Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Cubosomes, a novel drug delivery system, have gained significant attention in recent years due to their unique self-assembled structures and enhanced drug encapsulation capabilities. They are administered by oral, ophthalmic, transdermal, and chemotherapeutic routes, to name a few. Due to their many potential benefits—which include high drug dispersal due to the cubic structure, a large surface area, a relatively simple manufacturing process, biodegradability, the capacity to encapsulate hydrophobic, hydrophilic, and amphiphilic compounds, targeted and controlled release of bioactive agents, and the biodegradability of lipids—cubosomes show enormous promise in drug nanoformulations for cancer therapeutics. The most common preparation method involves emulsifying a monoglyceride with a polymer, homogenizing, and then sonicating the mixture. Two distinct approaches to preparing are top-down and bottom-up. This evaluation will examine the materials, methods of preparation, cubosome-related drug encapsulating techniques, drug loading, release mechanism, and their uses. The following databases were used for literature searches: PubMed, Frontiers, Science Direct, Springer, Wiley, and MDPI. For the purpose of finding pertinent articles and contents (2015-2024), the keywords “cubosome; drug delivery systems, nano-carrier, theranostic, drug release mechanism” and others of a similar nature were utilized. This review will conduct a comprehensive analysis of the cubosome-related composition, production methods, drug encapsulating strategies, drug release mechanisms, and applications. Moreover, the difficulties encountered in fine-tuning different parameters to improve loading capabilities and prospects are also discussed. Innovation in pharmaceutical research and development can be stimulated by the knowledge gathered about cubosomal drug delivery methods. Through the clarification of the mechanisms involved in drug release from cubosomes and the investigation of innovative fabrication procedures, scientists can enhance the cubosomal formulation design for targeted therapeutic uses.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385306495240529052911
2024-06-15
2025-09-03
Loading full text...

Full text loading...

References

  1. BhagwatR.R. VaidhyaI.S. Novel drug delivery systems: An overview.Int. J. Pharm. Sci. Res.201343970
    [Google Scholar]
  2. AlotaibiG. AlharthiS. BasuB. AshD. DuttaS. SinghS. PrajapatiB.G. BhattacharyaS. ChidrawarV.R. ChitmeH. Nano-Gels: Recent advancement in fabrication methods for mitigation of skin cancer.Gels20239433110.3390/gels904033137102943
    [Google Scholar]
  3. Ajazuddin SarafS. Applications of novel drug delivery system for herbal formulations.Fitoterapia201081768068910.1016/j.fitote.2010.05.00120471457
    [Google Scholar]
  4. EftekhariA. Maleki DizajS. AhmadianE. PrzekoraA. Hosseiniyan KhatibiS.M. ArdalanM. Zununi VahedS. ValiyevaM. MehraliyevaS. KhalilovR. HasanzadehM. Application of advanced nanomaterials for kidney failure treatment and regeneration.Materials20211411293910.3390/ma1411293934072461
    [Google Scholar]
  5. SharifiS. SamaniA. AhmadianE. EftekhariA. DerakhsankhahH. JafariS. Oral delivery of proteins and peptides by mucoadhesive nanoparticles.Biointerface Res. Appl. Chem.20219238493852
    [Google Scholar]
  6. BaranA. KeskinC. BaranM.F. HuseynovaI. KhalilovR. EftekhariA. Irtegun-KandemirS. KavakD.E. Ecofriendly synthesis of silver nanoparticles using ananas comosus fruit peels: Anticancer and antimicrobial activities.Bioinorg. Chem. Appl.202120211810.1155/2021/205814934887909
    [Google Scholar]
  7. LakshmiN. YalavarthiP. VadlamudiH. ThanniruJ. YagaG. KH. Cubosomes as targeted drug delivery systems a biopharmaceutical approach.Curr. Drug Discov. Technol.201411318118810.2174/157016381166614050512592324836404
    [Google Scholar]
  8. UmarH. WahabH.A. GazzaliA.M. TahirH. AhmadW. Cubosomes: Design, development, and tumor-targeted drug delivery applications.Polymers20221415311810.3390/polym1415311835956633
    [Google Scholar]
  9. SivadasanD. SultanM.H. AlqahtaniS.S. JavedS. Cubosomes in drug delivery—a comprehensive review on its structural components, preparation techniques and therapeutic applications.Biomedicines2023114111410.3390/biomedicines1104111437189732
    [Google Scholar]
  10. RaoS. V. SravyaB. N. PadmalathaK. A review on cubosome: The novel drug delivery system.GSC Biolog. Pharmac. Sci.201851076081
    [Google Scholar]
  11. GaballaS. A. El GarhyO. H. AbdelkaderH. Cubosomes: composition, preparation, and drug delivery applications.J. adv. biomed. pharmac. sci.20203119
    [Google Scholar]
  12. El-LaithyH.M. BadawiA. AbdelmalakN.S. El-SayyadN. Cubosomes as oral drug delivery systems: A promising approach for enhancing the release of clopidogrel bisulphate in the intestine.Chem. Pharm. Bull.201866121165117310.1248/cpb.c18‑0061530232306
    [Google Scholar]
  13. MohsenA.M. YounisM.M. SalamaA. DarwishA.B. Cubosomes as a potential oral drug delivery system for enhancing the hepatoprotective effect of coenzyme Q10.J. Pharm. Sci.202111072677268610.1016/j.xphs.2021.02.00733600809
    [Google Scholar]
  14. TebaH.E. KhalilI.A. El SorogyH.M. Novel cubosome based system for ocular delivery of acetazolamide.Drug Deliv.20212812177218610.1080/10717544.2021.198909034662264
    [Google Scholar]
  15. KhanS. JainP. JainS. JainR. BhargavaS. JainA. Topical delivery of erythromycin through cubosomes for acne.Pharm. Nanotechnol.201861384710.2174/221173850666618020910022229424323
    [Google Scholar]
  16. AboudH.M. HassanA.H. AliA.A. Abdel-RazikA.R.H. Novel in situ gelling vaginal sponges of sildenafil citrate-based cubosomes for uterine targeting.Drug Deliv.20182511328133910.1080/10717544.2018.147785829869515
    [Google Scholar]
  17. AhirraoM. ShrotriyaS. in vitro and in vivo evaluation of cubosomal in situ nasal gel containing resveratrol for brain targeting.Drug Dev. Ind. Pharm.201743101686169310.1080/03639045.2017.133872128574732
    [Google Scholar]
  18. RamyaP. ReddyG.S. KumarD.L. Green synthesis of cubosomes.Int. J. Innov. Sci.Eng. Technol.2020792226
    [Google Scholar]
  19. KulkarniC.V. WachterW. Iglesias-SaltoG. EngelskirchenS. AhualliS. Monoolein: A magic lipid?Phys. Chem. Chem. Phys.20111383004302110.1039/C0CP01539C21183976
    [Google Scholar]
  20. VargheseR. SalviS. SoodP. KulkarniB. KumarD. Cubosomes in cancer drug delivery: A review.Colloid Interface Sci. Commun.20224610056110.1016/j.colcom.2021.100561
    [Google Scholar]
  21. LuzzatiV. VargasR. MarianiP. GulikA. DelacroixH. Cubic phases of lipid-containing systems. Elements of a theory and biological connotations.J. Mol. Biol.1993229254055110.1006/jmbi.1993.10538429562
    [Google Scholar]
  22. LandauE.M. RosenbuschJ.P. Lipidic cubic phases: A novel concept for the crystallization of membrane proteins.Proc. Natl. Acad. Sci.19969325145321453510.1073/pnas.93.25.145328962086
    [Google Scholar]
  23. SeddonJ. M. SquiresA. M. ConnC. E. CesO. HeronA. J. Pressure-jump X-ray studies of liquid crystal transitions in lipids.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences2006364184726352655
    [Google Scholar]
  24. MontisC. CastroflorioB. MendozzaM. SalvatoreA. BertiD. BaglioniP. Magnetocubosomes for the delivery and controlled release of therapeutics.J. Colloid Interface Sci.201544931732610.1016/j.jcis.2014.11.05625533536
    [Google Scholar]
  25. MurgiaS. FalchiA.M. MeliV. SchillénK. LippolisV. MonduzziM. RosaA. SchmidtJ. TalmonY. BizzarriR. CaltagironeC. Cubosome formulations stabilized by a dansyl-conjugated block copolymer for possible nanomedicine applications.Colloids Surf. B Biointerfaces2015129879410.1016/j.colsurfb.2015.03.02525829131
    [Google Scholar]
  26. MadheswaranT. KandasamyM. BoseR.J.C. KaruppagounderV. Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems.Drug Discov. Today20192471405141210.1016/j.drudis.2019.05.00431102731
    [Google Scholar]
  27. GargG. SarafS. SarafS. Cubosomes: An Overview.Biol. Pharm. Bull.200730235035310.1248/bpb.30.35017268078
    [Google Scholar]
  28. HuaS. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives.Front. Pharmacol.2015621910.3389/fphar.2015.0021926483690
    [Google Scholar]
  29. NithyaR. JeroldP. SiramK. Cubosomes of dapsone enhanced permeation across the skin.J. Drug Deliv. Sci. Technol.201848758110.1016/j.jddst.2018.09.002
    [Google Scholar]
  30. KaramiZ. HamidiM. Cubosomes: Remarkable drug delivery potential.Drug Discov. Today201621578980110.1016/j.drudis.2016.01.00426780385
    [Google Scholar]
  31. ShahM.H. ParadkarA. Effect of HLB of additives on the properties and drug release from the glyceryl monooleate matrices.Eur. J. Pharm. Biopharm.200767116617410.1016/j.ejpb.2007.01.00117353118
    [Google Scholar]
  32. LiuQ. DongY.D. HanleyT.L. BoydB.J. Sensitivity of nanostructure in charged cubosomes to phase changes triggered by ionic species in solution.Langmuir20132946142651427310.1021/la402426y24111826
    [Google Scholar]
  33. CaboiF. AmicoG.S. PitzalisP. MonduzziM. NylanderT. LarssonK. Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system. I. Phase behavior.Chem. Phys. Lipids20011091476210.1016/S0009‑3084(00)00200‑011163344
    [Google Scholar]
  34. VermaD. VermaS. BlumeG. FahrA. Particle size of liposomes influences dermal delivery of substances into skin.Int. J. Pharm.20032581-214115110.1016/S0378‑5173(03)00183‑212753761
    [Google Scholar]
  35. VermaD.D. VermaS. BlumeG. FahrA. Liposomes increase skin penetration of entrapped and non-entrapped hydrophilic substances into human skin: A skin penetration and confocal laser scanning microscopy study.Eur. J. Pharm. Biopharm.2003a55327127710.1016/S0939‑6411(03)00021‑312754000
    [Google Scholar]
  36. NasrM. TeiamaM. IsmailA. EbadaA. SaberS. in vitro and in vivo evaluation of cubosomal nanoparticles as an ocular delivery system for fluconazole in treatment of keratomycosis.Drug Deliv. Transl. Res.20201061841185210.1007/s13346‑020‑00830‑432779112
    [Google Scholar]
  37. MüllerR.H. BöhmB.H.L. GrauM.J. Nanosuspensions-Formulations for poorly soluble drugs with poor bioavailability/2ndcommunication: Stability, biopharmaceuticalaspects, possible drug forms and registration aspects.Pharm. Ind.1999612175178
    [Google Scholar]
  38. MertinsO. MathewsP.D. AngelovaA. Advances in the design of ph-sensitive cubosome liquid crystalline nanocarriers for drug delivery applications.Nanomaterials202010596310.3390/nano1005096332443582
    [Google Scholar]
  39. BhattacharyyaS. RanaD. BhattacharyyaS.N. Determination of heat of formation of associated systems by calorimetry.J. Indian Chem. Soc.1997742103107
    [Google Scholar]
  40. BhattacharyyaS. A thermodynamic study of molecular association by gas liquid chromatography.J. Indian Chem. Soc.199774645646310.5281/zenodo.5880620
    [Google Scholar]
  41. SpicerP.T. HaydenK.L. LynchM.L. Ofori-BoatengA. BurnsJ.L. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes).Langmuir200117195748575610.1021/la010161w
    [Google Scholar]
  42. Di CostanzoA. AngelicoR. Formulation strategies for enhancing the bioavailability of silymarin: The state of the art.Molecules20192411215510.3390/molecules2411215531181687
    [Google Scholar]
  43. YasserM. TeaimaM. El-NabarawiM. El-MonemR.A. Cubosomal based oral tablet for controlled drug delivery of telmisartan: formulation, in-vitro evaluation and in-vivo comparative pharmacokinetic study in rabbits.Drug Dev. Ind. Pharm.201945698199410.1080/03639045.2019.159039230865478
    [Google Scholar]
  44. RajaniT. MaheshG. ReddyB.C.S. Formulation and evaluation of dexamethasone loaded cubosomes.Res. J. Pharmac. Technol.202013270971410.5958/0974‑360X.2020.00135.3
    [Google Scholar]
  45. ZewailM. E GaafarP.M. AliM.M. AbbasH. Lipidic cubic-phase leflunomide nanoparticles (cubosomes) as a potential tool for breast cancer management.Drug Deliv.20222911663167410.1080/10717544.2022.207977035616281
    [Google Scholar]
  46. RanaD. BagK. BhattacharyyaS.N. MandalB.M. Miscibility of poly(styrene-co-butyl acrylate) with poly(ethyl methacrylate): Existence of both UCST and LCST.J. Polym. Sci., B, Polym. Phys.200038336937510.1002/(SICI)1099‑0488(20000201)38:3<369::AID‑POLB3>3.0.CO;2‑W
    [Google Scholar]
  47. RanaD. MandalB.M. BhattacharyyaS.N. Analogue calorimetric studies of blends of poly (vinyl ester) s and polyacrylates.Macromolecules19962951579158310.1021/ma950954n
    [Google Scholar]
  48. RizwanS.B. McBurneyW.T. YoungK. HanleyT. BoydB.J. RadesT. HookS. Cubosomes containing the adjuvants imiquimod and monophosphoryl lipid A stimulate robust cellular and humoral immune responses.J. Control. Release20131651162110.1016/j.jconrel.2012.10.02023142776
    [Google Scholar]
  49. SaberM.M. Al-mahallawiA.M. NassarN.N. StorkB. ShoumanS.A. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes.BMC Cancer201818182210.1186/s12885‑018‑4727‑530111296
    [Google Scholar]
  50. PengX. ZhouY. HanK. QinL. DianL. LiG. PanX. WuC. Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin.Drug Des. Devel. Ther.201594209421810.2147/DDDT.S8637026345516
    [Google Scholar]
  51. RattanapakT. BirchallJ. YoungK. IshiiM. MeglinskiI. RadesT. HookS. Transcutaneous immunization using microneedles and cubosomes: Mechanistic investigations using optical coherence tomography and two-photon microscopy.J. Control. Release2013172389490310.1016/j.jconrel.2013.08.01823978683
    [Google Scholar]
  52. AhmedL.M. HassaneinK.M.A. MohamedF.A. ElfahamT.H. Formulation and evaluation of simvastatin cubosomal nanoparticles for assessing its wound healing effect.Sci. Rep.20231311794110.1038/s41598‑023‑44304‑237864028
    [Google Scholar]
  53. OliveiraC. FerreiraC.J.O. SousaM. ParisJ.L. GasparR. SilvaB.F.B. TeixeiraJ.A. Ferreira-SantosP. BotelhoC.M. A Versatile nanocarrier cubosomes, characterization, and applications.Nanomaterials20221213222410.3390/nano1213222435808060
    [Google Scholar]
  54. PanX. HanK. PengX. YangZ. QinL. ZhuC. HuangX. ShiX. DianL. LuM. WuC. Nanostructured cubosomes as advanced drug delivery system.Curr. Pharm. Des.201319356290629710.2174/138161281131935000623470001
    [Google Scholar]
  55. ZhaiJ. TanF.H. LuworR.B. Srinivasa ReddyT. AhmedN. DrummondC.J. TranN. in vitro and in vivo toxicity and biodistribution of paclitaxel-loaded cubosomes as a drug delivery nanocarrier: A case study using an A431 skin cancer xenograft model.ACS Appl. Bio Mater.2020374198420710.1021/acsabm.0c0026935025421
    [Google Scholar]
  56. RarokarN.R. SaojiS.D. RautN.A. TaksandeJ.B. KhedekarP.B. DaveV.S. Nanostructured cubosomes in a thermoresponsive depot system: an alternative approach for the controlled delivery of docetaxel.AAPS PharmSciTech201617243644510.1208/s12249‑015‑0369‑y26208439
    [Google Scholar]
  57. TekadeA. GhodkeP. PatangeA. PatilP. Nanostructured cubosomal in situ nasal gel for the treatment of migraine.J. Drug Deliv. Sci. Technol.20238710479710.1016/j.jddst.2023.104797
    [Google Scholar]
  58. ElsenosyF.M. AbdelbaryG.A. ElshafeeyA.H. ElsayedI. FaresA.R. Brain targeting of duloxetine hcl via intranasal delivery of loaded cubosomal gel: in vitro characterization, ex vivo permeation, and in vivo biodistribution studies.Int. J. Nanomedicine2020159517953710.2147/IJN.S27735233324051
    [Google Scholar]
  59. PatilS.M. SawantS.S. KundaN.K. Inhalable bedaquiline-loaded cubosomes for the treatment of non-small cell lung cancer (NSCLC).Int. J. Pharm.202160712104610.1016/j.ijpharm.2021.12104634450225
    [Google Scholar]
  60. HosnyK.M. Nanosized cubosomal thermogelling dispersion loaded with saquinavir mesylate to improve its bioavailability: Preparation, optimization, in vitro and in vivo evaluation.Int. J. Nanomedicine2020155113512910.2147/IJN.S26185532764940
    [Google Scholar]
  61. GanL. HanS. ShenJ. ZhuJ. ZhuC. ZhangX. GanY. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: Improving preocular retention and ocular bioavailability.Int. J. Pharm.20103961-217918710.1016/j.ijpharm.2010.06.01520558263
    [Google Scholar]
  62. HanS. ShenJ. GanY. GengH. ZhangX. ZhuC. GanL. Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability.Acta Pharmacol. Sin.201031899099810.1038/aps.2010.9820686524
    [Google Scholar]
  63. EldeebA.E. SalahS. GhorabM. Formulation and evaluation of cubosomes drug delivery system for treatment of glaucoma: Ex-vivo permeation and in-vivo pharmacodynamic study.J. Drug Deliv. Sci. Technol.20195223624710.1016/j.jddst.2019.04.036
    [Google Scholar]
  64. NasrM. YounesH. Abdel-RashidR.S. Formulation and evaluation of cubosomes containing colchicine for transdermal delivery.Drug Deliv. Transl. Res.20201051302131310.1007/s13346‑020‑00785‑632399604
    [Google Scholar]
  65. MeikleT.G. DyettB.P. StrachanJ.B. WhiteJ. DrummondC.J. ConnC.E. Preparation, characterization, and antimicrobial activity of cubosome encapsulated metal nanocrystals.ACS Appl. Mater. Interfaces20201266944695410.1021/acsami.9b2178331917545
    [Google Scholar]
  66. BarrigaH.M.G. HolmeM.N. StevensM.M. Cubosomes: The next generation of smart lipid nanoparticles?Angew. Chem. Int. Ed.201958102958297810.1002/anie.20180406729926520
    [Google Scholar]
  67. YounusM. PrenticeR.N. ClarksonA.N. BoydB.J. RizwanS.B. Incorporation of an endogenous neuromodulatory lipid, oleoylethanolamide, into cubosomes: nanostructural characterization.Langmuir201632358942895010.1021/acs.langmuir.6b0239527524261
    [Google Scholar]
  68. TranN. MuletX. HawleyA.M. FongC. ZhaiJ. LeT.C. RatcliffeJ. DrummondC.J. Manipulating the ordered nanostructure of self-assembled monoolein and phytantriol nanoparticles with unsaturated fatty acids.Langmuir20183482764277310.1021/acs.langmuir.7b0354129381863
    [Google Scholar]
  69. FraserS.J. MuletX. MartinL. PraporskiS. MechlerA. HartleyP.G. PolyzosA. SeparovicF. Surface immobilization of bio-functionalized cubosomes: Sensing of proteins by quartz crystal microbalance.Langmuir201228162062710.1021/la203299422085432
    [Google Scholar]
  70. DussM. Salvati ManniL. MoserL. HandschinS. MezzengaR. JessenH.J. LandauE.M. Lipidic mesophases as novel nanoreactor scaffolds for organocatalysts: heterogeneously catalyzed asymmetric aldol reactions in confined water.ACS Appl. Mater. Interfaces20181055114512410.1021/acsami.7b1974029313658
    [Google Scholar]
  71. MuirB.W. AcharyaD.P. KennedyD.F. MuletX. EvansR.A. PereiraS.M. WarkK.L. BoydB.J. NguyenT.H. HintonT.M. WaddingtonL.J. KirbyN. WrightD.K. WangH.X. EganG.F. MoffatB.A. Metal-free and MRI visible theranostic lyotropic liquid crystal nitroxide-based nanoparticles.Biomaterials20123392723273310.1016/j.biomaterials.2011.12.01822209558
    [Google Scholar]
  72. BiffiS. AndolfiL. CaltagironeC. GarrovoC. FalchiA.M. LippolisV. LorenzonA. MacorP. MeliV. MonduzziM. Obiols-RabasaM. PetrizzaL. ProdiL. RosaA. SchmidtJ. TalmonY. MurgiaS. Cubosomes for in vivo fluorescence lifetime imaging.Nanotechnology201728505510210.1088/1361‑6528/28/5/05510228032617
    [Google Scholar]
  73. BazylińskaU. KulbackaJ. SchmidtJ. TalmonY. MurgiaS. Polymer-free cubosomes for simultaneous bioimaging and photodynamic action of photosensitizers in melanoma skin cancer cells.J. Colloid Interface Sci.201852216317310.1016/j.jcis.2018.03.06329601958
    [Google Scholar]
  74. FongC. LeT. DrummondC.J. Lyotropic liquid crystal engineering–ordered nanostructured small molecule amphiphileself-assembly materials by design.Chem. Soc. Rev.20124131297132210.1039/C1CS15148G21975366
    [Google Scholar]
  75. CaltagironeC. ArcaM. FalchiA.M. LippolisV. MeliV. MonduzziM. NylanderT. RosaA. SchmidtJ. TalmonY. MurgiaS. Solvatochromic fluorescent BODIPY derivative as imaging agent in camptothecin loaded hexosomes for possible theranostic applications.RSC Advances2015530234432344910.1039/C5RA01025J
    [Google Scholar]
  76. RahmanH.S. OthmanH.H. HammadiN.I. YeapS.K. AminK.M. Abdul SamadN. AlitheenN.B. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications.Int. J. Nanomedicine2020152439248310.2147/IJN.S22780532346289
    [Google Scholar]
  77. ChandrakalaV. Cubosomes: A boon for cosmeceuticals and topical drug delivery.Int. J. Pharm. Pharm. Sci.202213-17131710.22159/ijpps.2022v14i11.45550
    [Google Scholar]
  78. SpicerP. T. SmallW. B. LynchM.L. Cubic liquid crystalline compositions and methods for their preparation.The Procter & Gamble Company.WO patent/US2002/0047762002.
  79. ParkS. LeeG. Geon-gukL. Cosmetic composition comprising cubosome containing active ingredient. Koreana Cosmetics Co., Ltd.KR Patent/ KR20180032842A2016.
  80. KimJ. Seok-hoP. pH sensitive monoolein cubosome as a transdermal absorption carrier and human carrier for active ingredients. Kangwon National University Industry-Academic Cooperation Foundation.KR Patent/ KR20210085164A2019.
  81. Hong-geunJ. Young-ahP. KangY. SonS. Dong-wonL. Cubosome composition containing retinal and covalent organic framework, and cosmetic composition comprising thereof.H&A Pharmachem Co., Ltd., Other Cosmetics Co., Ltd.KR Patent /KR1020210143326A2021.
  82. LynchM.L. SpicerP.T. Functionalized cubic liquid crystalline phase materials and methods for their preparation and use. The Procter & Gamble company.WO Patent2002US200200483920
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385306495240529052911
Loading
/content/journals/pnt/10.2174/0122117385306495240529052911
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test