Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Transdermal drug delivery is an attractive and patient-friendly route for administering therapeutic agents. However, the skin's natural barrier, the stratum corneum, restricts the passage of many drugs, limiting their effectiveness. To overcome this challenge, researchers have developed various nanocarriers to enhance drug penetration through the skin. Transethosomes, a novel and promising drug delivery system, have emerged as an innovative solution for improving transdermal drug delivery. Transethosomes are a hybrid of two established nanocarriers: ethosomes and transfersomes. Ethosomes are lipid-based vesicles that can accommodate lipophilic and hydrophilic drugs, while transfersomes are deformable lipid vesicles designed to enhance skin penetration. Transethosomes combine the advantages of both systems, making them ideal candidates for efficient transdermal drug delivery. They are composed of phospholipids, ethanol, and water and exhibit high flexibility, enabling them to squeeze through the tight junctions of the stratum corneum. This abstract reviews the key characteristics of transethosomes, including their composition, preparation methods, mechanisms of action, characterization parameters, and prospects. Moreover, the recent advancements and applications of transethosomes in delivering various therapeutic agents, such as analgesics, anti-inflammatories, hormones, and skincare products, are explored. The enhanced skin penetration capabilities of transethosomes can potentially reduce systemic side effects and improve patient compliance, making them a valuable tool in the field of transdermal drug delivery. In conclusion, transethosomes represent a promising platform for overcoming the challenges of transdermal drug delivery. Their unique properties enable efficient drug permeation through the skin, offering a more controlled and effective means of administering a wide range of pharmaceutical and cosmetic products. This abstract highlights the potential of transethosomes as a valuable addition to the field of transdermal drug delivery and paves the way for further research and development in this area.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385306281240427073651
2024-05-15
2025-09-01
Loading full text...

Full text loading...

References

  1. NayakS.B. Transethosomes: Cutting edge approach for drug permeation enhancement in transdermal drug delivery system.Chem. Biol. Drug Des.2023102365366710.1111/cbdd.14254
    [Google Scholar]
  2. HassanA.S. Ginger extract-loaded transethosomes for effective transdermal permeation and anti-inflammation in rat model.Int. J. Nanomedicine2023181259128010.2147/IJN.S400604
    [Google Scholar]
  3. MinahalMunir A comprehensive review on transethosomes as a novel vesicular approach for drug delivery through transdermal route.J. Liposome Res.202434120321810.1080/08982104.2023.2221354
    [Google Scholar]
  4. AbdulbaqiI.M. DarwisY. KhanN.A. AssiR.A. KhanA.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials.Int. J. Nanomedicine2016112279230410.2147/IJN.S105016 27307730
    [Google Scholar]
  5. AscensoA. BatistaC. CardosoP. Development, characterization, and skin delivery studies of related ultradeformable vesicles: Transfersomes, ethosomes, and transethosomes.Int. J. Nanomedicine2015105837585110.2147/IJN.S86186 26425085
    [Google Scholar]
  6. BajajK.J. ParabB.S. ShidhayeS.S. Nano-transethosomes: A novel tool for drug delivery through skin.Indian J Pharmaceut Edu Res2021551ss1s1010.5530/ijper.55.1s.33
    [Google Scholar]
  7. AboudH.M. AliA.A. El-MenshaweS.F. ElbaryA.A. Nanotransfersomes of carvedilol for intranasal delivery: Formulation, characterization and in vivo evaluation.Drug Deliv.20162372471248110.3109/10717544.2015.1013587 25715807
    [Google Scholar]
  8. KumarL. VermaS. SinghK. PrasadD.N. JainA.K. Ethanol based vesicular carriers in transdermal drug delivery: Nanoethosomes and Transethosomes in Focus.NanoWorld J.201623414510.17756/nwj.2016‑030
    [Google Scholar]
  9. ShajiJ. BajajR. Transethosomes: A new prospect for enhanced transdermal delivery.Int. J. Pharm. Sci. Res.2018972681268510.13040/IJPSR.0975‑8232.9(7).2681‑85
    [Google Scholar]
  10. FranzèS. MusazziU.M. MinghettiP. CilurzoF. Drug-in-micelles-in-liposomes (DiMiL) systems as a novel approach to prevent drug leakage from deformable liposomes.Eur. J. Pharm. Sci.2019130273510.1016/j.ejps.2019.01.013 30654112
    [Google Scholar]
  11. Abd El-AlimS.H. KassemA.A. BashaM. SalamaA. Comparative study of liposomes, ethosomes and transfersomes as carriers for enhancing the transdermal delivery of diflunisal: In vitro and in vivo evaluation.Int. J. Pharm.201956329330310.1016/j.ijpharm.2019.04.001 30951860
    [Google Scholar]
  12. PandeyV. GolhaniD. ShuklaR. Ethosomes: Versatile vesicular carriers for efficient transdermal delivery of therapeutic agents.Drug Deliv.2015228988100210.3109/10717544.2014.889777 24580572
    [Google Scholar]
  13. AbouhusseinD.M.N. Enhanced transdermal permeation of BCS class IV aprepitant using binary ethosome: Optimization, characterization and ex vivo permeation.J. Drug Deliv. Sci. Technol.202161102185
    [Google Scholar]
  14. GargV. SinghH. BhatiaA. Systematic development of transethosomal gel system of piroxicam: Formulation optimization, in vitro evaluation, and ex-vivo assessment.AAPS PharmSciTech2017181587110.1208/s12249‑016‑0489‑z 26868380
    [Google Scholar]
  15. GondkarS.B. PatilN.R. SaudagarR.B. Formulation development and characterization of etodolac loaded transethosomes for transdermal delivery.Res J Pharm Technol20171093049305710.5958/0974‑360X.2017.00541.8
    [Google Scholar]
  16. CevcG. BlumeG. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force.Biochim. Biophys. Acta19921104122623210.1016/0005‑2736(92)90154‑E
    [Google Scholar]
  17. MullardA. 2020 FDA drug approvals.Nat. Rev. Drug Discov.2021202859010.1038/d41573‑021‑00002‑0 33402709
    [Google Scholar]
  18. Handjani-VilaR.M. RibierA. RondotB. VanlerberghieG. Dispersions of lamellar phases of non‐ionic lipids in cosmetic products.Int. J. Cosmet. Sci.19791530331410.1111/j.1467‑2494.1979.tb00224.x 19467076
    [Google Scholar]
  19. DengY. ZhangX. ShenH. Application of the nano-drug delivery system in treatment of cardiovascular diseases.Front. Bioeng. Biotechnol.2020748910.3389/fbioe.2019.00489 32083068
    [Google Scholar]
  20. EdisZ. WangJ. WaqasM.K. IjazM. IjazM. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives.Int. J. Nanomedicine2021161313133010.2147/IJN.S289443 33628022
    [Google Scholar]
  21. LiuH. TuL. ZhouY. Improved bioavailability and antitumor effect of docetaxel by tpgs modified proniosomes: In vitro and in vivo evaluations.Sci. Rep.2017714337210.1038/srep43372 28266539
    [Google Scholar]
  22. NemrA.A. El-mahroukG.M. BadieH.A. Development and evaluation of proniosomes to enhance the transdermal delivery of cilostazole and to ensure the safety of its application.Drug Dev. Ind. Pharm.202147340341510.1080/03639045.2021.1890111 33625936
    [Google Scholar]
  23. WilczewskaA.Z. NiemirowiczK. MarkiewiczK.H. CarH. Nanoparticles as drug delivery systems.Pharmacol. Rep.20126451020103710.1016/S1734‑1140(12)70901‑5 23238461
    [Google Scholar]
  24. Ruzycka-AyoushM. KowalikP. KowalczykA. Quantum dots as targeted doxorubicin drug delivery nanosystems in human lung cancer cells.Cancer Nanotechnol.2021121810.1186/s12645‑021‑00077‑9
    [Google Scholar]
  25. AboaliF.A. HabibD.A. ElbedaiwyH.M. FaridR.M. Curcumin-loaded proniosomal gel as a biofreindly alternative for treatment of ocular inflammation: In-vitro and in-vivo assessment.Int. J. Pharm.202058911983510.1016/j.ijpharm.2020.119835 32890654
    [Google Scholar]
  26. MohsenA.M. SalamaA. KassemA.A. Development of acetazolamide loaded bilosomes for improved ocular delivery: Preparation, characterization and in vivo evaluation.J. Drug Deliv. Sci. Technol.20205910191010.1016/j.jddst.2020.101910
    [Google Scholar]
  27. MonavariS.H. Mirzaei ParsaM.J. BolouriB. EbrahimiS.A. Ataei-PirkoohA. The inhibitory effect of Acyclovir loaded nano-niosomes against herpes simplex virus type-1 in cell culture.Med. J. Islam. Repub. Iran20142899 25664300
    [Google Scholar]
  28. AkbariJ. SaeediM. EnayatifardR. Curcumin Niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery.J. Drug Deliv. Sci. Technol.20206010203510.1016/j.jddst.2020.102035
    [Google Scholar]
  29. TavanoL. VivacquaM. CaritoV. MuzzalupoR. CaroleoM.C. NicolettaF. Doxorubicin loaded magneto-niosomes for targeted drug delivery.Colloids Surf. B Biointerfaces201310280380710.1016/j.colsurfb.2012.09.019 23107959
    [Google Scholar]
  30. PawarS. ShevalkarG. VaviaP. Glucosamine-anchored doxorubicin-loaded targeted nano-niosomes: Pharmacokinetic, toxicity and pharmacodynamic evaluation.J. Drug Target.201624873074310.3109/1061186X.2016.1154560 26878084
    [Google Scholar]
  31. El-SayedM.M. HusseinA.K. SarhanH.A. MansourH.F. Flurbiprofen-loaded niosomes-in-gel system improves the ocular bioavailability of flurbiprofen in the aqueous humor.Drug Dev. Ind. Pharm.201743690291010.1080/03639045.2016.1272120 27977311
    [Google Scholar]
  32. LuJ. GuoT. FanY. Recent developments in the principles, modification and application prospects of functionalized ethosomes for topical delivery.Curr. Drug Deliv.202118557058210.2174/1567201817666200826093102 32851961
    [Google Scholar]
  33. HallanS.S. SguizzatoM. MarianiP. Design and characterization of ethosomes for transdermal delivery of caffeic acid.Pharmaceutics202012874010.3390/pharmaceutics12080740 32781717
    [Google Scholar]
  34. XueF. LinX. CaiZ. LiuX. MaY. WuM. Doxifluridine-based pharmacosomes delivering miR-122 as tumor microenvironments-activated nanoplatforms for synergistic treatment of hepatocellular carcinoma.Colloids Surf. B Biointerfaces202119711136710.1016/j.colsurfb.2020.111367 33007506
    [Google Scholar]
  35. KhanJ. AlexanderA. Ajazuddin, Saraf S, Saraf S. Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives.J. Control. Release20131681506010.1016/j.jconrel.2013.02.025 23474031
    [Google Scholar]
  36. KimS.M. JungJ.I. ChaiC. ImmJ.Y. Characteristics and glucose uptake promoting effect of chrysin-loaded phytosomes prepared with different phospholipid matrices.Nutrients20191110254910.3390/nu11102549 31652637
    [Google Scholar]
  37. SasongkoR.E. SuriniS. SaputriF.C. Formulation and characterization of bitter melon extract (momordica charantia) loaded phytosomes.Pharmacogn. J.20191161235124110.5530/pj.2019.11.192
    [Google Scholar]
  38. DireitoR. ReisC. RoqueL. Phytosomes with persimmon (diospyros kaki l.) extract: Preparation and preliminary demonstration of in vivo tolerability.Pharmaceutics201911629610.3390/pharmaceutics11060296 31234548
    [Google Scholar]
  39. HeR. JiangY. ShiY. LiangJ. ZhaoL. Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis.Mater. Sci. Eng. C202011711131410.1016/j.msec.2020.111314 32919674
    [Google Scholar]
  40. QuM. LinQ. HuangL. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease.J. Control. Release201828715616610.1016/j.jconrel.2018.08.035 30165139
    [Google Scholar]
  41. MillardM. YakavetsI. PiffouxM. mTHPC-loaded extracellular vesicles outperform liposomal and free mTHPC formulations by an increased stability, drug delivery efficiency and cytotoxic effect in tridimensional model of tumors.Drug Deliv.20182511790180110.1080/10717544.2018.1513609 30785308
    [Google Scholar]
  42. Sancho-AlberoM. Encabo-BerzosaM.M. Beltrán-VisiedoM. Efficient encapsulation of theranostic nanoparticles in cell-derived exosomes: Leveraging the exosomal biogenesis pathway to obtain hollow gold nanoparticle-hybrids.Nanoscale20191140188251883610.1039/C9NR06183E 31595912
    [Google Scholar]
  43. AltanerovaU. BabincovaM. BabinecP. Human mesenchymal stem cell-derived iron oxide exosomes allow targeted ablation of tumor cells via magnetic hyperthermia.Int. J. Nanomedicine2017127923793610.2147/IJN.S145096 29138559
    [Google Scholar]
  44. AnticoliS. ManfrediF. ChiozziniC. An exosome-based vaccine platform imparts cytotoxic t lymphocyte immunity against viral antigens.Biotechnol. J.2018134170044310.1002/biot.201700443 29274250
    [Google Scholar]
  45. YangT. FogartyB. LaForgeB. Delivery of small interfering rna to inhibit vascular endothelial growth factor in zebrafish using natural brain endothelia cell-secreted exosome nanovesicles for the treatment of brain cancer.AAPS J.201719247548610.1208/s12248‑016‑0015‑y 27882487
    [Google Scholar]
  46. NayakD. TippavajhalaV.K. A comprehensive review on preparation, evaluation and applications of deformable liposomes.Iran. J. Pharm. Res.202120118620510.22037/ijpr.2020.112878.13997 34400952
    [Google Scholar]
  47. XuR. HeX. Kinetics of a multilamellar lipid vesicle ripening: Simulation and theory.J. Phys. Chem. B201612022622270
    [Google Scholar]
  48. YadavA.V. MurthyM.S. SheteA.S. SakhareS. Stability aspects of liposome.Indian J Pharm Educ20114540241310.1016/j.supflu.2016.03.008
    [Google Scholar]
  49. YeoL. OlusanyaT. ChawC. ElkordyA. Brief effect of a small hydrophobic drug (cinnarizine) on the physicochemical characterisation of niosomes produced by thin-film hydration and microfluidic methods.Pharmaceutics201810418510.3390/pharmaceutics10040185 30322124
    [Google Scholar]
  50. ZhangY.L. FrangosJ.A. ChachisvilisM. Laurdan fluorescence senses mechanical strain in the lipid bilayer membrane.Biochem. Biophys. Res. Commun.2006347383884110.1016/j.bbrc.2006.06.152 16857174
    [Google Scholar]
  51. Kumar MishraK. Deep KaurC. VermaS. Transethosomes and nanoethosomes: Recent approach on transdermal drug delivery system.Nanomedicine (Lond.)20192335410.5772/intechopen.81152
    [Google Scholar]
  52. ZhaoY.Z. LuC.T. ZhangY. Selection of high efficient transdermal lipid vesicle for curcumin skin delivery.Int. J. Pharm.2013454130230910.1016/j.ijpharm.2013.06.052 23830940
    [Google Scholar]
  53. ZhaowuZ. XiaoliW. YangdeZ. NianfengL. Preparation of matrine ethosome, its percutaneous permeation in vitro and anti-inflammatory activity in vivo in rats.J. Liposome Res.200919215516210.1080/08982100902722381 19241204
    [Google Scholar]
  54. ZhuT.F. SzostakJ.W. Preparation of large monodisperse vesicles.PLoS One200944e500910.1371/journal.pone.0005009 19347043
    [Google Scholar]
  55. MaheshwariR.G.S. TekadeR.K. SharmaP.A. Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: A comparative assessment.Saudi Pharm. J.201220216117010.1016/j.jsps.2011.10.001 23960788
    [Google Scholar]
  56. AhadA. Al-SalehA.A. Al-MohizeaA.M. Formulation and characterization of novel soft nanovesicles for enhanced transdermal delivery of eprosartan mesylate.Saudi Pharm. J.20172571040104610.1016/j.jsps.2017.01.006 29158713
    [Google Scholar]
  57. ZhangJ.A. AnyarambhatlaG. MaL. Development and characterization of a novel Cremophor® EL free liposome-based paclitaxel (LEP-ETU) formulation.Eur. J. Pharm. Biopharm.200559117718710.1016/j.ejpb.2004.06.009 15567316
    [Google Scholar]
  58. ShelkeS. ShahiS. KaleS. PatilV. DeshpandeD. Ethosomes: A novel deformable carrier.World J Pharmaceut Sci20153918301839
    [Google Scholar]
  59. SatyamG. ShivaniS. GarimaG. Ethosomes: A novel tool for drug delivery through the skin.J. Pharm. Res.20103468869110.1016/j.amsu.2022.104595
    [Google Scholar]
  60. KalraN. ChoudharyS. AroraP. AroraN. Ethosomal drug delivery system: A newer approach.Asian J Pharmaceut Res Devel20208515816210.22270/ajprd.v8i5.835
    [Google Scholar]
  61. ChaudharyH. KohliK. KumarV. Nano-transfersomes as a novel carrier for transdermal delivery.Int. J. Pharm.2013454136738010.1016/j.ijpharm.2013.07.031
    [Google Scholar]
  62. DubeyV. MishraD. DuttaT. NaharM. SarafD.K. JainN.K. Dermal and transdermal delivery of an anti-psoriatic agent viaethanolic liposomes.J. Control. Release2007123214815410.1016/j.jconrel.2007.08.005 17884226
    [Google Scholar]
  63. EatonP. QuaresmaP. SoaresC. A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles.Ultramicroscopy2017182117919010.1016/j.ultramic.2017.07.001
    [Google Scholar]
  64. GuoF. WangJ. MaM. TanF. LiN. Skin targeted lipid vesicles as novel nano-carrier of ketoconazole: Characterization, in vitro and in vivo evaluation.J. Mater. Sci. Mater. Med.201526417510.1007/s10856‑015‑5487‑2 25825320
    [Google Scholar]
  65. HabibB.A. SayedS. ElsayedG.M. Enhanced transdermal delivery of ondansetron using nanovesicular systems: Fabrication, characterization, optimization and ex-vivo permeation study-Box-Cox transformation practical example.Eur. J. Pharm. Sci.201811535236110.1016/j.ejps.2018.01.044 29407555
    [Google Scholar]
  66. EzzatS.M. SalamaM.M. ElMeshadA.N. TeaimaM.H. RashadL.A. HPLC–DAD–MS/MS profiling of standardized rosemary extract and enhancement of its anti-wrinkle activity by encapsulation in elastic nanovesicles.Arch. Pharm. Res.201639791292510.1007/s12272‑016‑0744‑6 27107862
    [Google Scholar]
  67. FangY-P. TsaiY-H. WuP-C. HuangY-B. Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy.Int. J. Pharm.20083569144152
    [Google Scholar]
  68. ZhuX. LiF. PengX. ZengK. Formulation and evaluation of lidocaine base ethosomes for transdermal delivery.Anesth. Analg.2013117235235710.1213/ANE.0b013e3182937b74 23744957
    [Google Scholar]
  69. TouitouE. Ethosomes — novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties.J. Control. Release200065403418
    [Google Scholar]
  70. BragagniM. MenniniN. MaestrelliF. CirriM. MuraP. Comparative study of liposomes, transfersomes and ethosomes as carriers for improving topical delivery of celecoxib.Drug Deliv.201219735436110.3109/10717544.2012.724472 23043648
    [Google Scholar]
  71. Panchaxari GadadA. PatilA.S. SinghY. Mallappa DandagiP. BolmalU.B. BasuA. Development and evaluation of flurbiprofen loaded transethosomes to improve transdermal delivery.Indian J Pharmaceut Edu Res202054495496210.5530/ijper.54.4.189
    [Google Scholar]
  72. AnwarE. RamadonD. ArdiG.D. Novel transethosome containing green tea (Camellia sinensis L. Kuntze)leaf extract for enhanced skin delivery of epigallocatechin gallate: Formulation and in vitro penetration test.International Journal of Applied Pharmaceutics201810129930210.22159/ijap.2018.v10s1.66
    [Google Scholar]
  73. BhasinB. LondheV.Y. An overview of transfersomal drug delivery.Int. J. Pharm. Sci. Res.2018962175218410.13040/IJPSR.0975‑8232.9(6).2175‑84
    [Google Scholar]
  74. Honeywell-NguyenP.L. BouwstraJ.A. Vesicles as a tool for transdermal and dermal delivery.Drug Discov. Today. Technol.200521677410.1016/j.ddtec.2005.05.003 24981757
    [Google Scholar]
  75. DhopavkarS. KaduP. Transferosomes-A Boon for Transdermal Delivery.Indo Am J Pharm Sci20174092908291910.5281/zenodo.892229
    [Google Scholar]
  76. MbahC.C. BuildersP.F. AttamaA.A. Nanovesicular carriers as alternative drug delivery systems: Ethosomes in focus.Expert Opin. Drug Deliv.2014111455910.1517/17425247.2013.860130 24294974
    [Google Scholar]
  77. SankarV RameshS SiramK 201810.5772/intechopen.79807
  78. MoolakkadathT AqilM AhadA Development of transethosomes formulation for dermal fisetin delivery: Box–Behnken design, optimization, in vitro skin penetration, vesicles–skin interaction and dermatokinetic studies. Artif Cells Nanomed Biotechnol201846sup27556510.1080/21691401.2018.1469025 29730964
  79. AliS. ShabbirM. ShahidN. The structure of skin and transdermal drug delivery system: A review.Research J Pharm Technol20158210310910.5958/0974‑360X.2015.00019.0
    [Google Scholar]
  80. VermaP. PathakK. Therapeutic and cosmeceutical potential of ethosomes: An overview.J. Adv. Pharm. Technol. Res.20101327428210.4103/0110‑5558.72415 22247858
    [Google Scholar]
  81. KumarL. UtrejaP. Formulation and characterization of transethosomes for enhanced transdermal delivery of propranolol hydrochloride.Micro Nanosyst.2020121384710.2174/1876402911666190603093550
    [Google Scholar]
  82. NimmyJ.K. KrishnakumarD.B. NairS.K. Ethosomal gel: A review.Eur. J. Pharm. Med. Res.201744301305
    [Google Scholar]
  83. CevcG. Transfersomes, liposomes and other lipid suspensions on the skin: Permeation enhancement, vesicle penetration and transdermal drug delivery.Crit. Rev. Ther. Drug Carrier Syst.1996133-4257388
    [Google Scholar]
  84. GodinB. TouitouE. Ethosomes: New prospects in transdermal delivery.Crit. Rev. Ther. Drug Carrier Syst.200320163102
    [Google Scholar]
  85. BolzingerM.A. BriançonS. PelletierJ. ChevalierY. Penetration of drugs through skin, a complex rate-controlling membrane.Curr. Opin. Colloid Interface Sci.201217315616510.1016/j.cocis.2012.02.001
    [Google Scholar]
  86. SongC.K. BalakrishnanP. ShimC.K. ChungS.J. ChongS. KimD.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation.Colloids Surf. B Biointerfaces20129229930410.1016/j.colsurfb.2011.12.004 22205066
    [Google Scholar]
  87. AbdulbaqiI.M. DarwisY. Abou AssiR. Abdul Karim KhanN. Transethosomal gels as carriers for the transdermal delivery of colchicine: Statistical optimization, characterization, and ex vivo evaluation.Drug Des. Devel. Ther.20181279581310.2147/DDDT.S158018 29670336
    [Google Scholar]
  88. ZhangJ.P. WeiY.H. ZhouY. LiY.Q. WuX.A. Ethosomes, binary ethosomes and transfersomes of terbinafine hydrochloride: A comparative study.Arch. Pharm. Res.201235110911710.1007/s12272‑012‑0112‑0 22297749
    [Google Scholar]
  89. VermaS. UtrejaP. Transethosomes of econazole nitrate for transdermal delivery: Development, in-vitro characterization, and ex-vivo assessment.Pharm. Nanotechnol.20186317117910.2174/2211738506666180813122102 30101725
    [Google Scholar]
  90. TrottaM. PeiraE. CarlottiM.E. GallarateM. Deformable liposomes for dermal administration of methotrexate.Int. J. Pharm.20042701-211912510.1016/j.ijpharm.2003.10.006 14726128
    [Google Scholar]
  91. SundarV.D. DivyaP. DhanarajuM.D. Design development and characterisation of tramadol hydrochloride loaded transethosomal gel formulation for effective pain management.Indian J Pharmaceut Edu Res2020542889710.5530/ijper.54.2s.65
    [Google Scholar]
  92. AzizahN. SagitaE. IskandarsyahI. In vitro penetration tests of transethosome gel preparations containing capsaicin.Int J Appl Pharm2017911610.22159/ijap.2017.v9s1.68_75
    [Google Scholar]
  93. AnjuK. PriyaS. SandeepD.S. Formulation and optimization of zaltoprofen loaded ethosomal gel by using 23 full factorial designs.J. Pharm. Res. Int.20211304410.9734/jpri/2021/v33i24B31439
    [Google Scholar]
  94. AhmedT.A. AlzahraniM.M. SirwiA. AlhakamyN.A. Study the antifungal and ocular permeation of ketoconazole from ophthalmic formulations containing transethosomes nanoparticles.Pharmaceutics202113215110.3390/pharmaceutics13020151 33498849
    [Google Scholar]
  95. TeaimaM. AbdelmonemR. AdelY.A. El-NabarawiM.A. El-NawawyT.M. Transdermal delivery of telmisartan: Formulation, in vitro, ex vivo, iontophoretic permeation enhancement and comparative pharmacokinetic study in rats.Drug Des. Devel. Ther.2021154603461410.2147/DDDT.S327860 34785889
    [Google Scholar]
  96. WangF.C. HudsonP.L. BurkK. MarangoniA.G. Encapsulation of cycloastragenol in phospholipid vesicles enhances transport and delivery across the skin barrier.J. Colloid Interface Sci.202160812221228
    [Google Scholar]
  97. ChetanachanP. AkarachalanonP. WorawirunwongD. Ultrastructural characterization of liposomes using transmission electron microscope.Adv. Mat. Res.200855-5770971110.4028/www.scientific.net/AMR.55‑57.709
    [Google Scholar]
  98. JainS. JainP. UmamaheshwariR.B. JainN.K. Transfersomes--a novel vesicular carrier for enhanced transdermal delivery: Development, characterization, and performance evaluation.Drug Dev. Ind. Pharm.20032991013102610.1081/DDC‑120025458 14606665
    [Google Scholar]
  99. PrathyushaK. MuthukumaranM. KrishnamoorthyB. Liposomes as targetted drug delivery systems present and future prospectives: A review.J. Drug Deliv. Ther.20133419520110.22270/jddt.v3i4.355
    [Google Scholar]
  100. NayakD. TawaleR.M. AranjaniJ.M. TippavajhalaV.K. Formulation, optimization and evaluation of novel ultra-deformable vesicular drug delivery system for an anti-fungal drug.AAPS PharmSciTech202021514010.1208/s12249‑020‑01681‑5 32419032
    [Google Scholar]
  101. SarwaK. SureshP. RudrapalM. VermaV. Penetration of tamoxifen citrate loaded ethosomes and liposomes across human skin: A comparative study with confocal laser scanning microscopy.Curr. Drug Deliv.201411333233710.2174/1567201811666140115113127 24428443
    [Google Scholar]
  102. SongH. WenJ. LiH. Enhanced transdermal permeability and drug deposition of rheumatoid arthritis via sinomenine hydrochloride-loaded antioxidant surface transethosome.Int. J. Nanomedicine2019143177318810.2147/IJN.S188842 31118630
    [Google Scholar]
  103. SudhakarK. MishraV. JainS. RompicherlaN.C. MalviyaN. TambuwalaM.M. Development and evaluation of the effect of ethanol and surfactant in vesicular carriers on Lamivudine permeation through the skin.Int. J. Pharm.202161012122610.1016/j.ijpharm.2021.121226 34710540
    [Google Scholar]
  104. VyasS. SinghR. JainS. Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B.Int. J. Pharm.20052961-2808610.1016/j.ijpharm.2005.02.016 15885458
    [Google Scholar]
  105. VarshosazJ. PardakhtyA. HajhashemiV. NajafabadiA.R. Development and physical characterization of sorbitan monoester niosomes for insulin oral delivery.Drug Deliv.2003104251262
    [Google Scholar]
  106. SakdisetP. AmnuaikitT. PichayakornW. PinsuwanS. Formulation development of ethosomes containing indomethacin for transdermal delivery.J. Drug Deliv. Sci. Technol.201952760768
    [Google Scholar]
  107. NagaichU. GulatiN. Nanostructured lipid carriers (NLC) based controlled release topical gel of clobetasol propionate: Design and in vivo characterization.Drug Deliv. Transl. Res.20166328929810.1007/s13346‑016‑0291‑1 27072979
    [Google Scholar]
  108. OpathaS.A.T. TitapiwatanakunV. ChutoprapatR. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery.Pharmaceutics202012985510.3390/pharmaceutics12090855 32916782
    [Google Scholar]
  109. PriyankaK. SinghS. A review on skin targeted delivery of bioactives as ultradeformable vesicles: Overcoming the penetration problem.Curr. Drug Targets201415218419810.2174/1389450115666140113100338 24410447
    [Google Scholar]
  110. CostanzoM. EspositoE. SguizzatoM. Formulative study and intracellular fate evaluation of ethosomes and transethosomes for vitamin D3 delivery.Int. J. Mol. Sci.20212210534110.3390/ijms22105341 34069489
    [Google Scholar]
  111. RushmiZ.T. AkterN. MowR.J. The impact of formulation attributes and process parameters on black seed oil loaded liposomes and their performance in animal models of analgesia.Saudi Pharm. J.201725340441210.1016/j.jsps.2016.09.011
    [Google Scholar]
  112. AkhterS. KushwahaS. WarsiM.H. Development and evaluation of nanosized niosomal dispersion for oral delivery of Ganciclovir.Drug Dev. Ind. Pharm.2012381849210.3109/03639045.2011.592529 21726136
    [Google Scholar]
  113. KumarA. PathakK. BaliV. Ultra-adaptable nanovesicular systems: A carrier for systemic delivery of therapeutic agents.Drug Discov. Today20121721-221233124110.1016/j.drudis.2012.06.013 22766375
    [Google Scholar]
  114. RajR RajPM RamA Nanosized ethanol based malleable liposomes of cytarabine to accentuate transdermal delivery: Formulation optimization, in vitro skin permeation and in vivo bioavailability. Artif Cells Nanomed Biotechnol201846sup29516310.1080/21691401.2018.1473414 29771146
    [Google Scholar]
  115. ChenZ.X. LiB. LiuT. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers.Eur. J. Pharm. Sci.2017924024510.1016/j.ejps.2016.12.026
    [Google Scholar]
  116. SguizzatoM. FerraraF. HallanS.S. Ethosomes and transethosomes for mangiferin transdermal delivery.Antioxidants202110576810.3390/antiox10050768 34066018
    [Google Scholar]
  117. El-ZaafaranyG.M. Abdel-AzizR.T.A. MontaserM.H.A. NasrM. Coenzyme Q10 phospholipidic vesicular formulations for treatment of androgenic alopecia: Ex vivo permeation and clinical appraisal.Expert Opin. Drug Deliv.202118101513152210.1080/17425247.2021.1936497 34047661
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385306281240427073651
Loading
/content/journals/pnt/10.2174/0122117385306281240427073651
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ethanol; ethosomes; permeation enhancers; Phospholipids; transethosomes; transfersomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test