Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Quercetin, a natural flavonoid, is well-proven for anticancer properties in a variety of cancers. Quercetin's anticancer action is driven by its anti-inflammatory and antioxidant properties. It inhibits pro-inflammatory cytokines (., TNF-α, IL-6) and suppresses NF-κB and COX-2, reducing tumor growth. Its antioxidant activity neutralizes reactive oxygen species (ROS), preventing oxidative damage that can lead to cancer. However, quercetin faces challenges such as poor solubility, bioavailability, instability, low skin penetration, rapid metabolism, and potential systemic toxicity at high doses, which limit its therapeutic application. Nanocarrier systems such as liposomes, polymeric nanoparticles (PLGA-based), solid lipid nanoparticles (SLNs), and nanoemulsions have been developed to address these issues. These formulations enhance quercetin’s penetration, stability, and bioavailability, improving its effectiveness against skin cancers by promoting controlled release and targeted delivery. Nanocarriers offer a promising solution to overcome these limitations and enhance its anticancer potential.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385332427241112034005
2024-12-10
2025-09-02
Loading full text...

Full text loading...

References

  1. LinaresM.A. ZakariaA. NizranP. Skin Cancer.Prim. Care201542464565910.1016/j.pop.2015.07.00626612377
    [Google Scholar]
  2. LosquadroW.D. Anatomy of the Skin and the Pathogenesis of Nonmelanoma Skin Cancer.Facial Plast. Surg. Clin. North Am.201725328328910.1016/j.fsc.2017.03.00128676156
    [Google Scholar]
  3. SlavkovaM. TzankovB. PopovaT. VoychevaC. Gel formulations for topical treatment of skin cancer: A review.Gels20239535210.3390/gels905035237232944
    [Google Scholar]
  4. Gray-SchopferV. WellbrockC. MaraisR. Melanoma biology and new targeted therapy.Nature2007445713085185710.1038/nature0566117314971
    [Google Scholar]
  5. DavidsL.M. KleemB. The menace of melanoma: A photodynamic approach to adjunctive cancer therapy.Melanoma - From Early Detection to TreatmentIntechOpen DucG.H.T. 201310.5772/53676
    [Google Scholar]
  6. PópuloH. SoaresP. LopesJ.M. Insights into melanoma: Targeting the mTOR pathway for therapeutics.Expert Opin. Ther. Targets201216768970510.1517/14728222.2012.69147222620498
    [Google Scholar]
  7. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2016.CA Cancer J. Clin.201666173010.3322/caac.2133226742998
    [Google Scholar]
  8. DidonaD. PaolinoG. BottoniU. CantisaniC. Non melanoma skin cancer pathogenesis overview.Biomedicines201861610.3390/biomedicines601000629301290
    [Google Scholar]
  9. BartonV. ArmesonK. HamprasS. FerrisL.K. VisvanathanK. RollisonD. AlbergA.J. Nonmelanoma skin cancer and risk of all-cause and cancer-related mortality: A systematic review.Arch. Dermatol. Res.2017309424325110.1007/s00403‑017‑1724‑528285366
    [Google Scholar]
  10. RodríguezS. ArenasM. GutierrezC. RichartJ. Perez-CalatayudJ. CeladaF. SantosM. RovirosaA. Recommendations of the Spanish brachytherapy group (GEB) of Spanish Society of Radiation Oncology (SEOR) and the Spanish Society of Medical Physics (SEFM) for high-dose rate (HDR) non melanoma skin cancer brachytherapy.Clin. Transl. Oncol.201820443144210.1007/s12094‑017‑1733‑z28808925
    [Google Scholar]
  11. GreenA.C. OlsenC.M. Cutaneous squamous cell carcinoma: An epidemiological review.Br. J. Dermatol.2017177237338110.1111/bjd.1532428211039
    [Google Scholar]
  12. ApallaZ. LallasA. SotiriouE. LazaridouE. IoannidesD. Epidemiological trends in skin cancer.Dermatol. Pract. Concept.2017721610.5826/dpc.0702a0128515985
    [Google Scholar]
  13. EideM.J. KrajentaR. JohnsonD. LongJ.J. JacobsenG. AsgariM.M. LimH.W. JohnsonC.C. Identification of patients with nonmelanoma skin cancer using health maintenance organization claims data.Am. J. Epidemiol.2010171112312810.1093/aje/kwp35219969529
    [Google Scholar]
  14. CarrS. SmithC. WernbergJ. Epidemiology and risk factors of melanoma.Surg. Clin. North Am.2020100111210.1016/j.suc.2019.09.00531753105
    [Google Scholar]
  15. PerisK. FargnoliM.C. GarbeC. KaufmannR. BastholtL. SeguinN.B. Diagnosis and treatment of basal cell carcinoma: European consensus–based interdisciplinary guidelines.Eur. J. Cancer2020118103410.1016/j.ejca.2019.06.003
    [Google Scholar]
  16. SafwatM.A. SolimanG.M. SayedD. AttiaM.A. Fluorouracil-loaded gold nanoparticles for the treatment of skin cancer: Development, in vitro characterization, and in vivo evaluation in a mouse skin cancer xenograft model.Mol. Pharm.20181562194220510.1021/acs.molpharmaceut.8b0004729701979
    [Google Scholar]
  17. GhezziM. PescinaS. DelledonneA. FerraboschiI. SissaC. TerenzianiF. RemiroP.D.F.R. SantiP. NicoliS. Improvement of imiquimodsolubilization and skin retention via tpgs micelles: Exploiting the co-solubilizing effect of oleic acid.Pharmaceutics2021139147610.3390/pharmaceutics1309147634575553
    [Google Scholar]
  18. LaptevaM. MignotM. MondonK. MöllerM. GurnyR. KaliaY.N. Self-assembled mPEG-hexPLA polymeric nanocarriers for the targeted cutaneous delivery of imiquimod.Eur. J. Pharm. Biopharm.201914255356210.1016/j.ejpb.2019.01.008
    [Google Scholar]
  19. CapanemaN.S.V. MansurA.A.P. CarvalhoS.M. CarvalhoI.C. ChagasP. de OliveiraL.C.A. MansurH.S. Bioengineered carboxymethyl cellulose-doxorubicin prodrug hydrogels for topical chemotherapy of melanoma skin cancer.Carbohydr. Polym.2018195February40141210.1016/j.carbpol.2018.04.10529804993
    [Google Scholar]
  20. SayedO.M. El-ElaF.I.A. KharshoumR.M. SalemH.F. Treatment of basal cell carcinoma via binary ethosomes of vismodegib: In vitro and in vivo studies.AAPS PharmSciTech2020212111
    [Google Scholar]
  21. DummerR. AsciertoP.A. Basset-SeguinN. DrénoB. GarbeC. GutzmerR. HauschildA. KrattingerR. LearJ.T. MalvehyJ. SchadendorfD. GrobJ.J. Sonidegib and vismodegib in the treatment of patients with locally advanced basal cell carcinoma: A joint expert opinion.J. Eur. Acad. Dermatol. Venereol.20203491944195610.1111/jdv.1623031990414
    [Google Scholar]
  22. MousaI.A. HammadyT.M. GadS. ZaitoneS.A. El-SherbinyM. SayedO.M. Formulation and Characterization of Metformin-Loaded Ethosomes for Topical Application to Experimentally Induced Skin Cancer in Mice.Pharmaceuticals (Basel)202215665710.3390/ph1506065735745575
    [Google Scholar]
  23. KolliparaR.K. TallapaneniV. SanapalliB.K.R. KumarG.V. KarriV.V.S.R. Curcumin loaded ethosomal vesicular drug delivery system for the treatment of melanoma skin cancer.Res. J. Pharm. Technol.20191241783179210.5958/0974‑360X.2019.00298.1
    [Google Scholar]
  24. PriyaP. Mohan RajR. VasanthakumarV. RajV. Curcumin-loaded layer-by-layer folic acid and casein coated carboxymethyl cellulose/casein nanogels for treatment of skin cancer.Arab. J. Chem.202013169470810.1016/j.arabjc.2017.07.010
    [Google Scholar]
  25. AlhakamyN.A. AldawsariH.M. AliJ. GuptaD.K. WarsiM.H. BilgramiA.L. Brucine-loaded transliposomes nanogel for topical delivery in skin cancer: Statistical optimization, in vitro and dermatokinetic evaluation.3 Biotech202111628810.1007/s13205‑021‑02841‑5
    [Google Scholar]
  26. IqbalB. AliJ. GanguliM. MishraS. BabootaS. Silymarin-loaded nanostructured lipid carrier gel for the treatment of skin cancer.Nanomedicine (Lond.)20191491077109310.2217/nnm‑2018‑023531050580
    [Google Scholar]
  27. NagarajaS. BasavarajappaG.M. AttimaradM. PundS. Topical nanoemulgel for the treatment of skin cancer: Proof-of-technology.Pharmaceutics202113690210.3390/pharmaceutics1306090234207014
    [Google Scholar]
  28. Ugur KaplanA.B. CetinM. OrgulD. TaghizadehghalehjoughiA. HacımuftuogluA. HekimogluS. Formulation and in vitro evaluation of topical nanoemulsion and nanoemulsion-based gels containing daidzein.J. Drug Deliv. Sci. Technol.201952March18920310.1016/j.jddst.2019.04.027
    [Google Scholar]
  29. AlkilaniA. McCruddenM.T. DonnellyR. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum.Pharmaceutics20157443847010.3390/pharmaceutics704043826506371
    [Google Scholar]
  30. JoseA. LabalaS. NinaveK.M. GadeS.K. VenugantiV.V.K. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes.AAPS PharmSciTech201819116617510.1208/s12249‑017‑0833‑y28639178
    [Google Scholar]
  31. GuptaP. GargS. Recent advances in semisolid dosage forms for dermatological application.Pharm. Technol.2002263144162
    [Google Scholar]
  32. RainaN. RaniR. ThakurV.K. GuptaM. New insights in topical drug delivery for skin disorders: From a nanotechnological perspective.ACS Omega2023822191451916710.1021/acsomega.2c0801637305231
    [Google Scholar]
  33. AgrahariV. AgrahariV. MitraA.K. Nanocarrier fabrication and macromolecule drug delivery: Challenges and opportunities.Ther. Deliv.20167425727810.4155/tde‑2015‑001227010987
    [Google Scholar]
  34. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  35. KumbharP. KoleK. YadavT. BhavarA. WaghmareP. BhokareR. ManjappaA. JhaN.K. ChellappanD.K. ShindeS. SinghS.K. DuaK. SalawiA. DisouzaJ. PatravaleV. Drug repurposing: An emerging strategy in alleviating skin cancer.Eur. J. Pharmacol.202292617503110.1016/j.ejphar.2022.17503135580707
    [Google Scholar]
  36. SabarwalA. KumarK. SinghR.P. Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders.Environ. Toxicol. Pharmacol.20186310311410.1016/j.etap.2018.08.01830199797
    [Google Scholar]
  37. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.2182038230766
    [Google Scholar]
  38. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  39. MohanS.V. ChangA.L.S. Advanced basal cell carcinoma: Epidemiology and therapeutic innovations.Curr. Dermatol. Rep.201431404510.1007/s13671‑014‑0069‑y24587976
    [Google Scholar]
  40. TangS.M. DengX.T. ZhouJ. LiQ.P. GeX.X. MiaoL. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects.Biomed. Pharmacother.202012110960410.1016/j.biopha.2019.10960431733570
    [Google Scholar]
  41. ParasuramanS. Anand DavidA.V. ArulmoliR. Overviews of biological importance of quercetin: A bioactive flavonoid.Pharmacogn. Rev.20161020848910.4103/0973‑7847.19404428082789
    [Google Scholar]
  42. WadhwaK. KadianV. PuriV. BhardwajB.Y. SharmaA. PahwaR. RaoR. GuptaM. SinghI. New insights into quercetin nanoformulations for topical delivery.Phytomedicine Plus20222210025710.1016/j.phyplu.2022.100257
    [Google Scholar]
  43. TangX. YangT. YuD. XiongH. ZhangS. Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin.Environ. Int.202418510853510.1016/j.envint.2024.10853538428192
    [Google Scholar]
  44. HatahetT. MorilleM. HommossA. DevoisselleJ.M. MüllerR.H. BéguS. Quercetin topical application, from conventional dosage forms to nanodosage forms.Eur. J. Pharm. Biopharm.2016108415310.1016/j.ejpb.2016.08.01127565033
    [Google Scholar]
  45. KapareH.S. ReleH. BhosaleM.K. BholeR.P. KulkarniD. NeveV. RautS. Development and optimization of indian propolis formulation for enhanced immunomodulatory potential.Immuno20244442644310.3390/immuno4040027
    [Google Scholar]
  46. LiY. YaoJ. HanC. YangJ. ChaudhryM. WangS. LiuH. YinY. Quercetin, inflammation and immunity.Nutrients20168316710.3390/nu803016726999194
    [Google Scholar]
  47. VargasA.J. BurdR. Hormesis and synergy: Pathways and mechanisms of quercetin in cancer prevention and management.Nutr. Rev.201068741842810.1111/j.1753‑4887.2010.00301.x20591109
    [Google Scholar]
  48. WuL. LiJ. LiuT. LiS. FengJ. YuQ. ZhangJ. ChenJ. ZhouY. JiJ. ChenK. MaoY. WangF. DaiW. FanX. WuJ. GuoC. Quercetin shows anti‐tumor effect in hepatocellular carcinoma LM3 cells by abrogating JAK2/STAT3 signaling pathway.Cancer Med.20198104806482010.1002/cam4.238831273958
    [Google Scholar]
  49. SectionR. Pergamon review section review of the biology of quercetin and related bioflavonoids.1995331210611080
    [Google Scholar]
  50. WangJ. LiuW. LuoG. LiZ. ZhaoC. ZhangH. ZhuM. XuQ. WangX. ZhaoC. QuY. YangZ. YaoT. LiY. LinY. WuY. LiY. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction.Energy Environ. Sci.201811123375337910.1039/C8EE02656D
    [Google Scholar]
  51. LesjakM. BearaI. SiminN. PintaćD. MajkićT. BekvalacK. Antioxidant and anti-inflammatory activities of quercetin and its derivatives.J. Funct. Foods201840687510.1016/j.jff.2017.10.047
    [Google Scholar]
  52. HaiY. ZhangY. LiangY. MaX. QiX. XiaoJ. XueW. LuoY. YueT. Advance on the absorption, metabolism, and efficacy exertion of quercetin and its important derivatives.Food Front.20201442043410.1002/fft2.50
    [Google Scholar]
  53. FernaldK. KurokawaM. Evading apoptosis in cancer.Trends Cell Biol.2013231262063310.1016/j.tcb.2013.07.00623958396
    [Google Scholar]
  54. WangW. ZhouQ. LanL. XuX. PANoptosis-related prognostic signature predicts overall survival of cutaneous melanoma and provides insights into immune infiltration landscape.Sci. Rep.2023131844910.1038/s41598‑023‑35462‑437231081
    [Google Scholar]
  55. HusseinM.R. HaemelA.K. WoodG.S. Apoptosis and melanoma: Molecular mechanisms.J. Pathol.2003199327528810.1002/path.130012579529
    [Google Scholar]
  56. GaryA.S. RochetteP.J. Apoptosis, the only cell death pathway that can be measured in human diploid dermal fibroblasts following lethal UVB irradiation.Sci. Rep.20201011894610.1038/s41598‑020‑75873‑133144600
    [Google Scholar]
  57. TartaglioneM. Eléxpuru ZabaletaM. LazzariniR. PivaF. BusilacchiE. PoloniA. LeddaC. RapisardaV. SantarelliL. BracciM. Apoptotic mechanism activated by blue light and cisplatinum in cutaneous squamous cell carcinoma cells.Int. J. Mol. Med.20214744810.3892/ijmm.2021.488133576463
    [Google Scholar]
  58. CaiJ. YangJ. JonesD.P. Mitochondrial control of apoptosis: The role of cytochrome c.Biochim. Biophys. Acta Bioenerg.199813661-213914910.1016/S0005‑2728(98)00109‑1
    [Google Scholar]
  59. SafeS. Targeting apoptosis pathways in cancer - letter.Cancer Prev. Res. (Phila.)20158433810.1158/1940‑6207.CAPR‑14‑040525627800
    [Google Scholar]
  60. SollF. TernentC. BerryI.M. KumariD. MooreT.C. Quercetin inhibits proliferation and induces apoptosis of B16 melanoma cells in vitro.Assay Drug Dev. Technol.202018626126810.1089/adt.2020.99332799543
    [Google Scholar]
  61. KhorsandiL. OrazizadehM. NiazvandF. AbbaspourM.R. MansouriE. KhodadadiA. Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells.Bratisl. Med. J.2017118212312810.4149/BLL_2017_02528814095
    [Google Scholar]
  62. RatherR.A. BhagatM. Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health.Cancer Med.20209249181919210.1002/cam4.141131568659
    [Google Scholar]
  63. AsgharianP. TazehkandA.P. SoofiyaniS.R. HosseiniK. MartorellM. TarhrizV. AhangariH. Cruz-MartinsN. Sharifi-RadJ. AlmarhoonZ.M. YdyrysA. NurzhanyatA. YessenbekovaA. ChoW.C. Quercetin impact in pancreatic cancer: An overview on its therapeutic effects.Oxid. Med. Cell. Longev.202120211439326610.1155/2021/439326634777687
    [Google Scholar]
  64. AlQathamaA. ShaoL. BaderA. KhondkarP. GibbonsS. M PrietoJ. Differential anti-proliferative and anti-migratory activities of ursolic acid, 3-O-acetylursolic acid and their combination treatments with quercetin on melanoma cells.Biomolecules202010689410.3390/biom1006089432545262
    [Google Scholar]
  65. GilaberteY. Prieto-TorresL. PastushenkoI. JuarranzÁ. Anatomy and function of the skin.Nanoscience in Dermatology.Elsevier201611410.1016/B978‑0‑12‑802926‑8.00001‑X
    [Google Scholar]
  66. SiesH. Strategies of antioxidant defense.Eur. J. Biochem.1993215221321910.1111/j.1432‑1033.1993.tb18025.x7688300
    [Google Scholar]
  67. KimH.K. NamgoongS.Y. KimH.P. Antiinflammatory activity of flavonoids: Mouse ear edema inhibition.Arch. Pharm. Res.1993161182410.1007/BF0297412217328237
    [Google Scholar]
  68. GuanF. WangQ. BaoY. ChaoY. Anti-rheumatic effect of quercetin and recent developments in nano formulation.RSC Advances202111137280729310.1039/D0RA08817J35423269
    [Google Scholar]
  69. MusumeciD. RovielloG.N. MontesarchioD. An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies.Pharmacol. Ther.2014141334735710.1016/j.pharmthera.2013.11.00124220159
    [Google Scholar]
  70. Cialdella-KamL. NiemanD.C. ShaW. MeaneyM.P. KnabA.M. ShanelyR.A. Dose–response to 3 months of quercetin-containing supplements on metabolite and quercetin conjugate profile in adults.Br. J. Nutr.2013109111923193310.1017/S000711451200397223151341
    [Google Scholar]
  71. McCannS.E. AmbrosoneC.B. MoysichK.B. BrasureJ. MarshallJ.R. FreudenheimJ.L. WilkinsonG.S. GrahamS. Intakes of selected nutrients, foods, and phytochemicals and prostate cancer risk in western New York.Nutr. Cancer2005531334110.1207/s15327914nc5301_416351504
    [Google Scholar]
  72. NiemanD.C. WilliamsA.S. ShanelyR.A. JinF. McAnultyS.R. TriplettN.T. AustinM.D. HensonD.A. Quercetin’s influence on exercise performance and muscle mitochondrial biogenesis.Med. Sci. Sports Exerc.201042233834510.1249/MSS.0b013e3181b18fa319927026
    [Google Scholar]
  73. RussoM. SpagnuoloC. TedescoI. BilottoS. RussoG.L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies.Biochem. Pharmacol.201283161510.1016/j.bcp.2011.08.01021856292
    [Google Scholar]
  74. HongG. YuanJ. FuJ. PanG. WangZ. YangL. XiaoY. MaoP. ZhangX. Transition-metal-free decarboxylative C3-difluoroarylmethylation of quinoxalin-2(1 H )-ones with α,α-difluoroarylacetic acids.Org. Chem. Front.2019681173118210.1039/C9QO00105K
    [Google Scholar]
  75. KandemirK. TomasM. McClementsD.J. CapanogluE. Recent advances on the improvement of quercetin bioavailability.Trends Food Sci. Technol.202211919220010.1016/j.tifs.2021.11.032
    [Google Scholar]
  76. ShahcheraghiN. GolchinH. SadriZ. TabariY. BorhanifarF. MakaniS. Nano-biotechnology, an applicable approach for sustainable future.3 Biotech20221236510.1007/s13205‑021‑03108‑9
    [Google Scholar]
  77. GuillotA.J. Martínez-NavarreteM. GarriguesT.M. MeleroA. Skin drug delivery using lipid vesicles: A starting guideline for their development.J. Control. Release202335562465410.1016/j.jconrel.2023.02.00636775245
    [Google Scholar]
  78. KhanN.H. MirM. QianL. BalochM. Ali KhanM.F. RehmanA. NgowiE.E. WuD.D. JiX.Y. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures.J. Adv. Res.20223622324710.1016/j.jare.2021.06.01435127174
    [Google Scholar]
  79. LorussoD. BriaE. CostantiniA. Di MaioM. RostiG. MancusoA. Patients’ perception of chemotherapy side effects: Expectations, doctor-patient communication and impact on quality of life - An Italian survey.Eur. J. Cancer Care (Engl.)2017262e1261810.1111/ecc.1261828004440
    [Google Scholar]
  80. DemariaM. O’LearyM.N. ChangJ. ShaoL. LiuS. AlimirahF. KoenigK. LeC. MitinN. DealA.M. AlstonS. AcademiaE.C. KilmarxS. ValdovinosA. WangB. de BruinA. KennedyB.K. MelovS. ZhouD. SharplessN.E. MussH. CampisiJ. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse.Cancer Discov.20177216517610.1158/2159‑8290.CD‑16‑024127979832
    [Google Scholar]
  81. GriffinL. LearJ. Photodynamic therapy and non-melanoma skin cancer.Cancers (Basel)20168109810.3390/cancers810009827782094
    [Google Scholar]
  82. KharofaJ. CurreyA. WilsonJ.F. Patient-reported outcomes in patients with nonmelanomatous skin cancers of the face treated with orthovoltage radiation therapy: A cross-sectional survey.Int. J. Radiat. Oncol. Biol. Phys.201387463663710.1016/j.ijrobp.2013.06.206124138912
    [Google Scholar]
  83. SoleymaniT. AbroukM. KellyK.M. An analysis of laser therapy for the treatment of nonmelanoma skin cancer.Dermatol. Surg.201743561562410.1097/DSS.000000000000104828195845
    [Google Scholar]
  84. HasmatS. HowleJ.R. KarikiosD.J. CarlinoM.S. VenessM.J. Immunotherapy in advanced Merkel cell carcinoma: Sydney west cancer network experience.J. Med. Imaging Radiat. Oncol.202165676076710.1111/1754‑9485.1324334053196
    [Google Scholar]
  85. CullenJ.K. SimmonsJ.L. ParsonsP.G. BoyleG.M. Topical treatments for skin cancer.Adv. Drug Deliv. Rev.2020153546410.1016/j.addr.2019.11.00231705912
    [Google Scholar]
  86. ReviewB. Brief review 5-fluorouracil: A pharmacological paradigm i n the use.Clin. Exp. Pharmacol. Physiol.1998•••887895
    [Google Scholar]
  87. HammingaE.A. van der LelyA.J. NeumannH.A.M. ThioH.B. Chronic inflammation in psoriasis and obesity: Implications for therapy.Med. Hypotheses200667476877310.1016/j.mehy.2005.11.05016781085
    [Google Scholar]
  88. RamsayJ.R. SuhrbierA. AylwardJ.H. OgbourneS. CozziS.J. PoulsenM.G. BaumannK.C. WelburnP. RedlichG.L. ParsonsP.G. The sap from Euphorbia peplus is effective against human nonmelanoma skin cancers.Br. J. Dermatol.20111643no10.1111/j.1365‑2133.2010.10184.x21375515
    [Google Scholar]
  89. StockflethE. MeyerT. Sinecatechins (Polyphenon E) ointment for treatment of external genital warts and possible future indications.Expert Opin. Biol. Ther.20141471033104310.1517/14712598.2014.91356424766274
    [Google Scholar]
  90. ZucoV. SupinoR. RighettiS.C. ClerisL. MarchesiE. Gambacorti-PasseriniC. FormelliF. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells.Cancer Lett.20021751172510.1016/S0304‑3835(01)00718‑211734332
    [Google Scholar]
  91. SchönM.P. SchönM. Imiquimod: Mode of action.Br. J. Dermatol.2007157Suppl. 281310.1111/j.1365‑2133.2007.08265.x18067624
    [Google Scholar]
  92. MirM. AhmedN. RehmanA. Recent applications of PLGA based nanostructures in drug delivery.Colloids Surf. B Biointerfaces201715921723110.1016/j.colsurfb.2017.07.03828797972
    [Google Scholar]
  93. ZhouQ. ZhangL. YangT. WuH. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy.Int. J. Nanomedicine2018132921294210.2147/IJN.S15869629849457
    [Google Scholar]
  94. KesharwaniS.S. KaurS. TummalaH. SangamwarA.T. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors.Colloids Surf. B Biointerfaces201917358159010.1016/j.colsurfb.2018.10.02230352379
    [Google Scholar]
  95. SahuS. SarafS. KaurC.D. SarafS. Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin.Pak. J. Biol. Sci.2013161360160910.3923/pjbs.2013.601.60924505982
    [Google Scholar]
  96. ChitkaraA. ManglaB. KumarP. JavedS. AhsanW. PopliH. Design-of-Experiments (DoE)-assisted fabrication of quercetin-loaded nanoemulgel and its evaluation against human skin cancer cell lines.Pharmaceutics20221411251710.3390/pharmaceutics1411251736432708
    [Google Scholar]
  97. CaddeoC. NacherA. VassalloA. ArmentanoM.F. PonsR. Fernàndez-BusquetsX. CarboneC. ValentiD. FaddaA.M. ManconiM. Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer.Int. J. Pharm.20165131-215316310.1016/j.ijpharm.2016.09.01427609664
    [Google Scholar]
  98. NanW. DingL. ChenH. KhanF.U. YuL. SuiX. ShiX. Topical use of quercetin-loaded chitosan nanoparticles against ultraviolet B radiation.Front. Pharmacol.2018982610.3389/fphar.2018.0082630140227
    [Google Scholar]
  99. KimS.H. YooE.S. WooJ.S. HanS.H. LeeJ.H. JungS.H. KimH.J. JungJ.Y. Antitumor and apoptotic effects of quercetin on human melanoma cells involving JNK/P38 MAPK signaling activation.Eur. J. Pharmacol.201986017256810.1016/j.ejphar.2019.17256831348906
    [Google Scholar]
  100. Chen-yuG. Chun-fenY. Qi-luL. QiT. Yan-weiX. Wei-naL. Guang-xiZ. Development of a Quercetin-loaded nanostructured lipid carrier formulation for topical delivery.Int. J. Pharm.20124301-229229810.1016/j.ijpharm.2012.03.04222486962
    [Google Scholar]
  101. BoseS. DuY. TakhistovP. Michniak-KohnB. Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems.Int. J. Pharm.20134411-2566610.1016/j.ijpharm.2012.12.01323262430
    [Google Scholar]
  102. JangdeR. SrivastavaS. SinghM.R. SinghD. In vitro and in vivo characterization of quercetin loaded multiphase hydrogel for wound healing application.Int. J. Biol. Macromol.20181151211121710.1016/j.ijbiomac.2018.05.01029730004
    [Google Scholar]
  103. ChoudharyA. KantV. JangirB.L. JoshiV.G. Quercetin loaded chitosan tripolyphosphate nanoparticles accelerated cutaneous wound healing in Wistar rats.Eur. J. Pharmacol.202088017317210.1016/j.ejphar.2020.17317232407724
    [Google Scholar]
  104. YuanZ. ChenL. FanL. TangM. YangG. YangH. DuX. WangG. YaoW. ZhaoQ. YeB. WangR. DiaoP. ZhangW. WuH. ZhaoX. WeiY.Q. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models.Clin. Cancer Res.200612103193319910.1158/1078‑0432.CCR‑05‑236516707620
    [Google Scholar]
  105. Ayala-FuentesJ.C. Gallegos-GranadosM.Z. Villarreal-GómezL.J. Antunes-RicardoM. GrandeD. Chavez-SantoscoyR.A. Optimization of the synthesis of natural polymeric nanoparticles of inulin loaded with quercetin: Characterization and cytotoxicity effect.Pharmaceutics202214588810.3390/pharmaceutics1405088835631474
    [Google Scholar]
  106. TalaricoL. ConsumiM. LeoneG. TamasiG. MagnaniA. Solid lipid nanoparticles produced via a coacervation method as promising carriers for controlled release of quercetin.Molecules2021269269410.3390/molecules2609269434064488
    [Google Scholar]
  107. MarquesM.B. MachadoA.P. SantosP.A. Carrett-DiasM. AraújoG.S. da Silva AlvesB. de OliveiraB.S. da Silva JúniorF.M.R. DoraC.L. CañedoA.D. FilgueiraD.M.V.B. Fernandes e SilvaE. de Souza VottoA.P. de Souza VottoA.P. Anti-MDR effects of quercetin and its nanoemulsion in multidrug-resistant human leukemia cells.Anticancer. Agents Med. Chem.202121141911192010.2174/187152062199921010420072233397267
    [Google Scholar]
  108. Domínguez-DelgadoC.L. Pozos-NonatoS. Campos-SantanderK.A. BenavidesA.A. Pacheco-OrtinS.M. Higuera-PiedrahitaR.I. Resendiz-GonzálezG. Molina-TrinidadE.M. Novel nanotechnological strategies for skin anti-aging.Curr. Pharm. Biotechnol.202324111397141910.2174/138920102466622122309531536567280
    [Google Scholar]
  109. LiC. ZhangJ. ZuY.J. NieS.F. CaoJ. WangQ. NieS.P. DengZ.Y. XieM.Y. WangS. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals.Chin. J. Nat. Med.201513964165210.1016/S1875‑5364(15)30061‑326412423
    [Google Scholar]
  110. VinayakM. MauryaA.K. Quercetin loaded nanoparticles in targeting cancer: Recent development.Anticancer. Agents Med. Chem.201919131560157610.2174/187152061966619070515021431284873
    [Google Scholar]
  111. AlaviM. AdulrahmanN.A. HaleemA.A. Al-RâwanduziA.D.H. KhusroA. AbdelgawadM.A. GhoneimM.M. BatihaG.E. KahriziD. MartinezF. KoiralaN. Nanoformulations of curcumin and quercetin with silver nanoparticles for inactivation of bacteria.Cell. Mol. Biol. (Noisy-le-grand)202267515115610.14715/cmb/2021.67.5.21
    [Google Scholar]
  112. MajumderD. RoychoudhryS. KunduS. DeyS.K. SahaC. Hydrophobic quercetin encapsulated hemoglobin nanoparticles: formulation and spectroscopic characterizationJ. Biomol. Struct. Dyn.202240209860986910.1080/07391102.2021.193618134096466
    [Google Scholar]
  113. IllahiA.F. MuhammadF. AkhtarB. Nanoformulations of Nutraceuticals for Cancer Treatment.Crit. Rev. Eukaryot. Gene Expr.201929544946010.1615/CritRevEukaryotGeneExpr.201902595732422001
    [Google Scholar]
  114. ShivaniS. SinghG. NarwalS. ChopraB. DhingraA.K. Quercetin-based nanoformulation: A potential approach for cancer treatment.Anticancer. Agents Med. Chem.202323181983200710.2174/187152062366623081710192637592797
    [Google Scholar]
  115. TomouE.M. PapakyriakopoulouP. SaitaniE.M. ValsamiG. PippaN. SkaltsaH. Recent advances in nanoformulations for quercetin delivery.Pharmaceutics2023156165610.3390/pharmaceutics1506165637376104
    [Google Scholar]
  116. ZangX. ChengM. ZhangX. ChenX. Quercetin nanoformulations: A promising strategy for tumor therapy.Food Funct.202112156664668110.1039/D1FO00851J34152346
    [Google Scholar]
  117. HesariM. MohammadiP. KhademiF. ShackebaeiD. MomtazS. MoasefiN. FarzaeiM.H. AbdollahiM. Current advances in the use of nanophytomedicine therapies for human cardiovascular diseases.Int. J. Nanomedicine2021163293331510.2147/IJN.S29550834007178
    [Google Scholar]
  118. RiemschneiderS. HoffmannM. SlaninaU. WeberK. HauschildtS. LehmannJ. Indol-3-carbinol and quercetin ameliorate chronic DSS-induced colitis in C57BL/6 mice by AhR-mediated anti-inflammatory mechanisms.Int. J. Environ. Res. Public Health2021185226210.3390/ijerph1805226233668818
    [Google Scholar]
  119. LopezA.T. CarvajalR.D. GeskinL. Secondary prevention strategies for nonmelanoma skin cancer.Oncology (Williston Park)2018324195200Williston Park29684233
    [Google Scholar]
  120. Reyes-FariasM. Carrasco-PozoC. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism.Int. J. Mol. Sci.20192013317710.3390/ijms2013317731261749
    [Google Scholar]
  121. JiachengL. FuyangL. JunzheJ. YihanQ. MinX. FangW. Quercetin, a natural flavonoid, protects against hepatic ischemia-reperfusion injury via inhibiting Caspase-8/ASC dependent macrophage pyroptosis.J. Adv. Res.2024S2090-1232(24)00200-510.1016/j.jare.2024.05.010
    [Google Scholar]
  122. JanaN. BřetislavG. PavelS. PavlaU. Potential of the flavonoid quercetin to prevent and treat cancer – Current status of research.Klin. Onkol.201831318419030441971
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385332427241112034005
Loading
/content/journals/pnt/10.2174/0122117385332427241112034005
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Anticancer; drug delivery; Flavonoids; Nanocarriers; Nanomedicine; Quercetin; Skin cancer; Tumor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test