Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Skin injury is one of the most prevalent lesions in humans, and many such wounds, including deep burns and chronic skin wounds, are notoriously difficult to heal. It has been established by medical practitioners that current wound therapies are not perfectly effective and are far from satisfactory. Meanwhile, nanotechnologies have made it possible to develop pharmaceutical formulations that can elevate the effectiveness of conventional pharmacotherapies to entirely new heights. Most nanostructured biomaterials used to treat wounds, including those that have helped establish this fascinating subject, have been polymeric. The bibliographic analysis presented here shows a steady growth in the research output of studies on the use of polymeric nanoparticles in wound healing therapies. This article provides an overview of polymeric nanoparticles for the treatment of wounds with an emphasis on different chemistries and polymer-drug combinations that have been proven the most effective. The wound age, pathophysiology, wound healing treatments of the present and past, as well as the physicochemical nature and methods for the synthesis of polymeric nanoparticles, are all covered in the opening parts of the review. The existing polymeric nano-drug delivery systems with the greatest promise for wound healing and skin regeneration are subsequently addressed and their potentials summarized.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385307311240506104035
2024-05-27
2025-09-04
Loading full text...

Full text loading...

References

  1. NguyenA.V. SoulikaA.M. The dynamics of the skin’s immune system.Int. J. Mol. Sci.2019208181110.3390/ijms20081811 31013709
    [Google Scholar]
  2. Vidal YuchaS.E. TamamotoK.A. KaplanD.L. The importance of the neuro‐immuno‐cutaneous system on human skin equivalent design.Cell Prolif.2019526e1267710.1111/cpr.12677 31441145
    [Google Scholar]
  3. KuehnB.M. Chronic wound care guidelines issued.JAMA2007297993893910.1001/jama.297.9.938 17341696
    [Google Scholar]
  4. ForeJ. A review of skin and the effects of aging on skin structure and function.Ostomy Wound Manage.20065292435 16980727
    [Google Scholar]
  5. ParradoC. Mercado-SaenzS. Perez-DavoA. GilaberteY. GonzalezS. JuarranzA. Environmental stressors on skin aging. Mechanistic insights.Front. Pharmacol.20191075910.3389/fphar.2019.00759 31354480
    [Google Scholar]
  6. SkowronK. Bauza-KaszewskaJ. KraszewskaZ. Human skin microbiome: Impact of intrinsic and extrinsic factors on skin microbiota.Microorganisms20219354310.3390/microorganisms9030543 33808031
    [Google Scholar]
  7. GuoS. DiPietroL.A. Factors affecting wound healing.J. Dent. Res.201089321922910.1177/0022034509359125 20139336
    [Google Scholar]
  8. AnisuzzamanD.M. PatelY. RostamiB. NiezgodaJ. GopalakrishnanS. YuZ. Multi-modal wound classification using wound image and location by deep neural network.Sci. Rep.20221212005710.1038/s41598‑022‑21813‑0 36414660
    [Google Scholar]
  9. HurlowJ. BowlerP.G. Acute and chronic wound infections: Mcrobiological, immunological, clinical and therapeutic distinctions.J. Wound Care202231543644510.12968/jowc.2022.31.5.436 35579319
    [Google Scholar]
  10. ChabyG. SenetP. VaneauM. Dressings for acute and chronic wounds: A systematic review.Arch. Dermatol.2007143101297130410.1001/archderm.143.10.1297 17938344
    [Google Scholar]
  11. JärbrinkK. NiG. SönnergrenH. The humanistic and economic burden of chronic wounds: A protocol for a systematic review.Syst. Rev.2017611510.1186/s13643‑016‑0400‑8 28118847
    [Google Scholar]
  12. SchremlS. SzeimiesR.M. PrantlL. LandthalerM. BabilasP. Wound healing in the 21st century.J. Am. Acad. Dermatol.201063586688110.1016/j.jaad.2009.10.048 20576319
    [Google Scholar]
  13. International Diabetes Federation- IDF Diabetes Atlas2021Available from: https://diabetesatlas.org/ (Accessed on 01 Oct 2022).
  14. LindholmC. SearleR. Wound management for the 21st century: Combining effectiveness and efficiency.Int. Wound J.201613S2Suppl. 251510.1111/iwj.12623 27460943
    [Google Scholar]
  15. NusbaumA.G. GilJ. RippyM.K. Effective method to remove wound bacteria: Comparison of various debridement modalities in an in vivo porcine model.J. Surg. Res.2012176270170710.1016/j.jss.2011.11.1040 22440935
    [Google Scholar]
  16. DreifkeM.B. JayasuriyaA.A. JayasuriyaA.C. Current wound healing procedures and potential care.Mater. Sci. Eng. C20154865166210.1016/j.msec.2014.12.068 25579968
    [Google Scholar]
  17. NaikG. HardingK.G. Maggot debridement therapy: The current perspectives.Chronic Wound Care Manag Res2017412112810.2147/CWCMR.S117271
    [Google Scholar]
  18. ShanmugapriyaK. KangH.W. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing. ReviewMater. Sci. Eng. C201910511011010.1016/j.msec.2019.110110 31546465
    [Google Scholar]
  19. SunL. SongL. ZhangX. ZhouR. YinJ. LuanS. Poly(γ-glutamic acid)-based electrospun nanofibrous mats with photodynamic therapy for effectively combating wound infection.Mater. Sci. Eng. C202011311093610.1016/j.msec.2020.110936 32487377
    [Google Scholar]
  20. YangF. ChoS.W. SonS.M. Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles.Proc. Natl. Acad. Sci. USA201010783317332210.1073/pnas.0905432106 19805054
    [Google Scholar]
  21. EmingS.A. KriegT. DavidsonJ.M. RETRACTED: Gene therapy and wound healing.Clin. Dermatol.2007251799210.1016/j.clindermatol.2006.09.011 17276205
    [Google Scholar]
  22. BoatengJ.S. MatthewsK.H. StevensH.N.E. EcclestonG.M. Wound healing dressings and drug delivery systems: A review.J. Pharm. Sci.20089782892292310.1002/jps.21210 17963217
    [Google Scholar]
  23. GowdaB.H.J. MohantoS. SinghA. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art.Mater. Today Chem.20232710131910.1016/j.mtchem.2022.101319
    [Google Scholar]
  24. ShalabyM.A. AnwarM.M. SaeedH. Nanomaterials for application in wound Healing: Current state-of-the-art and future perspectives.J. Polym. Res.20222939110.1007/s10965‑021‑02870‑x
    [Google Scholar]
  25. TA PrabhuA BaligaV et al. Transforming wound management: Nanomaterials and their clinical impact.Pharmaceutics2023155156010.3390/pharmaceutics15051560 37242802
    [Google Scholar]
  26. RamezanpourSorour TavatoniPedram AkramiMohammad Navaei-NigjehMona ShiriPezhman Potential wound healing of PLGA nanoparticles containing a novel L-Carnitine–GHK peptide conjugate.J. Clin. Med.20221024594710.1155/2022/6165759
    [Google Scholar]
  27. PotekaevN.N. BorzykhO.B. MedvedevG.V. The role of extracellular matrix in skin wound healing.J. Clin. Med.20211024594710.3390/jcm10245947 34945243
    [Google Scholar]
  28. ParkJ. HwangS. YoonI.S. Advanced growth factor delivery systems in wound management and skin regeneration.Molecules2017228125910.3390/molecules22081259 28749427
    [Google Scholar]
  29. McCartyS.M. PercivalS.L. Proteases and delayed wound healing.Adv. Wound Care20132843844710.1089/wound.2012.0370 24688830
    [Google Scholar]
  30. MochizukiS. TakanoM. SuganoN. The effect of B vitamin supplementation on wound healing in type 2 diabetic mice.J. Clin. Biochem. Nutr.2016581646810.3164/jcbn.14‑122 26798199
    [Google Scholar]
  31. ZinderR. CooleyR. VladL.G. MolnarJ.A. Vitamin A and wound healing.Nutr. Clin. Pract.201934683984910.1002/ncp.10420 31697447
    [Google Scholar]
  32. BecharaN. FloodV.M. GuntonJ.E. A systematic review on the role of vitamin C in tissue healing.Antioxidants2022118160510.3390/antiox11081605 36009324
    [Google Scholar]
  33. GouldL. AbadirP. BremH. Chronic wound repair and healing in older adults: current status and future research.J. Am. Geriatr. Soc.201563342743810.1111/jgs.13332 25753048
    [Google Scholar]
  34. MarkmanB. Anatomy and physiology of adipose tissue.Clin. Plast. Surg.198916223524410.1016/S0094‑1298(20)31337‑7 2661105
    [Google Scholar]
  35. GottrupF. FirminR. RabkinJ. HallidayB.J. HuntT.K. Directly measured tissue oxygen tension and arterial oxygen tension assess tissue perfusion.Crit. Care Med.198715111030103610.1097/00003246‑198711000‑00008 3677745
    [Google Scholar]
  36. SlominskiA.T. ZmijewskiM.A. Glucocorticoids inhibit wound healing: Novel mechanism of action.J. Invest. Dermatol.201713751012101410.1016/j.jid.2017.01.024 28411834
    [Google Scholar]
  37. PayneW.G. NaiduD.K. WheelerC.K. Wound healing in patients with cancer.Eplasty20088e9 18264518
    [Google Scholar]
  38. LiN. DuQ. BaiR. SunJ. Vitality and wound-age estimation in forensic pathology: Review and future prospects.Forensic Sci. Res.202051152410.1080/20961790.2018.1445441 32490306
    [Google Scholar]
  39. KhalafA.A. HassanenE.I. ZakiA.R. TohamyA.F. IbrahimM.A. Histopathological, immunohistochemical, and molecular studies for determination of wound age and vitality in rats.Int. Wound J.20191661416142510.1111/iwj.13206 31448552
    [Google Scholar]
  40. ZubakovD. HanekampE. KokshoornM. van IJckenW. KayserM. Stable RNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples.Int. J. Legal Med.2008122213514210.1007/s00414‑007‑0182‑6 17579879
    [Google Scholar]
  41. LiuL. YaoS. MaoX. FangZ. YangC. ZhangY. Thermosensitive hydrogel coupled with sodium ascorbyl phosphate promotes human umbilical cord-derived mesenchymal stem cell-mediated skin wound healing in mice.Sci. Rep.20231311190910.1038/s41598‑023‑38666‑w 37488143
    [Google Scholar]
  42. AkbabaM. KaraS. DemirT. TemizerM. DülgerH.E. BakırK. Immunohistochemical determination of wound age in mice: Farelerde immunohistokimyasal metodlarla yara yaşı tespiti.Eur. J. Ther.2014203237244
    [Google Scholar]
  43. IshidaY. KimuraA. TakayasuT. EisenmengerW. KondoT. Detection of fibrocytes in human skin wounds and its application for wound age determination.Int. J. Legal Med.2009123429930410.1007/s00414‑009‑0320‑4 19224235
    [Google Scholar]
  44. JohnsonK.E. WilgusT.A. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair.Adv. Wound Care201431064766110.1089/wound.2013.0517 25302139
    [Google Scholar]
  45. NiedeckerA. HuhnR. Ritz-TimmeS. MayerF. Complex challenges of estimating the age and vitality of muscle wounds: A study with matrix metalloproteinases and their inhibitors on animal and human tissue samples.Int. J. Legal Med.202113551843185310.1007/s00414‑021‑02563‑6 34041592
    [Google Scholar]
  46. WilkinsonH.N. HardmanM.J. Wound healing: Cellular mechanisms and pathological outcomes.Open Biol.202010920022310.1098/rsob.200223 32993416
    [Google Scholar]
  47. EmingS.A. KriegT. DavidsonJ.M. Inflammation in wound repair: Molecular and cellular mechanisms.J. Invest. Dermatol.2007127351452510.1038/sj.jid.5700701 17299434
    [Google Scholar]
  48. GainzaG. VillullasS. PedrazJ.L. HernandezR.M. IgartuaM. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration.Nanomedicine20151161551157310.1016/j.nano.2015.03.002 25804415
    [Google Scholar]
  49. TangD. KangR. CoyneC.B. ZehH.J. LotzeM.T. PAMP s and DAMP s: Signal 0s that spur autophagy and immunity.Immunol. Rev.2012249115817510.1111/j.1600‑065X.2012.01146.x 22889221
    [Google Scholar]
  50. GillitzerR. GoebelerM. Chemokines in cutaneous wound healing.J. Leukoc. Biol.200169451352110.1189/jlb.69.4.513 11310836
    [Google Scholar]
  51. DiegelmannR.F. CohenI.K. KaplanA.M. The role of macrophages in wound repair: A review.Plast. Reconstr. Surg.198168110711310.1097/00006534‑198107000‑00025 7017779
    [Google Scholar]
  52. NosbaumA. PrevelN. TruongH.A. Cutting edge: Regulatory T cells facilitate cutaneous wound healing.J. Immunol.201619652010201410.4049/jimmunol.1502139 26826250
    [Google Scholar]
  53. PakyariM. FarrokhiA. MaharlooeiM.K. GhaharyA. Critical role of transforming growth factor beta in different phases of wound healing.Adv. Wound Care20132521522410.1089/wound.2012.0406 24527344
    [Google Scholar]
  54. WillenborgS. SaninD.E. JaisA. Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing.Cell Metab.2021331223982414.e910.1016/j.cmet.2021.10.004 34715039
    [Google Scholar]
  55. XueM. JacksonC.J. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring.Adv. Wound Care20154311913610.1089/wound.2013.0485 25785236
    [Google Scholar]
  56. BowdenL.G. ByrneH.M. MainiP.K. MoultonD.E. A morphoelastic model for dermal wound closure.Biomech. Model. Mechanobiol.201615366368110.1007/s10237‑015‑0716‑7 26264498
    [Google Scholar]
  57. SinghD. RaiV. K Agrawal D. Regulation of Collagen I and Collagen III in tissue injury and regeneration.Cardiol. Cardiovasc. Med.20237151610.26502/fccm.92920302 36776717
    [Google Scholar]
  58. JhawarN. WangJ.V. SaediN. Oral collagen supplementation for skin aging: A fad or the future?J. Cosmet. Dermatol.202019491091210.1111/jocd.13096 31411379
    [Google Scholar]
  59. AlmineJ.F. WiseS.G. WeissA.S. Elastin signaling in wound repair.Birth Defects Res. C Embryo Today201296324825710.1002/bdrc.21016 23109320
    [Google Scholar]
  60. KieltyC.M. SherrattM.J. ShuttleworthC.A. Elastic fibres.J. Cell Sci.2002115142817282810.1242/jcs.115.14.2817 12082143
    [Google Scholar]
  61. DebelleL. TamburroA.M. Elastin: Molecular description and function.Int. J. Biochem. Cell Biol.199931226127210.1016/S1357‑2725(98)00098‑3 10216959
    [Google Scholar]
  62. WiseS.G. WeissA.S. Tropoelastin.Int. J. Biochem. Cell Biol.200941349449710.1016/j.biocel.2008.03.017 18468477
    [Google Scholar]
  63. ChitturiR.T. BalasubramaniamA.M. ParameswarR.A. KesavanG. HarisK.T. MohideenK. The role of myofibroblasts in wound healing, contraction and its clinical implications in cleft palate repair.J. Int. Oral Health2015737580 25878485
    [Google Scholar]
  64. VaughanM.B. HowardE.W. TomasekJ.J. Transforming growth factor-β1 promotes the morphological and functional differentiation of the myofibroblast.Exp. Cell Res.2000257118018910.1006/excr.2000.4869 10854066
    [Google Scholar]
  65. AyaziM. ZivkovicS. HammelG. StefanovicB. RenY. Fibrotic scar in CNS injuries: From the cellular origins of fibroblasts to the molecular processes of fibrotic scar formation.Cells20221115237110.3390/cells11152371 35954214
    [Google Scholar]
  66. MenkeN.B. WardK.R. WittenT.M. BonchevD.G. DiegelmannR.F. Impaired wound healing.Clin. Dermatol.2007251192510.1016/j.clindermatol.2006.12.005 17276197
    [Google Scholar]
  67. IdrisM. SinghB. SinghG. The use of Medicinal plants in wound healing Lucknow: Proc.Natl. Sem Use of Traditional Medicinal Plasnts in Skin Care. CIMAP19943741
    [Google Scholar]
  68. DeshpandeP.J. PathakS.N. GodeJ.D. Wound healing under the influence of certain Indigenous drugs. UdupaK.N. ChaturvediG.N. TripathiS.N. Advances in Research in Indian Medicine.VaranasiB.H.U.1970269303
    [Google Scholar]
  69. BiswasT.K. MukherjeeB. Plant medicines of Indian origin for wound healing activity: A review.Int. J. Low. Extrem. Wounds200321253910.1177/1534734603002001006 15866825
    [Google Scholar]
  70. SylakowskiK. WellsA. ECM-regulation of autophagy: The yin and the yang of autophagy during wound healing.Matrix Biol.2021100-10119720610.1016/j.matbio.2020.12.006 33421547
    [Google Scholar]
  71. SiposP. GyõryH. HagymásiK. OndrejkaP. BlázovicsA. Special wound healing methods used in ancient Egypt and the mythological background.World J. Surg.200428221121610.1007/s00268‑003‑7073‑x 14708054
    [Google Scholar]
  72. MartinottiS. RanzatoE. Honey, wound repair and regenerative medicine.J. Funct. Biomater.2018923410.3390/jfb9020034 29738478
    [Google Scholar]
  73. ElhageK.G. St ClaireK. DaveluyS. Acetic acid and the skin: A review of vinegar in dermatology.Int. J. Dermatol.202261780481110.1111/ijd.15804 34350993
    [Google Scholar]
  74. WallnerC. MoormannE. LulofP. DryschM. LehnhardtM. BehrB. Burn care in the greek and roman antiquity.Medicina2020561265710.3390/medicina56120657 33260533
    [Google Scholar]
  75. MichaleasS.N. LaiosK. CharalabopoulosA. SamonisG. KaramanouM. MichaleasS. Joseph Lister (1827-1912): A pioneer of antiseptic surgery.Cureus20221412e3277710.7759/cureus.32777 36686094
    [Google Scholar]
  76. BaliR.K. Operating room protocols and infection control.In: Oral and Maxillofacial Surgery for the Clinician.Springer2021173194
    [Google Scholar]
  77. HellingT.S. DaonE. In flanders fields: The great war, antoine depage, and the resurgence of débridement.Ann. Surg.1998228217318110.1097/00000658‑199808000‑00005 9712561
    [Google Scholar]
  78. ShamaG. The role of the media in influencing public attitudes to penicillin during World War II.Dynamis201535113115210.4321/S0211‑95362015000100006 26012339
    [Google Scholar]
  79. BowlerP.G. DuerdenB.I. ArmstrongD.G. Wound microbiology and associated approaches to wound management.Clin. Microbiol. Rev.200114224426910.1128/CMR.14.2.244‑269.2001 11292638
    [Google Scholar]
  80. ErikssonE. GriffithG.L. NuutilaK. Topical drug delivery in the treatment of skin wounds and ocular trauma using the platform wound device.Pharmaceutics2023154106010.3390/pharmaceutics15041060 37111546
    [Google Scholar]
  81. LindahlP. JohanssonB.R. LevéenP. BetsholtzC. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice.Science1997277532324224510.1126/science.277.5323.242 9211853
    [Google Scholar]
  82. ChopraI. RobertsM. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance.Microbiol. Mol. Biol. Rev.200165223226010.1128/MMBR.65.2.232‑260.2001 11381101
    [Google Scholar]
  83. ChristerssonL.A. NorderydO.M. PuchalskyC.S. Topical application of tetracycline‐HCl in human periodontitis.J. Clin. Periodontol.1993202889510.1111/j.1600‑051X.1993.tb00335.x 8436637
    [Google Scholar]
  84. LipskyB.A. MillerB. SchwartzR. Sparfloxacin versus ciprofloxacin for the treatment of community-acquired, complicated skin and skin-structure infections.Clin. Ther.199921467569010.1016/S0149‑2918(00)88319‑8 10363733
    [Google Scholar]
  85. KemmerlyS.A. PankeyG.A. Oral ciprofloxacin therapy for Bacillus cereus wound infection and bacteremia.Clin. Infect. Dis.199316118910.1093/clinids/16.1.189 8448312
    [Google Scholar]
  86. AnghelE.L. DeFazioM.V. BarkerJ.C. JanisJ.E. AttingerC.E. Current concepts in debridement: Science and strategies.Plast. Reconstr. Surg.20161383SSuppl.82S93S10.1097/PRS.0000000000002651 27556779
    [Google Scholar]
  87. EsumiG. MatsuuraT. HayashidaM. Efficacy of prophylactic negative pressure wound therapy after pediatric liver transplant.Exp. Clin. Transplant.201917338138610.6002/ect.2018.0076 30696394
    [Google Scholar]
  88. TombulturkF.K. Kanigur-SultuybekG. A molecular approach to maggot debridement therapy with Lucilia sericata and its excretions/secretions in wound healing.Wound Repair Regen.20212961051106110.1111/wrr.12961 34343386
    [Google Scholar]
  89. TiltA. FalolaR.A. KumarA. Operative management of abdominal wound dehiscence: Outcomes and factors influencing time to healing in patients undergoing surgical debridement with primary closure.Wounds20183011317323 30289765
    [Google Scholar]
  90. DreyerC.H. RasmussenM. PedersenR.H. OvergaardS. DingM. Comparisons of efficacy between autograft and allograft on defect repair in vivo in normal and osteoporotic rats.BioMed Res. Int.202020201910.1155/2020/9358989 32190690
    [Google Scholar]
  91. LuoY. YiX. LiangT. Autograft microskin combined with adipose-derived stem cell enhances wound healing in a full-thickness skin defect mouse model.Stem Cell Res. Ther.201910127910.1186/s13287‑019‑1389‑4 31470890
    [Google Scholar]
  92. MacMillan-CrowL.A. CrowJ.P. KerbyJ.D. BeckmanJ.S. ThompsonJ.A. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts.Proc. Natl. Acad. Sci. USA19969321118531185810.1073/pnas.93.21.11853 8876227
    [Google Scholar]
  93. BreznicaP. KoliqiR. DakaA. A review of the current understanding of nanoparticles protein corona composition.Med. Pharm. Rep.202093434235010.15386/mpr‑1756 33225259
    [Google Scholar]
  94. KoliqiR. BreznicaP. DakaA. KoshiB. Application of design of expert software for evaluating the influence of formulation variables on the encapsulation efficacy, drug content and particle size of PEO-PPO-PEO/Poly(DL-lactide-co-caprolactone) nanoparticles as carriers for SN-38.Med. Pharm. Rep.202194448349710.15386/mpr‑1831 36105496
    [Google Scholar]
  95. KoliqiR. DimchevskaS. GeskovskiN. PEO-PPO-PEO/Poly (DL-lactide-co-caprolactone) nanoparticles as carriers for SN-38: Design, optimization and nano-bio interface interactions.Curr. Drug Deliv.201613333935210.2174/1567201813666151130221806 26728136
    [Google Scholar]
  96. FerdousZ. NemmarA. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure.Int. J. Mol. Sci.2020217237510.3390/ijms21072375 32235542
    [Google Scholar]
  97. UskokovićV. PejčićA. KoliqiR. AnđelkovićZ. Polymeric nanotechnologies for the treatment of periodontitis: A chronological review.Int. J. Pharm.202262512206510.1016/j.ijpharm.2022.122065 35932930
    [Google Scholar]
  98. FeczkóT. Polymeric nanotherapeutics acting at special regions of body.J. Drug Deliv. Sci. Technol.20216410259710.1016/j.jddst.2021.102597
    [Google Scholar]
  99. ZielińskaA. CarreiróF. OliveiraA.M. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules25163731 32824172
    [Google Scholar]
  100. RizviS.A.A. SalehA.M. Applications of nanoparticle systems in drug delivery technology.Saudi Pharm. J.2018261647010.1016/j.jsps.2017.10.012 29379334
    [Google Scholar]
  101. ZhangX. HuangY. LiS. Nanomicellar carriers for targeted delivery of anticancer agents.Ther. Deliv.201451536810.4155/tde.13.135 24341817
    [Google Scholar]
  102. Ramezani DanaH. EbrahimiF. Synthesis, properties, and applications of polylactic acid‐based polymers.Polym. Eng. Sci.2023631224310.1002/pen.26193
    [Google Scholar]
  103. Serrano-SevillaI. ArtigaÁ. MitchellS.G. De MatteisL. de la FuenteJ.M. Natural polysaccharides for siRNA delivery: Nanocarriers based on chitosan, hyaluronic acid, and their derivatives.Molecules20192414257010.3390/molecules24142570 31311176
    [Google Scholar]
  104. AjjanF.N. KhanZ. Riera-GalindoS. Doped conjugated polymer enclosing a redox polymer: Wiring polyquinones with Poly(3,4‐Ethylenedioxythiophene).Adv. Energy Sustain. Res.202012200002710.1002/aesr.202000027
    [Google Scholar]
  105. RochaC.V. GonçalvesV. da SilvaM.C. Bañobre-LópezM. GalloJ. PLGA-based composites for various biomedical applications.Int. J. Mol. Sci.2022234203410.3390/ijms23042034 35216149
    [Google Scholar]
  106. MarinE. BriceñoM.I. Caballero-GeorgeC. Critical evaluation of biodegradable polymers used in nanodrugs.Int. J. Nanomedicine2013830713090 23990720
    [Google Scholar]
  107. SzczęchM. SzczepanowiczK. Polymeric core-shell nanoparticles prepared by spontaneous emulsification solvent evaporation and functionalized by the layer-by-layer method.Nanomaterials202010349610.3390/nano10030496 32164194
    [Google Scholar]
  108. Hernández-GiottoniniK.Y. Rodríguez-CórdovaR.J. Gutiérrez-ValenzuelaC.A. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: Effects of formulation parameters.RSC Advances20201084218423110.1039/C9RA10857B 35495261
    [Google Scholar]
  109. JelvehgariM. SalatinS. BararJ. Barzegar-JalaliM. AdibkiaK. KiafarF. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles.Res. Pharm. Sci.201712111410.4103/1735‑5362.199041 28255308
    [Google Scholar]
  110. EsmaeiliF. AtyabiF. DinarvandR. Preparation of PLGA nanoparticles using TPGS in the spontaneous emulsification solvent diffusion method.J. Exp. Nanosci.20072318319210.1080/17458080701393137
    [Google Scholar]
  111. HydeA.M. ZultanskiS.L. WaldmanJ.H. ZhongY.L. ShevlinM. PengF. General principles and strategies for salting-out informed by the Hofmeister series.Org. Process Res. Dev.20172191355137010.1021/acs.oprd.7b00197
    [Google Scholar]
  112. GaziA.S. SailajaA.K. Preparation and characterization of paracetamol loaded eudragit S100 nanoparticles by salting out technique.J. Dev. Drugs201870136
    [Google Scholar]
  113. VargasR. RomeroM. BerasateguiT. Dialysis is a key factor modulating interactions between critical process parameters during the microfluidic preparation of lipid nanoparticles.Colloid Interface Sci. Commun.20235410070910.1016/j.colcom.2023.100709
    [Google Scholar]
  114. ZhangC. ChungJ.W. PriestleyR.D. Dialysis nanoprecipitation of polystyrene nanoparticles.Macromol. Rapid Commun.201233201798180310.1002/marc.201200335 22836901
    [Google Scholar]
  115. KamalyN. YameenB. WuJ. FarokhzadO.C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release.Chem. Rev.201611642602266310.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  116. Pinto ReisC. NeufeldR.J. RibeiroA.J. VeigaF. NanoencapsulationI. NanoencapsulationI. Methods for preparation of drug-loaded polymeric nanoparticles.Nanomedicine20062182110.1016/j.nano.2005.12.003 17292111
    [Google Scholar]
  117. PulingamT. ForoozandehP. ChuahJ.A. SudeshK. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles.Nanomaterials202212357610.3390/nano12030576 35159921
    [Google Scholar]
  118. GuptaS. KesarlaR. ChotaiN. MisraA. OmriA. Systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high pressure homogenization using design of experiments for brain targeting and enhanced bioavailability.BioMed Res. Int.2017201711810.1155/2017/5984014 28243600
    [Google Scholar]
  119. DasS. ChaudhuryA. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery.AAPS PharmSciTech2011121627610.1208/s12249‑010‑9563‑0 21174180
    [Google Scholar]
  120. PanditaD. AhujaA. VelpandianT. LatherV. DuttaT. KharR.K. Characterization and in vitro assessment of paclitaxel loaded lipid nanoparticles formulated using modified solvent injection technique.Pharmazie2009645301310 19530440
    [Google Scholar]
  121. Sanchez-VazquezB. LeeJ.B. StrimaiteM. Solid lipid nanoparticles self-assembled from spray dried microparticles.Int. J. Pharm.201957211878410.1016/j.ijpharm.2019.118784 31676339
    [Google Scholar]
  122. KimuraN. MaekiM. SatoY. Development of a microfluidic-based post-treatment process for size-controlled lipid nanoparticles and application to siRNA delivery.ACS Appl. Mater. Interfaces20201230340113402010.1021/acsami.0c05489 32667806
    [Google Scholar]
  123. HuangR. HuJ. QianW. ChenL. ZhangD. Recent advances in nanotherapeutics for the treatment of burn wounds.Burns Trauma20219tkab02610.1093/burnst/tkab026 34778468
    [Google Scholar]
  124. DasS. BakerA.B. Biomaterials and nanotherapeutics for enhancing skin wound healing.Front. Bioeng. Biotechnol.201648210.3389/fbioe.2016.00082 27843895
    [Google Scholar]
  125. Mofazzal JahromiM.A. Sahandi ZangabadP. Moosavi BasriS.M. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing.Adv. Drug Deliv. Rev.2018123336410.1016/j.addr.2017.08.001 28782570
    [Google Scholar]
  126. ChakrabartiS. IslamJ. HazarikaH. MazumderB. RajuP.S. ChattopadhyayP. Safety profile of silver sulfadiazine-bFGF-loaded hydrogel for partial thickness burn wounds.Cutan. Ocul. Toxicol.201837325826610.1080/15569527.2018.1442843 29480078
    [Google Scholar]
  127. AbazariM. GhaffariA. RashidzadehH. Momeni badeleh S, Maleki Y. Current status and future outlook of nano‐based systems for burn wound management.J. Biomed. Mater. Res. B Appl. Biomater.202010851934195210.1002/jbm.b.34535 31886606
    [Google Scholar]
  128. KushwahaA. GoswamiL. KimB.S. Nanomaterial-based therapy for wound healing.Nanomaterials202212461810.3390/nano12040618 35214947
    [Google Scholar]
  129. GrigoreM. GrumezescuA. HolbanA. MogoşanuG. AndronescuE. Collagen-nanoparticles composites for wound healing and infection control.Metals201771251610.3390/met7120516
    [Google Scholar]
  130. CheungR. NgT. WongJ. ChanW. Chitosan: An update on potential biomedical and pharmaceutical applications.Mar. Drugs20151385156518610.3390/md13085156 26287217
    [Google Scholar]
  131. WangT ZhengY ShenY Chitosan nanoparticles loaded hydrogels promote skin wound healing through the modulation of reactive oxygen species. Artif Cells Nanomed Biotechnol201846Sup 11384910.1080/21691401.2017.1415212
    [Google Scholar]
  132. SunM. DengZ. ShiF. Rebamipide-loaded chitosan nanoparticles accelerate prostatic wound healing by inhibiting M1 macrophage-mediated inflammation via the NF-κB signaling pathway.Biomater. Sci.20208391292510.1039/C9BM01512D 31829321
    [Google Scholar]
  133. DehghaniP. AkbariA. SaadatkishM. VarshosazJ. KouhiM. BodaghiM. Acceleration of wound healing in rats by modified lignocellulose based sponge containing pentoxifylline loaded lecithin/chitosan nanoparticles.Gels202281065810.3390/gels8100658 36286159
    [Google Scholar]
  134. MetwallyA.A. SolimanA.S. Abdel-HadyA.N.A.A. In vivo wound-healing effect of chemical and green synthesized chitosan nanoparticles using lawsonia inermis ethanolic extract.Microsc. Microanal.20232931178118910.1093/micmic/ozad026 37749685
    [Google Scholar]
  135. ZhuZ. HeF. ShaoH. Chitosan/alginate nanoparticles with sustained release of esculentoside a for burn wound healing.ACS Appl. Nano Mater.20236157358710.1021/acsanm.2c04714
    [Google Scholar]
  136. Mathew-SteinerS.S. RoyS. SenC.K. Collagen in wound healing.Bioengineering2021856310.3390/bioengineering8050063 34064689
    [Google Scholar]
  137. YouC. LiQ. WangX. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation.Sci. Rep.2017711048910.1038/s41598‑017‑10481‑0 28874692
    [Google Scholar]
  138. MilanoF. MasiA. MadaghieleM. SanninoA. SalvatoreL. GalloN. Current trends in gelatin-based drug delivery systems.Pharmaceutics2023155149910.3390/pharmaceutics15051499 37242741
    [Google Scholar]
  139. NaomiR. BahariH. RidzuanP.M. OthmanF. Natural-based biomaterial for skin wound healing (Gelatin vs. Collagen): Expert review.Polymers20211314231910.3390/polym13142319 34301076
    [Google Scholar]
  140. NikpasandA. ParviziM.R. Evaluation of the effect of titatnium dioxide nanoparticles/gelatin composite on infected skin wound healing; An animal model study.Bull. Emerg. Trauma20197436637210.29252/beat‑070405 31857999
    [Google Scholar]
  141. JavanmardiS. GhojoghiA. DivbandB. AshrafiJ. Titanium dioxide nanoparticle/gelatin: A potential burn wound healing biomaterial.Wounds20183012372379 30507548
    [Google Scholar]
  142. YangN. ShiN. YaoZ. LiuH. GuoW. Gallium-modified gelatin nanoparticles loaded with quercetin promote skin wound healing via the regulation of bacterial proliferation and macrophage polarization.Front. Bioeng. Biotechnol.202311112494410.3389/fbioe.2023.1124944 36777248
    [Google Scholar]
  143. HershJ. BroylesD. CapchaJ.M.C. Peptide-modified biopolymers for biomedical applications.ACS Appl. Bio Mater.20214122925110.1021/acsabm.0c01145 34250454
    [Google Scholar]
  144. HinesD.J. KaplanD.L. Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights.Crit. Rev. Ther. Drug Carrier Syst.201330325727610.1615/CritRevTherDrugCarrierSyst.2013006475 23614648
    [Google Scholar]
  145. LuY. ChengD. NiuB. WangX. WuX. WangA. Properties of poly (lactic-co-glycolic acid) and progress of poly (lactic-co-glycolic acid)-based biodegradable materials in biomedical research.Pharmaceuticals202316345410.3390/ph16030454 36986553
    [Google Scholar]
  146. ValluruM. StatonC.A. ReedM.W.R. BrownN.J. Transforming growth factor-β and endoglin signaling orchestrate wound healing.Front. Physiol.201128910.3389/fphys.2011.00089 22164144
    [Google Scholar]
  147. SoysalA.Ç. ŞahbazS.E. UğurluT.İ. SezerA.D. Preparation and characterization of poly (lactic-co-glycolic acid) nanoparticles containing TGF-β1 and evaluation of in vitro wound healing effect.J. Pharm. Res.2020242277289
    [Google Scholar]
  148. OhY. JeongH. LimS. HongJ. Controlled nitric oxide release using poly (lactic-co-glycolic acid) nanoparticles for anti-inflammatory effects.Biomacromolecules202021124972497910.1021/acs.biomac.0c01176 33147008
    [Google Scholar]
  149. XuX. LiuB. WuH. Poly Lactic-co-glycolic acid-coated toluidine blue nanoparticles for the antibacterial therapy of wounds.Nanomaterials20211112339410.3390/nano11123394 34947743
    [Google Scholar]
  150. XuX. HuY. ZhangL. Lactic- co -glycolic acid-coated methylene blue nanoparticles with enhanced antibacterial activity for efficient wound healing.RSC Advances20201021123041230710.1039/D0RA01034K 35497590
    [Google Scholar]
  151. OsmanE.M. RatebD.G. HusseinS.I. Effect of curcumin loaded poly (lactic-co-glycolic acid) nanoparticles versus native curcumin on the healing of the tongue ulcer in albino rats (histological, histochemical and immuno-histochemical study).Egypt. J. Histol.2022452548567
    [Google Scholar]
  152. SanchezD.A. SchairerD. Tuckman-VernonC. Amphotericin B releasing nanoparticle topical treatment of Candida spp. in the setting of a burn wound.Nanomedicine201410126927710.1016/j.nano.2013.06.002 23770066
    [Google Scholar]
  153. ChereddyK.K. HerC.H. ComuneM. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing.J. Control. Release2014194138147
    [Google Scholar]
  154. NasiriF. FaghfouriL. HamidiM. Preparation, optimization, and in-vitro characterization of α-tocopherol-loaded solid lipid nanoparticles (SLNs).Drug Dev. Ind. Pharm.202046115917110.1080/03639045.2019.1711388 31894713
    [Google Scholar]
  155. PatelK.K. SurekhaD.B. TripathiM. Antibiofilm potential of silver sulfadiazine-loaded nanoparticle formulations: A study on the effect of DNase-I on microbial biofilm and wound healing activity.Mol. Pharm.20191693916392510.1021/acs.molpharmaceut.9b00527 31318574
    [Google Scholar]
  156. GadH.A. Abd El-RahmanF.A.A. HamdyG.M. Chamomile oil loaded solid lipid nanoparticles: A naturally formulated remedy to enhance the wound healing.J. Drug Deliv. Sci. Technol.20195032933810.1016/j.jddst.2019.01.008
    [Google Scholar]
  157. ZhaW. WangJ. GuoZ. Efficient delivery of VEGF-A mRNA for promoting diabetic wound healing via ionizable lipid nanoparticles.Int. J. Pharm.202363212256510.1016/j.ijpharm.2022.122565 36586634
    [Google Scholar]
  158. RyanA. PatelP. RatreyP. The development of a solid lipid nanoparticle (SLN)-based lacticin 3147 hydrogel for the treatment of wound infections.Drug Deliv. Transl. Res.20231392407242310.1007/s13346‑023‑01332‑9 36964439
    [Google Scholar]
  159. SoutoE.B. SoutoS.B. CamposJ.R. Nanoparticle delivery systems in the treatment of diabetes complications.Molecules20192423420910.3390/molecules24234209 31756981
    [Google Scholar]
  160. JiangL. LooS.C.J. Intelligent nanoparticle-based dressings for bacterial wound infections.ACS Appl. Bio Mater.2021453849386210.1021/acsabm.0c01168 34056562
    [Google Scholar]
  161. HassanD. OmoloC.A. FasikuV.O. MocktarC. GovenderT. Novel chitosan-based pH-responsive lipid-polymer hybrid nanovesicles (OLA-LPHVs) for delivery of vancomycin against methicillin-resistant Staphylococcus aureus infections.Int. J. Biol. Macromol.202014738539810.1016/j.ijbiomac.2020.01.019 31926237
    [Google Scholar]
  162. LiuY. LinA. LiuJ. Enzyme-responsive mesoporous ruthenium for combined chemo-photothermal therapy of drug-resistant bacteria.ACS Appl. Mater. Interfaces20191130265902660610.1021/acsami.9b07866 31264823
    [Google Scholar]
  163. XuM. LiQ. FangZ. Conductive and antimicrobial macroporous nanocomposite hydrogels generated from air-in-water Pickering emulsions for neural stem cell differentiation and skin wound healing.Biomater. Sci.20208246957696810.1039/D0BM01466D 33103177
    [Google Scholar]
  164. ManthaS. PillaiS. KhayambashiP. Smart hydrogels in tissue engineering and regenerative medicine.Materials20191220332310.3390/ma12203323 31614735
    [Google Scholar]
  165. SenerG. HiltonS.A. OsmondM.J. ZgheibC. NewsomJ.P. DewberryL. Injectable, self-healable zwitterionic cryogels with sustained microRNA - cerium oxide nanoparticle release promote accelerated wound healing.Acta Biomater.2020101262272
    [Google Scholar]
  166. NegutI. DorciomanG. GrumezescuV. Scaffolds for wound healing applications.Polymers2020129201010.3390/polym12092010 32899245
    [Google Scholar]
  167. LongJ. EtxeberriaA.E. NandA.V. BuntC.R. RayS. SeyfoddinA. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery.Mater. Sci. Eng. C201910410987310.1016/j.msec.2019.109873 31500054
    [Google Scholar]
  168. KubackovaJ. ZbytovskaJ. HolasO. Nanomaterials for direct and indirect immunomodulation: A review of applications.Eur. J. Pharm. Sci.202014210513910.1016/j.ejps.2019.105139 31704342
    [Google Scholar]
  169. GudkovS.V. BurmistrovD.E. SerovD.A. RebezovM.B. SemenovaA.A.A.B. Lisitsyn A mini review of antibacterial properties of ZnO nanoparticles.Front. Physiol.20219
    [Google Scholar]
  170. KanjiS. DasH. Advances of stem cell therapeutics in cutaneous wound healing and regeneration.Mediators Inflamm.2017201711410.1155/2017/5217967 29213192
    [Google Scholar]
  171. WengT. ZhangW. XiaY. 3D bioprinting for skin tissue engineering: Current status and perspectives.J. Tissue Eng.20211210.1177/20417314211028574 34345398
    [Google Scholar]
  172. AbohamzehE. SheikholeslamiM. ShafeeA. Toxicity of nanomaterials.Nanomaterials and Nanotechnology in Medicine202244747810.1002/9781119558026.ch17
    [Google Scholar]
  173. LiuY. SongS. LiuS. ZhuX. WangP. Application of nanomaterial in hydrogels related to wound healing.J. Nanomater.202220221110.1155/2022/7740768
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385307311240506104035
Loading
/content/journals/pnt/10.2174/0122117385307311240506104035
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Controlled drug delivery; nanoparticles; nanotechnologies; pathophysiology; skin; wound
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test