Skip to content
2000
Volume 13, Issue 5
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Nanorobotics, situated at the intersection of nanotechnology and robotics, holds the potential for revolutionary impact on precision medicine and medical interventions. This review explores the design, navigation, drug delivery, and applications of nanorobots. Architectural intricacies, sensor integration, and navigation strategies, both active and passive, are discussed. Nanorobots are poised to play a pivotal role in controlled drug delivery and personalized medicine, including disease-specific targeting. Their applications span across various domains, including cancer therapy, neurological interventions, and emerging fields. Despite the promises, challenges such as technological hurdles, regulatory considerations, and safety concerns are also acknowledged. The review anticipates a transformative impact on healthcare, offering a comprehensive guide for researchers, clinicians, and policymakers navigating the evolving landscape of nanorobotics.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385310095240913102242
2025-10-01
2025-11-14
Loading full text...

Full text loading...

References

  1. SotoF. ChrostowskiR. Frontiers of medical micro/nanorobotics: In vivo applications and commercialization perspectives toward clinical uses.Front. Bioeng. Biotechnol.2018617010.3389/fbioe.2018.0017030488033
    [Google Scholar]
  2. SchmidtC.K. Medina-SánchezM. EdmondsonR.J. SchmidtO.G. Engineering microrobots for targeted cancer therapies from a medical perspective.Nat. Commun.2020111561810.1038/s41467‑020‑19322‑733154372
    [Google Scholar]
  3. Medina-SánchezM. XuH. SchmidtO.G. Micro- and nano-motors: The new generation of drug carriers.Ther. Deliv.20189430331610.4155/tde‑2017‑011329540126
    [Google Scholar]
  4. LuoM. FengY. WangT. GuanJ. Micro‐/nanorobots at work in active drug delivery.Adv. Funct. Mater.20182825170610010.1002/adfm.201706100
    [Google Scholar]
  5. ChenX.Z. HoopM. MushtaqF. SiringilE. HuC. NelsonB.J. PanéS. Recent developments in magnetically driven micro- and nanorobots.Appl. Mater. Today20179374810.1016/j.apmt.2017.04.006
    [Google Scholar]
  6. SinghA.V. AnsariM.H.D. LauxP. LuchA. Micro-nanorobots: Important considerations when developing novel drug delivery platforms.Expert Opin. Drug Deliv.201916111259127510.1080/17425247.2019.167622831580731
    [Google Scholar]
  7. FanD. YinZ. CheongR. ZhuF.Q. CammarataR.C. ChienC.L. LevchenkoA. Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires.Nat. Nanotechnol.20105754555110.1038/nnano.2010.10420543835
    [Google Scholar]
  8. XuX. KimK. FanD. Tunable release of multiplex biochemicals by plasmonically active rotary nanomotors.Angew. Chem. Int. Ed.20155482525252910.1002/anie.20141075425580820
    [Google Scholar]
  9. BozuyukU. YasaO. YasaI.C. CeylanH. KizilelS. SittiM. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers.ACS Nano20181299617962510.1021/acsnano.8b0599730203963
    [Google Scholar]
  10. ChenX.Z. HoopM. ShamsudhinN. HuangT. ÖzkaleB. LiQ. SiringilE. MushtaqF. Di TizioL. NelsonB.J. PanéS. Hybrid magnetoelectric nanowires for nanorobotic applications: Fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery.Adv. Mater.2017298160545810.1002/adma.20160545827943524
    [Google Scholar]
  11. LiuH. GuoQ. WangW. YuT. YuanZ. GeZ. YangW. A review of magnetically driven swimming microrobots: Material selection, structure design, control method, and applications.Rev. Adv. Mater. Sci.20236212023011910.1515/rams‑2023‑0119
    [Google Scholar]
  12. de ÁvilaB.E.F. AngsantikulP. LiJ. Angel Lopez-RamirezM. Ramírez-HerreraD.E. ThamphiwatanaS. ChenC. DelezukJ. SamakapirukR. RamezV. ObonyoM. ZhangL. WangJ. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection.Nat. Commun.20178127210.1038/s41467‑017‑00309‑w
    [Google Scholar]
  13. GaoW. UygunA. WangJ. Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media.J. Am. Chem. Soc.2012134289790010.1021/ja210874s22188367
    [Google Scholar]
  14. WangW. CastroL.A. HoyosM. MalloukT.E. Autonomous motion of metallic microrods propelled by ultrasound.ACS Nano2012676122613210.1021/nn301312z22631222
    [Google Scholar]
  15. WuZ. LiT. LiJ. GaoW. XuT. ChristiansonC. GaoW. GalarnykM. HeQ. ZhangL. WangJ. Turning erythrocytes into functional micromotors.ACS Nano2014812120411204810.1021/nn506200x25415461
    [Google Scholar]
  16. XuH. Medina-SánchezM. ZhangW. SeatonM.P.H. BrisonD.R. EdmondsonR.J. TaylorS.S. NelsonL. ZengK. BagleyS. RibeiroC. RestrepoL.P. LucenaE. SchmidtC.K. SchmidtO.G. Human spermbots for patient-representative 3D ovarian cancer cell treatment.Nanoscale20201239204672048110.1039/D0NR04488A33026016
    [Google Scholar]
  17. ShaoJ. XuanM. ZhangH. LinX. WuZ. HeQ. Chemotaxis-Guided Hybrid Neutrophil Micromotors for Targeted Drug Transport.Angew. Chem. Int. Ed.20175642129351293910.1002/anie.20170657028816386
    [Google Scholar]
  18. GaoW. KaganD. PakO.S. ClawsonC. CampuzanoS. Chuluun-ErdeneE. ShiptonE. FullertonE.E. ZhangL. LaugaE. WangJ. Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery.Small20128346046710.1002/smll.20110190922174121
    [Google Scholar]
  19. WangJ. WuH. ZhuX. ZwolsmanR. HofstraatS.R.J. LiY. LuoY. JoostenR.R.M. FriedrichH. CaoS. AbdelmohsenL.K.E.A. ShaoJ. van HestJ.C.M. Ultrafast light-activated polymeric nanomotors.Nat. Commun.2024151487810.1038/s41467‑024‑49217‑w38849362
    [Google Scholar]
  20. LiS. JiangQ. LiuS. ZhangY. TianY. SongC. WangJ. ZouY. AndersonG.J. HanJ.Y. ChangY. LiuY. ZhangC. ChenL. ZhouG. NieG. YanH. DingB. ZhaoY. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo.Nat. Biotechnol.201836325826410.1038/nbt.407129431737
    [Google Scholar]
  21. MaW. ZhanY. ZhangY. ShaoX. XieX. MaoC. CuiW. LiQ. ShiJ. LiJ. FanC. LinY. An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2.Nano Lett.20191974505451710.1021/acs.nanolett.9b0132031185573
    [Google Scholar]
  22. WangH. PumeraM. Emerging materials for the fabrication of micro/nanomotors.Nanoscale2017962109211610.1039/C6NR09217A28144663
    [Google Scholar]
  23. GaoW. DongR. ThamphiwatanaS. LiJ. GaoW. ZhangL. WangJ. Artificial micromotors in the mouse’s stomach: A step toward in vivo use of synthetic motors.ACS Nano20159111712310.1021/nn507097k25549040
    [Google Scholar]
  24. XuanM. ShaoJ. LinX. DaiL. HeQ. Self-propelled Janus mesoporous silica nanomotors with sub-100 nm diameters for drug encapsulation and delivery.ChemPhysChem201415112255226010.1002/cphc.20140211124740913
    [Google Scholar]
  25. AlapanY. YigitB. BekerO. DemirörsA.F. SittiM. Shape-encoded dynamic assembly of mobile micromachines.Nat. Mater.201918111244125110.1038/s41563‑019‑0407‑331235903
    [Google Scholar]
  26. BoymelgreenA.M. BalliT. MilohT. YossifonG. Active colloids as mobile microelectrodes for unified label-free selective cargo transport.Nat. Commun.20189176010.1038/s41467‑018‑03086‑229472542
    [Google Scholar]
  27. Garcia-GradillaV SattayasamitsathitS SotoF KuralayF YardımcıC WiitalaD Ultrasound-propelled nanoporous gold wire for efficient drug loading and release.Small201410204154910.1002/smll.201401013
    [Google Scholar]
  28. HuangY. WangW. LiangH. WeiH. XuH. Ultrasonic-assisted synthesis of Au nanobelts and nanowires.J. Nanosci. Nanotechnol.201010117515751810.1166/jnn.2010.275721137972
    [Google Scholar]
  29. ZhouM. LiangX. MochizukiT. AsanumaH. A light-driven DNA nanomachine for the efficient photoswitching of RNA digestion.Angew. Chem. Int. Ed.201049122167217010.1002/anie.20090708220175178
    [Google Scholar]
  30. QiuF. MhannaR. ZhangL. DingY. FujitaS. NelsonB.J. Artificial bacterial flagella functionalized with temperature-sensitive liposomes for controlled release.Sens. Actuators B Chem.201419667668110.1016/j.snb.2014.01.099
    [Google Scholar]
  31. ShaoL. YangZ.J. AndrénD. JohanssonP. KällM. Gold nanorod rotary motors driven by resonant light scattering.ACS Nano2015912125421255110.1021/acsnano.5b0631126564095
    [Google Scholar]
  32. LiJ. AngsantikulP. LiuW. Esteban-Fernández de ÁvilaB. ThamphiwatanaS. XuM. SandrazE. WangX. DelezukJ. GaoW. ZhangL. WangJ. Micromotors spontaneously neutralize gastric acid for ph‐responsive payload release.Angew. Chem. Int. Ed.20175682156216110.1002/anie.20161177428105785
    [Google Scholar]
  33. WilliamsB.J. AnandS.V. RajagopalanJ. SaifM.T.A. A self-propelled biohybrid swimmer at low Reynolds number.Nat. Commun.201451308110.1038/ncomms408124435099
    [Google Scholar]
  34. ChenC. ChangX. AngsantikulP. LiJ. Esteban-Fernández de ÁvilaB. KarshalevE. LiuW. MouF. HeS. CastilloR. LiangY. GuanJ. ZhangL. WangJ. Chemotactic guidance of synthetic organic/inorganic payloads functionalized sperm micromotors.Adv. Biosyst.201821170016010.1002/adbi.201700160
    [Google Scholar]
  35. TaherkhaniS. MohammadiM. DaoudJ. MartelS. TabrizianM. Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents.ACS Nano2014855049506010.1021/nn501130424684397
    [Google Scholar]
  36. Medina-SánchezM. SchmidtO.G. Medical microbots need better imaging and control.Nature2017545765540640810.1038/545406a28541344
    [Google Scholar]
  37. WuZ. ChenY. MukasaD. PakO.S. GaoW. Medical micro/nanorobots in complex media.Chem. Soc. Rev.202049228088811210.1039/D0CS00309C32596700
    [Google Scholar]
  38. HuM. GeX. ChenX. MaoW. QianX. YuanW.E. Micro/Nanorobot: A promising targeted drug delivery system.Pharmaceutics202012766510.3390/pharmaceutics1207066532679772
    [Google Scholar]
  39. YamamotoD. TakadaT. TachibanaM. IijimaY. ShioiA. YoshikawaK. Micromotors working in water through artificial aerobic metabolism.Nanoscale2015731131861319010.1039/C5NR03300D26186059
    [Google Scholar]
  40. FaulknerS. Study: Drug-delivery micromotors treat bacterial infection in stomach.2017Available From: https://www.drugdeliverybusiness.com/study-drug-delivery-micromotors-treat-bacterial-infection-stomach/
  41. WuZ. LiL. YangY. HuP. LiY. YangS.Y. WangL.V. GaoW. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot.2019432eaax061310.1126/scirobotics.aax061332632399
    [Google Scholar]
  42. FelfoulO. MohammadiM. TaherkhaniS. de LanauzeD. Zhong XuY. LoghinD. EssaS. JancikS. HouleD. LafleurM. GabouryL. TabrizianM. KaouN. AtkinM. VuongT. BatistG. BeaucheminN. RadziochD. MartelS. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions.Nat. Nanotechnol.2016111194194710.1038/nnano.2016.13727525475
    [Google Scholar]
  43. GoG. JeongS.G. YooA. HanJ. KangB. KimS. NguyenK.T. JinZ. KimC.S. SeoY.R. KangJ.Y. NaJ.Y. SongE.K. JeongY. SeonJ.K. ParkJ.O. ChoiE. Human adipose–derived mesenchymal stem cell–based medical microrobot system for knee cartilage regeneration in vivo.Sci. Robot.2020538eaay662610.1126/scirobotics.aay662633022593
    [Google Scholar]
  44. LiJ. LiX. LuoT. WangR. LiuC. ChenS. LiD. YueJ. ChengS. SunD. Development of a magnetic microrobot for carrying and delivering targeted cells.Sci. Robot.2018319eaat882910.1126/scirobotics.aat882933141689
    [Google Scholar]
  45. BaylisJ.R. YeonJ.H. ThomsonM.H. KazerooniA. WangX. St JohnA.E. LimE.B. ChienD. LeeA. ZhangJ.Q. PiretJ.M. MachanL.S. BurkeT.F. WhiteN.J. KastrupC.J. Self-propelled particles that transport cargo through flowing blood and halt hemorrhage.Sci. Adv.201519e150037910.1126/sciadv.150037926601282
    [Google Scholar]
  46. KimD.I. LeeH. KwonS.H. SungY.J. SongW.K. ParkS. Bilayer Hydrogel Sheet‐Type Intraocular Microrobot for Drug Delivery and Magnetic Nanoparticles Retrieval.Adv. Healthc. Mater.2020913200011810.1002/adhm.20200011832431072
    [Google Scholar]
  47. JeonS. KimS. HaS. LeeS. KimE. KimS.Y. ParkS.H. JeonJ.H. KimS.W. MoonC. NelsonB.J. KimJ. YuS.W. ChoiH. Magnetically actuated microrobots as a platform for stem cell transplantation.Sci. Robot.2019430eaav431710.1126/scirobotics.aav431733137727
    [Google Scholar]
  48. The National Academies PressToward Precision Medicine.Washington, D.C.National Academies Press201110.17226/13284
    [Google Scholar]
  49. ZiegelsteinR. Personomics: The Missing link in the evolution from precision medicine to personalized medicine.J. Pers. Med.2017741110.3390/jpm704001129035320
    [Google Scholar]
  50. van der ScheeM PinheiroH GaudeE Breath biopsy for early detection and precision medicine in cancer.Ecancermedicalscience.201812ed84
    [Google Scholar]
  51. HartmaierR.J. AlbackerL.A. ChmieleckiJ. BaileyM. HeJ. GoldbergM.E. RamkissoonS. SuhJ. ElvinJ.A. ChiacchiaS. FramptonG.M. RossJ.S. MillerV. StephensP.J. LipsonD. High-throughput genomic profiling of adult solid tumors reveals novel insights into cancer pathogenesis.Cancer Res.20177792464247510.1158/0008‑5472.CAN‑16‑247928235761
    [Google Scholar]
  52. ChenH. PangT. A call for global governance of biobanks.Bull. World Health Organ.201593211311710.2471/BLT.14.13842025883404
    [Google Scholar]
  53. BycroftC. FreemanC. PetkovaD. BandG. ElliottL.T. SharpK. MotyerA. VukcevicD. DelaneauO. O’ConnellJ. CortesA. WelshS. YoungA. EffinghamM. McVeanG. LeslieS. AllenN. DonnellyP. MarchiniJ. The UK Biobank resource with deep phenotyping and genomic data.Nature2018562772620320910.1038/s41586‑018‑0579‑z30305743
    [Google Scholar]
  54. KuboM. BioBank Japan project: Epidemiological study.J. Epidemiol.2017273S110.1016/j.je.2016.11.00128162890
    [Google Scholar]
  55. StarkZ. BoughtwoodT. PhillipsP. ChristodoulouJ. HansenD.P. BraithwaiteJ. NewsonA.J. GaffC.L. SinclairA.H. NorthK.N. Australian Genomics: A federated model for integrating genomics into healthcare.Am. J. Hum. Genet.2019105171410.1016/j.ajhg.2019.06.00331271757
    [Google Scholar]
  56. WangW. WuZ. HeQ. Swimming nanorobots for opening a cell membrane mechanically.VIEW2020132020000510.1002/VIW.20200005
    [Google Scholar]
  57. WangM. LiX. HeF. LiJ. WangH.H. NieZ. Advances in Designer DNA Nanorobots Enabling Programmable Functions.ChemBioChem20222318e20220011910.1002/cbic.20220011935491242
    [Google Scholar]
  58. NeaguA.N. JayaweeraT. WeraduwageK. DarieC.C. A nanorobotics-based approach of breast cancer in the nanotechnology era.Int. J. Mol. Sci.2024259498110.3390/ijms2509498138732200
    [Google Scholar]
  59. ChenY. PanR. WangY. GuoP. LiuX. JiF. HuJ. YanX. WangG.P. ZhangL. SunY. MaX. Carbon helical nanorobots capable of cell membrane penetration for single cell targeted SERS bio-sensing and photothermal cancer therapy.Adv. Funct. Mater.20223230220060010.1002/adfm.202200600
    [Google Scholar]
  60. LiuX. ChenW. ZhaoD. LiuX. WangY. ChenY. MaX. Enzyme-powered hollow nanorobots for active microsampling enabled by thermoresponsive polymer gating.ACS Nano2022167103541036310.1021/acsnano.2c0040135816232
    [Google Scholar]
  61. DalyA.K. Pharmacogenetics: A general review on progress to date.Br. Med. Bull.2017124111510.1093/bmb/ldx03529040422
    [Google Scholar]
  62. RosesA.D. Pharmacogenetics.Hum. Mol. Genet.200110202261226710.1093/hmg/10.20.226111673409
    [Google Scholar]
  63. LinkoV. OraA. KostiainenM.A. DNA nanostructures as smart drug-delivery vehicles and molecular devices.Trends Biotechnol.2015331058659410.1016/j.tibtech.2015.08.00126409777
    [Google Scholar]
  64. RothemundP.W.K. Folding DNA to create nanoscale shapes and patterns.Nature2006440708229730210.1038/nature0458616541064
    [Google Scholar]
  65. KearneyC.J. LucasC.R. O’BrienF.J. CastroC.E. DNA Origami: Folded DNA‐nanodevices that can direct and interpret cell behavior.Adv. Mater.201628275509552410.1002/adma.20150473326840503
    [Google Scholar]
  66. ZhangF. NangreaveJ. LiuY. YanH. Structural DNA nanotechnology: State of the art and future perspective.J. Am. Chem. Soc.201413632111981121110.1021/ja505101a25029570
    [Google Scholar]
  67. SinghH.R. KoppergerE. SimmelF.C. A DNA Nanorobot Uprises against Cancer.Trends Mol. Med.201824759159310.1016/j.molmed.2018.05.00129802035
    [Google Scholar]
  68. DouglasS.M. BacheletI. ChurchG.M. A logic-gated nanorobot for targeted transport of molecular payloads.Science2012335607083183410.1126/science.121408122344439
    [Google Scholar]
  69. CaspermeyerB.J. Cancer-fighting nanorobots seek and destroy tumors.2018Available From: https://news.asu.edu/20180212-discoveries-cancer-fighting-nanorobots-seek-and-destroy-tumors
  70. LanfrancoA.R. CastellanosA.E. DesaiJ.P. MeyersW.C. Robotic Surgery.Ann. Surg.20042391142110.1097/01.sla.0000103020.19595.7d14685095
    [Google Scholar]
  71. BarbashG.I. GliedS.A. New technology and health care costs--the case of robot-assisted surgery.N. Engl. J. Med.2010363870170410.1056/NEJMp100660220818872
    [Google Scholar]
  72. YangY. BevanM.A. LiB. Efficient navigation of colloidal robots in an unknown environment via deep reinforcement learning.Adv. Intell. Syst.202021190010610.1002/aisy.201900106
    [Google Scholar]
  73. UllrichF. FuscoS. ChatzipirpiridisG. PanéS. NelsonB.J. Recent progress in magnetically actuated microrobotics for ophthalmic therapies.European Ophthalmic Rev.20148212010.17925/EOR.2014.08.02.120
    [Google Scholar]
  74. MaliS. Nanotechnology for Surgeons.Indian J. Surg.201375648549210.1007/s12262‑012‑0726‑y24465107
    [Google Scholar]
  75. DillerE. SittiM. Three‐dimensional programmable assembly by untethered magnetic robotic micro‐grippers.Adv. Funct. Mater.201424284397440410.1002/adfm.201400275
    [Google Scholar]
  76. LeongT.G. RandallC.L. BensonB.R. BassikN. SternG.M. GraciasD.H. Tetherless thermobiochemically actuated microgrippers.Proc. Natl. Acad. Sci. USA2009106370370810.1073/pnas.080769810619139411
    [Google Scholar]
  77. GultepeE. RandhawaJ.S. KadamS. YamanakaS. SelaruF.M. ShinE.J. KallooA.N. GraciasD.H. Biopsy with thermally-responsive untethered microtools.Adv. Mater.201325451451910.1002/adma.20120334823047708
    [Google Scholar]
  78. ChatzipirpiridisG. ErgenemanO. PokkiJ. UllrichF. FuscoS. OrtegaJ.A. SivaramanK.M. NelsonB.J. PanéS. Electroforming of implantable tubular magnetic microrobots for wireless ophthalmologic applications.Adv. Healthc. Mater.20154220921410.1002/adhm.20140025624986087
    [Google Scholar]
  79. KaganD. BenchimolM.J. ClaussenJ.C. Chuluun-ErdeneE. EsenerS. WangJ. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation.Angew. Chem. Int. Ed.201251307519752210.1002/anie.20120190222692791
    [Google Scholar]
  80. SolovevA.A. XiW. GraciasD.H. HarazimS.M. DenekeC. SanchezS. SchmidtO.G. Self-propelled nanotools.ACS Nano2012621751175610.1021/nn204762w22233271
    [Google Scholar]
  81. XiW. SolovevA.A. AnanthA.N. GraciasD.H. SanchezS. SchmidtO.G. Rolled-up magnetic microdrillers: Towards remotely controlled minimally invasive surgery.Nanoscale2013541294129710.1039/C2NR32798H23154823
    [Google Scholar]
  82. SrivastavaS.K. Medina-SánchezM. KochB. SchmidtO.G. Medibots: Dual‐action biogenic microdaggers for single‐cell surgery and drug release.Adv. Mater.201628583283710.1002/adma.20150432726619085
    [Google Scholar]
  83. GuoR. WangB. LiuD. HuangY. LuY. Cascade catalysis-coordinated nanorobots toward synergistic cancer chemoimmunotherapy.J. Mater. Chem. B Mater. Biol. Med.202311389201921110.1039/D3TB01279D37740320
    [Google Scholar]
  84. YanM. ChenQ. LiuT. LiX. PeiP. ZhouL. ZhouS. ZhangR. LiangK. DongJ. WeiX. WangJ. TerasakiO. ChenP. GuZ. JiangL. KongB. Site-selective superassembly of biomimetic nanorobots enabling deep penetration into tumor with stiff stroma.Nat. Commun.2023141462810.1038/s41467‑023‑40300‑237532754
    [Google Scholar]
  85. PengX. TangS. TangD. ZhouD. LiY. ChenQ. WanF. LukasH. HanH. ZhangX. GaoW. WuS. Autonomous metal-organic framework nanorobots for active mitochondria-targeted cancer therapy.Sci. Adv.2023923eadh173610.1126/sciadv.adh173637294758
    [Google Scholar]
  86. ShenX. OuyangQ. TanH. OuyangJ. NaN. Computation-Assisted Design of ssDNA Framework Nanorobots for Cancer Logical Recognition, Toehold Disintegration, Visual Dual-Diagnosis, and Synergistic Therapy.Anal. Chem.202395145903591010.1021/acs.analchem.2c0491636999978
    [Google Scholar]
  87. TuY. PengF. AndréA.A.M. MenY. SrinivasM. WilsonD.A. Biodegradable hybrid stomatocyte nanomotors for drug delivery.ACS Nano20171121957196310.1021/acsnano.6b0807928187254
    [Google Scholar]
  88. LuW. YaoJ. ZhuX. QiY. Nanomedicines: Redefining traditional medicine.Biomed. Pharmacother.202113411110310.1016/j.biopha.2020.11110333338747
    [Google Scholar]
  89. Esteban-Fernández de ÁvilaB. Ramírez-HerreraD.E. CampuzanoS. AngsantikulP. ZhangL. WangJ. Nanomotor-enabled ph-responsive intracellular delivery of caspase-3: Toward rapid cell apoptosis.ACS Nano20171165367537410.1021/acsnano.7b0192628467853
    [Google Scholar]
  90. WuZ. LinX. ZouX. SunJ. HeQ. Biodegradable protein-based rockets for drug transportation and light-triggered release.ACS Appl. Mater. Interfaces20157125025510.1021/am507680u25496011
    [Google Scholar]
  91. HoopM. MushtaqF. HurterC. ChenX.Z. NelsonB.J. PanéS. A smart multifunctional drug delivery nanoplatform for targeting cancer cells.Nanoscale2016825127231272810.1039/C6NR02228F27297037
    [Google Scholar]
  92. CeylanH. YasaI.C. YasaO. TabakA.F. GiltinanJ. SittiM. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release.ACS Nano20191333353336210.1021/acsnano.8b0923330742410
    [Google Scholar]
  93. KongX. GaoP. WangJ. FangY. HwangK.C. Advances of medical nanorobots for future cancer treatments.J. Hematol. Oncol.202316174
    [Google Scholar]
  94. Gheibi HayatS.M. DarroudiM. Nanovaccine: A novel approach in immunization.J. Cell. Physiol.20192348125301253610.1002/jcp.2812030633361
    [Google Scholar]
  95. AggarwalM. KumarS. The use of nanorobotics in the treatment therapy of cancer and its future aspects: A review.Cureus2022149e2936610.7759/cureus.2936636304358
    [Google Scholar]
  96. DolevS. NarayananR.P. RosenblitM. Design of nanorobots for exposing cancer cells.Nanotechnology2019303131550110.1088/1361‑6528/ab177030965304
    [Google Scholar]
  97. RosenblitM. Recent trends in nano-drug delivery systems for breast, prostate, brain, and other cancers.ASMS2022651253
    [Google Scholar]
  98. DengG. PengX. SunZ. ZhengW. YuJ. DuL. ChenH. GongP. ZhangP. CaiL. TangB.Z. Natural-killer-cell-inspired nanorobots with aggregation-induced emission characteristics for Near-Infrared-II fluorescence-guided glioma theranostics.ACS Nano2020149114521146210.1021/acsnano.0c0382432820907
    [Google Scholar]
  99. CenP. ZhouY. CuiC. WeiY. ChengZ. WuS. ZhangH. TianM. Optical molecular imaging and theranostics in neurological diseases based on aggregation-induced emission luminogens.Eur. J. Nucl. Med. Mol. Imaging202249134529455010.1007/s00259‑022‑05894‑735781601
    [Google Scholar]
  100. MalbouissonL.A.C. MartinsM.G.R. MakiuchiN. One‐electron properties using a CI method based on multiple Hartree–Fock solutions.Int. J. Quantum Chem.2006106132772277810.1002/qua.21035
    [Google Scholar]
  101. ModiG. PillayV. ChoonaraY.E. NdesendoV.M.K. du ToitL.C. NaidooD. Nanotechnological applications for the treatment of neurodegenerative disorders.Prog. Neurobiol.200988427228510.1016/j.pneurobio.2009.05.00219486920
    [Google Scholar]
  102. ModiG. PillayV. ChoonaraY.E. Advances in the treatment of neurodegenerative disorders employing nanotechnology.Ann. N. Y. Acad. Sci.20101184115417210.1111/j.1749‑6632.2009.05108.x20146696
    [Google Scholar]
  103. TianM. MaZ.C. HanQ. SuoQ. ZhangZ. HanB. Emerging applications of femtosecond laser fabrication in neurobiological research.Front Chem.202210105106110.3389/fchem.2022.105106136405321
    [Google Scholar]
  104. ChenJ. WangY. Personalized dynamic transport of magnetic nanorobots inside the brain vasculature.Nanotechnology2020314949570610.1088/1361‑6528/abb39233016261
    [Google Scholar]
  105. DhawanS. KapilR. SinghB. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery.J. Pharm. Pharmacol.201163334235110.1111/j.2042‑7158.2010.01225.x21749381
    [Google Scholar]
  106. GaoJ.Q. LvQ. LiL.M. TangX.J. LiF.Z. HuY.L. HanM. Glioma targeting and blood–brain barrier penetration by dual-targeting doxorubincin liposomes.Biomaterials201334225628563910.1016/j.biomaterials.2013.03.09723628475
    [Google Scholar]
  107. CostaP.M. WangJ.T.W. MorfinJ.F. KhanumT. ToW. SosabowskiJ. TóthE. Al-JamalK.T. Functionalised carbon nanotubes enhance brain delivery of amyloid-targeting Pittsburgh Compound B (PiB)-derived ligands.Nanotheranostics20182216818310.7150/ntno.2312529577020
    [Google Scholar]
  108. SeoJ.W. AngJ. MahakianL.M. TamS. FiteB. InghamE.S. BeyerJ. ForsayethJ. BankiewiczK.S. XuT. FerraraK.W. Self-assembled 20-nm 64Cu-micelles enhance accumulation in rat glioblastoma.J. Control. Release2015220Pt A516010.1016/j.jconrel.2015.09.05726437259
    [Google Scholar]
  109. FanK. JiaX. ZhouM. WangK. CondeJ. HeJ. TianJ. YanX. Ferritin nanocarrier traverses the blood brain barrier and kills glioma.ACS Nano20181254105411510.1021/acsnano.7b0696929608290
    [Google Scholar]
  110. CavalcantiA. HoggT. ShirinzadehB. LiawH.C. Nanorobot communication techniques: A comprehensive tutorial.2006 9th International Conference on Control, Automation, Robotics and Vision05-08 December 2006Singapore200610.1109/ICARCV.2006.345457
    [Google Scholar]
  111. YanX. Applications of nano/micromotors for treatment and diagnosis in biological lumens.Micromachines202213101780
    [Google Scholar]
  112. YanX. XuJ. ZhouQ. JinD. VongC.I. FengQ. NgD.H.L. BianL. ZhangL. Molecular cargo delivery using multicellular magnetic microswimmers.Appl. Mater. Today20191524225110.1016/j.apmt.2019.02.006
    [Google Scholar]
  113. WangY. QinB. GaoS. WangX. ZhangH. WuZ. Recent advancements in Mg-based micromotors for biomedical and environmental applications.J. Mater. Chem. B Mater. Biol. Med.20231148114831149510.1039/D3TB02339G38054245
    [Google Scholar]
  114. SotoF. KuporD. Lopez-RamirezM.A. WeiF. KarshalevE. TangS. TehraniF. WangJ. Onion-like multifunctional microtrap vehicles for attraction–trapping–destruction of biological threats.Angew. Chem. Int. Ed.20205993480348510.1002/anie.20191387231863710
    [Google Scholar]
  115. LiuW. GeH. DingX. LuX. ZhangY. GuZ. Cubic nano-silver-decorated manganese dioxide micromotors: Enhanced propulsion and antibacterial performance.Nanoscale20201238196551966410.1039/D0NR06281B32996985
    [Google Scholar]
  116. SharmaN.N. MittalR.K. Nanorobot movement: Challenges and biologically inspired solutions.Int. J. Smart Sensing Intell. Syst.2008118710910.21307/ijssis‑2017‑280
    [Google Scholar]
  117. ZhangY. ZhangY. HanY. GongX. Micro/nanorobots for medical diagnosis and disease treatment.Micromachines (Basel)202213564810.3390/mi1305064835630115
    [Google Scholar]
  118. WeiF. WangL. YinC. ZhongT. LuZ. YaoL. The voyage of micro/nanorobots inside the human body.ChemNanoMat202281e20210032610.1002/cnma.202100326
    [Google Scholar]
  119. SotoF. WangJ. AhmedR. DemirciU. Medical micro/nanorobots in precision medicine.Adv. Sci. (Weinh.)2020721200220310.1002/advs.20200220333173743
    [Google Scholar]
  120. ElnaggarA. KangS. TianM. HanB. KeshavarzM. State of the art in actuation of micro/nanorobots for biomedical applications.Small Sci.202443230021110.1002/smsc.202300211
    [Google Scholar]
  121. CozziP. Nanorobots in clinical practice: Advancing towards human trials.2023Available From: https://tech4future.info/en/nanorobots-in-clinical-practice/
  122. ShakeelF. Nanomedicine Based Drug Delivery Systems: Recent Developments and Future Prospects.Basel, SwitzerlandMDPI202310.3390/books978‑3‑0365‑7760‑9
    [Google Scholar]
  123. DasT SultanaS Multifaceted applications of micro/nanorobots in pharmaceutical drug delivery systems: A comprehensive review.Future J. Pharmaceut. Sci.2024102
    [Google Scholar]
  124. RébéN. Artificial Intelligence: Robot Law, Policy and Ethics.Leiden, NetherlandsBRILL202110.1163/9789004458109
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385310095240913102242
Loading
/content/journals/pnt/10.2174/0122117385310095240913102242
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test