015231727
    [Google Scholar]
  30. KumarA. KumarB. SinghS.K. KaurB. SinghS. A review on phytosomes: Novel approach for herbal phytochemicals.Asian J. Pharm. Clin. Res.20171010414710.22159/ajpcr.2017.v10i10.20424
    [Google Scholar]
  31. TappetaJ.A. VangaraS. VetsaV. SpandanaU. Amphiphilic drug delivery system : Phytosomes.Res Rev J Pharmacogn Phytochem.201971814
    [Google Scholar]
  32. ChutimanukulP. WanichanananP. JantaS. ToojindaT. DarwellC.T. MosaleeyanonK. The influence of different light spectra on physiological responses, antioxidant capacity and chemical compositions in two holy basil cultivars.Sci Rep20221258810.1038/s41598‑021‑04577‑x
    [Google Scholar]
  33. AzeezN.A. DeepaV.S. SivapriyaV. Phytosomes: emergent promising nano vesicular drug delivery system for targeted tumor therapy.Adv. Nat. Sci: Nanosci. Nanotechnol.2018903300110.1088/2043‑6254/aadc50
    [Google Scholar]
  34. PatelJ. PatelR. KhambholjaK. PatelN. An overview of phytosomes as an advanced herbal drug delivery system.Asian J Pharm Sci.200946363371
    [Google Scholar]
  35. SinghR.P. ParpaniS. NarkeR. ChavanR. Phytosome: Recent advance research for novel drug delivery system.Asian J Pharm Res Dev2014231529Available from: www.ajprd.com
    [Google Scholar]
  36. JiM. LiuH. WangH. LiangX. WeiM. ShiD. GouJ. YinT. HeH. TangX. ZhangY. pH-Activatable copper-axitinib coordinated multifunctional nanoparticles for synergistic chemo-chemodynamic therapy against aggressive cancers.Biomater. Sci.202311186267627910.1039/D3BM00861D37545202
    [Google Scholar]
  37. MahadevB. Review on phytosomes: A novel drug delivery system.GSC Biolog. Pharmac. Sci.202013120321110.30574/gscbps.2020.13.1.0345
    [Google Scholar]
  38. AnjanaR. SunilK. HitenderS. KK.R. Phytosome drug delivery of natural products: A promising technique for enhancing bioavailability.Int. J. Drug. Deliv. Technol.20177315716510.25258/ijddt.v7i03.9559
    [Google Scholar]
  39. HabbuP. MadagundiS. ShastryR. VanakudriR. KulkarniV. Preparation and evaluation of antidiabetic activity of allium cepa-phospholipid complex (phytosome) in streptozotocin induced diabetic rats.RGUHS J. Pharm. Sci.20165413214110.5530/rjps.2015.4.3
    [Google Scholar]
  40. SinghA. SinghA.P. VermaN. Phytosome: A revolution in herbal drug delivery system.Asian J. Chem.2011231251895193
    [Google Scholar]
  41. SahaS SarmaA SaikiaP ChakrabartyT. Phytosome : A brief overview phytosome : A brief overview.Sch. Acad. J. Pharm.2015211220
    [Google Scholar]
  42. BaraniM. SangiovanniE. AngaranoM. RajizadehM.A. MehrabaniM. PiazzaS. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature.Int J Nanomedicine20211669837022
    [Google Scholar]
  43. KomeilI.A. El-RefaieW.M. GowayedM.A. El-GanainyS.O. El AchyS.N. HuttunenK.M. AbdallahO.Y. Oral genistein-loaded phytosomes with enhanced hepatic uptake, residence and improved therapeutic efficacy against hepatocellular carcinoma.Int. J. Pharm.2021601April12056410.1016/j.ijpharm.2021.12056433812970
    [Google Scholar]
  44. KudatarkarN. JalalpureS. BalekundriA. KurangiB. Analytical method development and validation for estimation of chrysin in chrysin loaded phytosomes using high performance thin layer chromatography.J. Liq. Chromat. Rel.Technol.20224415-16760765Available from: https://www.tandfonline.com/doi/abs/10.1080/10826076.2022.2038196
    [Google Scholar]
  45. PugliaC. LauroM.R. TirendiG.G. FassariG.E. CarboneC. BoninaF. Modern drug delivery strategies applied to natural active compounds.Expert Opin Drug Deliv2016146755768Available from: https://www.tandfonline.com/doi/abs/10.1080/17425247.2017.1234452
    [Google Scholar]
  46. GaikwadS.S. MoradeY.Y. KothuleA.M. KshirsagarS.J. LaddhaU.D. SalunkheK.S. Overview of phytosomes in treating cancer: Advancement, challenges, and future outlook.Heliyon202396e1656110.1016/j.heliyon.2023.e1656137260890
    [Google Scholar]
  47. KumarS. BaldiA. SharmaD.K. In vitro antioxidant assay guided ex vivo investigation of cytotoxic effect of phytosomes assimilating taxifolin rich fraction of Cedrus deodara bark extract on human breast cancer cell lines (MCF7).J. Drug Deliv. Sci. Technol.202163March10248610.1016/j.jddst.2021.102486
    [Google Scholar]
  48. BabazadehA JafariSM ShiB Encapsulation of food ingredients by nanophytosomes.In: Lipid-Based Nanostructures for Food Encapsulation PurposesElsevier2019240544310.1016/B978‑0‑12‑815673‑5.00010‑6
    [Google Scholar]
  49. SabzichiM. HamishehkarH. RamezaniF. SharifiS. TabasinezhadM. PirouzpanahM. GhanbariP. SamadiN. Luteolin-loaded phytosomes sensitize human breast carcinoma MDA-MB 231 cells to doxorubicin by suppressing Nrf2 mediated signalling.Asian Pac. J. Cancer Prev.201415135311531610.7314/APJCP.2014.15.13.531125040994
    [Google Scholar]
  50. MazumderA. DwivediA. du PreezJ.L. du PlessisJ. In vitro wound healing and cytotoxic effects of sinigrin–phytosome complex.Int. J. Pharm.20164981-228329310.1016/j.ijpharm.2015.12.02726706438
    [Google Scholar]
  51. MahmoodiN. MotamedN. PaylakhiS.H. O MahmoodiN. Comparing the effect of silybin and silybin advancedTM on viability and HER2 expression on the human breast cancer SKBR3 cell line by no serum starvation.Iran. J. Pharm. Res.201514252153025901160
    [Google Scholar]
  52. OchiM.M. AmoabedinyG. RezayatS.M. AkbarzadehA. EbrahimiB. In vitro co-delivery evaluation of novel pegylated nano-liposomal herbal drugs of silibinin and glycyrrhizic acid (nano-phytosome) to hepatocellular carcinoma cells.Cell J.201618213514827540518
    [Google Scholar]
  53. MaoJ.T. XueB. SmoakeJ. LuQ.Y. ParkH. HenningS.M. BurnsW. BernabeiA. ElashoffD. SerioK.J. MassieL. MicroRNA-19a/b mediates grape seed procyanidin extract-induced anti-neoplastic effects against lung cancer.J. Nutr. Biochem.20163411812510.1016/j.jnutbio.2016.05.00327289489
    [Google Scholar]
  54. SundaraganapathyL.P. Comparative study on anti-cancer activities of Phytosome formulated from the root extract of Clerodendron infortunatum Linn and Clerodendron paniculatum Linn root.J Chem Pharm Sci.2017101751754
    [Google Scholar]
  55. El-FarS.W. HelmyM.W. KhattabS.N. BekhitA.A. HusseinA.A. ElzoghbyA.O. Phytosomal bilayer-enveloped casein micelles for codelivery of monascus yellow pigments and resveratrol to breast cancer.Nanomedicine201813548149910.2217/nnm‑2017‑030129376765
    [Google Scholar]
  56. MukherjeeS. FriedA. HussainiR. WhiteR. BaidooJ. YalamanchiS. BanerjeeP. Phytosomal curcumin causes natural killer cell-dependent repolarization of glioblastoma (GBM) tumor-associated microglia/macrophages and elimination of GBM and GBM stem cells.J. Exp. Clin. Cancer Res.201837116810.1186/s13046‑018‑0792‑530041669
    [Google Scholar]
  57. FreagM.S. SalehW.M. AbdallahO.Y. Self-assembled phospholipid-based phytosomal nanocarriers as promising platforms for improving oral bioavailability of the anticancer celastrol.Int. J. Pharm.20185351-2182610.1016/j.ijpharm.2017.10.05329102699
    [Google Scholar]
  58. YangZ.J. HuangS.Y. ZhouD.D. XiongR.G. ZhaoC.N. FangA.P. ZhangY.J. LiH.B. ZhuH.L. Effects and mechanisms of curcumin for the prevention and management of cancers: An updated review.Antioxidants2022118148110.3390/antiox1108148136009200
    [Google Scholar]
  59. MarjanehR.M. RahmaniF. HassanianS.M. RezaeiN. HashemzehiM. BahramiA. AriakiaF. FiujiH. SahebkarA. AvanA. KhazaeiM. Phytosomal curcumin inhibits tumor growth in colitis‐associated colorectal cancer.J. Cell. Physiol.2018233106785679810.1002/jcp.2653829737515
    [Google Scholar]
  60. HashemzehiM. Behnam-RassouliR. HassanianS.M. Moradi-BinabajM. Moradi-MarjanehR. RahmaniF. FiujiH. JamiliM. MirahmadiM. BoromandN. PiranM. JafariM. SahebkarA. AvanA. KhazaeiM. Phytosomal‐curcumin antagonizes cell growth and migration, induced by thrombin through AMP‐Kinase in breast cancer.J. Cell. Biochem.201811975996600710.1002/jcb.2679629600521
    [Google Scholar]
  61. Van LongN. Thu HaB.T. TuanA.V. LuongH.V. LinhN.T. DucT.C. DaiP.C. YongC.S. MenC.V. Phytosomal nanoparticles preparation of curcuminoids to enhance cellular uptake of curcuminoids on breast cancer cell line MCF-7.Pharmacogn. J.20191151037104510.5530/pj.2019.11.163
    [Google Scholar]
  62. XuL. XuD. LiZ. GaoY. ChenH. Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells.Beilstein J. Nanotechnol.2019101933194210.3762/bjnano.10.18931598460
    [Google Scholar]
  63. TengC.F. YuC.H. ChangH.Y. HsiehW.C. WuT.H. LinJ.H. Chemopreventive effect of phytosomal curcumin on hepatitis b virus-related hepatocellular carcinoma in a transgenic mouse model.Sci Rep.201991113Available from: https://www.nature.com/articles/s41598-019-46891-5
    [Google Scholar]
  64. MurugesanMP Venkata RatnamM MengitsuY KandasamyK Evaluation of anti-cancer activity of phytosomes formulated from aloe vera extract.Mat. Tod. Proc.202142263163610.1016/j.matpr.2020.11.047
    [Google Scholar]
  65. AlhakamyN. Badr-EldinS. FahmyU. AlruwailiN. AwanZ. CarusoG. AlfalehM. AlaofiA. ArifF. AhmedO. AlghaithA. RETRACTED: Thymoquinone-loaded soy-phospholipid-based phytosomes exhibit anticancer potential against human lung cancer cells.Pharmaceutics202012876110.3390/pharmaceutics1208076132806507
    [Google Scholar]
  66. AlhakamyN.A. A FahmyU. Badr-EldinS.M. AhmedO.A.A. AsfourH.Z. AldawsariH.M. AlgandabyM.M. EidB.G. Abdel-NaimA.B. AwanZ.A. K AlruwailiN. MohamedA.I. Optimized icariin phytosomes exhibit enhanced cytotoxicity and apoptosis-inducing activities in ovarian cancer cells.Pharmaceutics202012434610.3390/pharmaceutics1204034632290412
    [Google Scholar]
  67. AsfourH.Z. FahmyU.A. AlharbiW.S. AlmehmadyA.M. AlamoudiA.J. TimaS. MansouriR.A. OmarU.M. AhmedO.A.A. ZakaiS.A. AldarmahiA.A. BagalagelA. DiriR. AlhakamyN.A. Phyto-phospholipid conjugated scorpion venom nanovesicles as promising carrier that improves efficacy of thymoquinone against adenocarcinoma human alveolar basal epithelial cells.Pharmaceutics20211312214410.3390/pharmaceutics1312214434959424
    [Google Scholar]
  68. AlhakamyN.A. FahmyU.A. EldinS.M.B. AhmedO.A.A. AldawsariH.M. OkbazghiS.Z. AlfalehM.A. AbdulaalW.H. AlamoudiA.J. MadyF.M. Scorpion venom-functionalized quercetin phytosomes for breast cancer management: In vitro response surface optimization and anticancer activity against MCF-7 cells.Polymers20211419310.3390/polym1401009335012116
    [Google Scholar]
  69. FathiF. EbrahimiS.N. ValadãoA.I.G. AndradeN. CostaA.S.G. SilvaC. FathiA. SalehiP. MartelF. AlvesR.C. OliveiraM.B.P.P. Exploring gunnera tinctoria: From nutritional and anti-tumoral properties to phytosome development following structural arrangement based on molecular docking.Molecules20212619593510.3390/molecules2619593534641482
    [Google Scholar]
  70. KomeilI.A. AbdallahO.Y. El-RefaieW.M. Surface modified genistein phytosome for breast cancer treatment: In-vitro appraisal, pharmacokinetics, and in-vivo antitumor efficacy.Eur. J. Pharm. Sci.2022179June10629710.1016/j.ejps.2022.10629736156294
    [Google Scholar]
  71. KudatarkarN. JalalpureS. KurangiB. Formulation and characterization of chrysin loaded phytosomes and its cytotoxic effect against colorectal cancer cells.Ind. J. Pharmac. Educ. Res.2022563ss407s41210.5530/ijper.56.3s.148
    [Google Scholar]
  72. GovindaramL.K. BrattyM.A. AlhazmiH.A. KandasamyR. ThangavelN. IbrahimA.M. MariyaG.A. KumarP. Formulation, biopharmaceutical evaluation and in-vitro screening of polyherbal phytosomes for breast cancer therapy.Drug Dev. Ind. Pharm.2022481055256510.1080/03639045.2022.213891136269296
    [Google Scholar]
  73. Al-RabiaM.W. AlhakamyN.A. RizgW.Y. AlghaithA.F. AhmedO.A.A. FahmyU.A. Boosting curcumin activity against human prostatic cancer PC3 cells by utilizing scorpion venom conjugated phytosomes as promising functionalized nanovesicles.Drug Deliv.202229180782010.1080/10717544.2022.204813335266425
    [Google Scholar]
  74. WanjiruJ. GathirwaJ. SauliE. SwaiH.S. Formulation, optimization, and evaluation of Moringa oleifera leaf polyphenol-loaded phytosome delivery system against breast cancer cell lines.Molecules20222714443010.3390/molecules2714443035889305
    [Google Scholar]
  75. Al-SamydaiA. QaralehM.A. AlshaerW. Al-HalasehL.K. IssaR. AlshaikhF. Abu-RummanA. Al-AliH. Al-DujailiE.A.S. Preparation, characterization, wound healing, and cytotoxicity assay of pegylated nanophytosomes loaded with 6-gingerol.Nutrients20221423517010.3390/nu1423517036501201
    [Google Scholar]
  76. NeamatallahT. MalebariA.M. AlamoudiA.J. NazreenS. AlamM.M. Bin-MelaihH.H. AbuzinadahO.A. Badr-EldinS.M. AlhassaniG. MakkiL. NasrullahM.Z. Andrographolide nanophytosomes exhibit enhanced cellular delivery and pro-apoptotic activities in HepG2 liver cancer cells.Drug Deliv.2023301217420910.1080/10717544.2023.217420936762548
    [Google Scholar]
  77. KomeilI. Genistein-loaded phytosomes for treatment of liver cancer via oral administration.WO2022135652A1,2022Available from: https://patents.google.com/patent/WO2022135652A1/en?oq=WO2022135652A1
  78. Di PierroF. Compositions containing a phospholipid-curcumin complex and piperine as chemosensitizing agent. European Patent Office.EP2228062A1,2010Available from: https://patents.google.com/patent/EP2228062A1/en?oq=EP2228062A1
  79. Andrea GioriF. Phospholipid complexes of curcumin having improved bioavailability. European Patent Office.EP1837030A1,2007Available from: https://patents.google.com/patent/EP1837030A1/en?oq=EP1837030A1
  80. Francesco DiP. Compositions including curcumina in a complex form with Phospholipides and Piperina with a Chemio-Sensitizing Action. Italian Patent Office.ITMI20090356A1,2010Available from: https://patents.google.com/patent/ITMI20090356A1/en?oq=ITMI20090356A1
  81. GnananathK NatarajKS RaoBG Phospholipid complex technique for superior bioavailability of phytoconstituents.Adv Pharm Bull201771354210.15171/apb.2017.005
    [Google Scholar]
  82. NasimN. SandeepI.S. MohantyS. Plant-derived natural products for drug discovery: Current approaches and prospects.Nucleus202265339941110.1007/s13237‑022‑00405‑3
    [Google Scholar]
  83. KhanJ. AlexanderA. Ajazuddin SarafS. SarafS. Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives.J. Control. Release20131681506010.1016/j.jconrel.2013.02.02523474031
    [Google Scholar]
  84. GannotI. A multimodal nanoparticles‐based theranostic method and system.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2022144e179610.1002/wnan.179635434929
    [Google Scholar]
  85. VuH.T.H. HookS.M. SiqueiraS.D. MüllertzA. RadesT. McDowellA. Are phytosomes a superior nanodelivery system for the antioxidant rutin?Int. J. Pharm.20185481829110.1016/j.ijpharm.2018.06.04229933062
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385304559240626101716
Loading
/content/journals/pnt/10.2174/0122117385304559240626101716
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test