Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Cancer is a prevalent and potentially fatal disease worldwide. The proliferation of abnormal cells and uncontrolled cellular growth characterizes cancer. Cancerous tumors exhibit distinct microenvironments characterized by a deficient lymphatic drainage system and aberrant blood supply. Various medications and diagnostic systems exist for cancer treatment, but they all have inherent limitations and undesirable consequences. Consequently, the achievement of effective cancer detection and treatment remains challenging. Theranostics nanoparticles are becoming increasingly popular in nano drug delivery systems. These nanoparticles can diagnose and treat tumors, making them a promising approach in the field. They are designed to be small in size, allowing them to be effective in delivering drugs to targeted areas. Furthermore, these nanoparticles can fundamentally transform the identification and management of several ailments, including cardiovascular disorders and infectious diseases. Such nanoparticles possess dual capabilities, functioning as therapeutic agents and diagnostic tools. They can transport medicinal substances, such as medications, nucleic acids, or therapeutic proteins, and include substances that can be used for imaging, such as contrast agents or fluorescent dyes, to enable non-invasive diagnostics and monitoring of the effectiveness of the treatment. These techniques can be employed for diagnostic purposes to identify, locate, and determine the extent of disorders using imaging modalities such as magnetic resonance imaging, computed tomography, positron emission tomography, and fluorescence imaging. These nanoparticles can deliver therapeutic compounds to specific locations accurately during therapy. This leads to improved effectiveness of the treatment, decreased adverse effects, and better patient outcomes. They offer a potential nanomedicine approach by providing diagnostic and therapeutic capabilities for disease diagnosis and treatment. Theranostics nanoparticles have distinct characteristics and adaptability, which can transform the healthcare sector by facilitating personalized and precise medical treatments.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385300471240408063205
2024-04-29
2025-09-03
Loading full text...

Full text loading...

References

  1. PeneF. CourtineE. CariouA. MiraJ.P. Toward theragnostics.Crit. Care Med.2009371Suppl.S50S5810.1097/CCM.0b013e3181921349 19104225
    [Google Scholar]
  2. RobinsonE. MohileverJ. ZidanJ. SapirD. Delay in diagnosis of cancer. Possible effects on the stage of disease and survival.Cancer19845471454146010.1002/1097‑0142(19841001)54:7<1454:AID‑CNCR2820540739>3.0.CO;2‑A 6467169
    [Google Scholar]
  3. GilletJ.P. GottesmanM.M. Mechanisms of multidrug resistance in cancer. In: Multi-drug resistance in cancer.Springer2010477610.1007/978‑1‑60761‑416‑6_4
    [Google Scholar]
  4. RyuJ.W. KimY.S. A case of advanced malignant pleural mesothelioma treatment with chemotherapy and photodynamic therapy.Tuberc. Respir. Dis.2015781364010.4046/trd.2015.78.1.36 25653696
    [Google Scholar]
  5. DaiL. LiuJ. LuoZ. LiM. CaiK. Tumor therapy: Targeted drug delivery systems.J. Mater. Chem. B Mater. Biol. Med.20164426758677210.1039/C6TB01743F 32263571
    [Google Scholar]
  6. DingC. TongL. FengJ. FuJ. Recent advances in stimuli-responsive release function drug delivery systems for tumor treatment.Molecules20162112171510.3390/molecules21121715 27999414
    [Google Scholar]
  7. BaeY.H. ParkK. Targeted drug delivery to tumors: Myths, reality and possibility.J. Control. Release2011153319820510.1016/j.jconrel.2011.06.001 21663778
    [Google Scholar]
  8. LammersT. AimeS. HenninkW.E. StormG. KiesslingF. Theranostic nanomedicine.Acc. Chem. Res.201144101029103810.1021/ar200019c 21545096
    [Google Scholar]
  9. ChenF. EhlerdingE.B. CaiW. Theranostic nanoparticles.J. Nucl. Med.201455121919192210.2967/jnumed.114.146019 25413134
    [Google Scholar]
  10. ThakorA.S. GambhirS.S. Nanooncology: The future of cancer diagnosis and therapy.CA Cancer J. Clin.201363639541810.3322/caac.21199 24114523
    [Google Scholar]
  11. RyuJ.H. LeeS. SonS. Theranostic nanoparticles for future personalized medicine.J. Control. Release201419047748410.1016/j.jconrel.2014.04.027 24780269
    [Google Scholar]
  12. BartlettG. AntounJ. ZgheibN.K. Theranostics in primary care: Pharmacogenomics tests and beyond.Expert Rev. Mol. Diagn.201212884185510.1586/erm.12.115 23249202
    [Google Scholar]
  13. MuraS. CouvreurP. Nanotheranostics for personalized medicine.Adv. Drug Deliv. Rev.201264131394141610.1016/j.addr.2012.06.006 22728642
    [Google Scholar]
  14. WangL.S. ChuangM.C. HoJ.A. Nanotheranostics--A review of recent publications.Int. J. Nanomedicine2012746794695 22956869
    [Google Scholar]
  15. NahrendorfM. WatermanP. ThurberG. Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors.Arterioscler. Thromb. Vasc. Biol.200929101444145110.1161/ATVBAHA.109.193086 19608968
    [Google Scholar]
  16. PadinjarathilH JosephMM UnnikrishnanBS Galactomannan endowed biogenic silver nanoparticles exposed enhanced cancer cytotoxicity with excellent biocompatibility.Int J Biol Macromol2018118Pt A11748210.1016/j.ijbiomac.2018.06.194 30001604
    [Google Scholar]
  17. CherkasovV.R. MochalovaE.N. BabenyshevA.V. RozenbergJ.M. SokolovI.L. NikitinM.P. Antibody-directed metal-organic framework nanoparticles for targeted drug delivery.Acta Biomater.202010322323610.1016/j.actbio.2019.12.012 31843718
    [Google Scholar]
  18. NiK. LanG. SongY. HaoZ. LinW. Biomimetic nanoscale metal–organic framework harnesses hypoxia for effective cancer radiotherapy and immunotherapy.Chem. Sci.202011297641765310.1039/D0SC01949F 34094142
    [Google Scholar]
  19. MedinaC. Santos-MartinezM.J. RadomskiA. CorriganO.I. RadomskiM.W. Nanoparticles: Pharmacological and toxicological significance.Br. J. Pharmacol.2007150555255810.1038/sj.bjp.0707130 17245366
    [Google Scholar]
  20. AdiseshaiahP.P. HallJ.B. McNeilS.E. Nanomaterial standards for efficacy and toxicity assessment.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2010219911210.1002/wnan.66 20049834
    [Google Scholar]
  21. SiddiqueS. ChowJ.C.L. Recent advances in functionalized nanoparticles in cancer theranostics.Nanomaterials20221216282610.3390/nano12162826 36014691
    [Google Scholar]
  22. FangR.H. HuC.M.J. LukB.T. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery.Nano Lett.20141442181218810.1021/nl500618u 24673373
    [Google Scholar]
  23. MendesM. SousaJ.J. PaisA. VitorinoC. Targeted theranostic nanoparticles for brain tumor treatment.Pharmaceutics201810418110.3390/pharmaceutics10040181 30304861
    [Google Scholar]
  24. KandasamyG. MaityD. Multifunctional theranostic nanoparticles for biomedical cancer treatments - A comprehensive review.Mater. Sci. Eng. C202112711219910.1016/j.msec.2021.112199 34225852
    [Google Scholar]
  25. MadamsettyV.S. MukherjeeA. MukherjeeS. Recent trends of the bio-inspired nanoparticles in cancer theranostics.Front. Pharmacol.201910126410.3389/fphar.2019.01264 31708785
    [Google Scholar]
  26. HanC. HuangH. DongY. SuiX. JianB. ZhuW. A comparative study of the use of mesoporous carbon and mesoporous silica as drug carriers for oral delivery of the water-insoluble drug carvedilol.Molecules2019249177010.3390/molecules24091770 31067732
    [Google Scholar]
  27. GarzaránG.M. ManzanoM. RegíV.M. Mesoporous silica nanoparticles for the treatment of complex bone diseases: Bone cancer, bone infection and osteoporosis.Pharmaceutics20201218310.3390/pharmaceutics12010083 31968690
    [Google Scholar]
  28. RosenholmJ.M. MamaevaV. SahlgrenC. LindénM. Nanoparticles in targeted cancer therapy: Mesoporous silica nanoparticles entering preclinical development stage.Nanomedicine20127111112010.2217/nnm.11.166 22191780
    [Google Scholar]
  29. LuJ LiongM ZinkJI TamanoiF Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. small20073813416
  30. LeeC.H. ChengS.H. WangY.J. Near‐infrared mesoporous silica nanoparticles for optical imaging: Characterization and In vivo biodistribution.Adv. Funct. Mater.200919221522210.1002/adfm.200800753
    [Google Scholar]
  31. WangY. ZhaoQ. HanN. Mesoporous silica nanoparticles in drug delivery and biomedical applications.Nanomedicine201511231332710.1016/j.nano.2014.09.014 25461284
    [Google Scholar]
  32. QiaoZ.A. GuoB. BinderA.J. ChenJ. VeithG.M. DaiS. Controlled synthesis of mesoporous carbon nanostructures via a “silica-assisted” strategy.Nano Lett.201313120721210.1021/nl303889h 23256449
    [Google Scholar]
  33. YamamotoE. KitaharaM. TsumuraT. KurodaK. Preparation of size-controlled monodisperse colloidal mesoporous silica nanoparticles and fabrication of colloidal crystals.Chem. Mater.20142692927293310.1021/cm500619p
    [Google Scholar]
  34. MoreiraA.F. DiasD.R. CorreiaI.J. Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: A review.Microporous Mesoporous Mater.201623614115710.1016/j.micromeso.2016.08.038
    [Google Scholar]
  35. ChakravartyR. GoelS. HongH. Hollow mesoporous silica nanoparticles for tumor vasculature targeting and PET image-guided drug delivery.Nanomedicine20151081233124610.2217/nnm.14.226 25955122
    [Google Scholar]
  36. GurkaM.K. PenderD. ChuongP. Identification of pancreatic tumors in vivo with ligand-targeted, pH responsive mesoporous silica nanoparticles by multispectral optoacoustic tomography.J. Control. Release2016231606710.1016/j.jconrel.2015.12.055 26763377
    [Google Scholar]
  37. Vallet-RegiM. RámilaA. del RealR.P. ParienteP.J. A new property of MCM-41: Drug delivery system.Chem. Mater.200113230831110.1021/cm0011559
    [Google Scholar]
  38. ChenF. HongH. ZhangY. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles.ACS Nano20137109027903910.1021/nn403617j 24083623
    [Google Scholar]
  39. ArgyoC. WeissV. BräuchleC. BeinT. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery.Chem. Mater.201426143545110.1021/cm402592t
    [Google Scholar]
  40. Martínez-CarmonaM. ColillaM. RegíV.M. Smart mesoporous nanomaterials for antitumor therapy.Nanomaterials2015541906193710.3390/nano5041906 28347103
    [Google Scholar]
  41. ChenW ChengCA ZinkJI Spatial, temporal, and dose control of drug delivery using noninvasive magnetic stimulation.ACS Nano2019132acsnano8b0665510.1021/acsnano.8b06655 30633500
    [Google Scholar]
  42. HuC. HuangP. ZhengZ. YangZ. WangX. A facile strategy to prepare an enzyme-responsive mussel mimetic coating for drug delivery based on mesoporous silica nanoparticles.Langmuir201733225511551810.1021/acs.langmuir.7b01316 28486810
    [Google Scholar]
  43. MendesR.G. BachmatiukA. BüchnerB. CunibertiG. RümmeliM.H. Carbon nanostructures as multi-functional drug delivery platforms.J. Mater. Chem. B Mater. Biol. Med.20131440142810.1039/C2TB00085G 32260810
    [Google Scholar]
  44. ZhangY. WuM. WuM. ZhuJ. ZhangX. Multifunctional carbon-based nanomaterials: Applications in biomolecular imaging and therapy.ACS Omega2018389126914510.1021/acsomega.8b01071 31459047
    [Google Scholar]
  45. HuangP. LinJ. WangX. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy.Adv. Mater.201224375104511010.1002/adma.201200650 22718562
    [Google Scholar]
  46. MikawaM. KatoH. OkumuraM. Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents.Bioconjug. Chem.200112451051410.1021/bc000136m 11459454
    [Google Scholar]
  47. KrishnaV. SinghA. SharmaP. Polyhydroxy fullerenes for non-invasive cancer imaging and therapy.Small20106202236224110.1002/smll.201000847 20818623
    [Google Scholar]
  48. LiuJ. TabataY. Photodynamic antitumor activity of fullerene modified with poly (ethylene glycol) with different molecular weights and terminal structures.J. Biomater. Sci. Polym. Ed.2011221-329731210.1163/092050609X12609582066446 20557714
    [Google Scholar]
  49. ModyV.V. NounouM.I. BikramM. Novel nanomedicine-based MRI contrast agents for gynecological malignancies.Adv. Drug Deliv. Rev.2009611079580710.1016/j.addr.2009.04.020 19427886
    [Google Scholar]
  50. XuM. WangL.V. Photoacoustic imaging in biomedicine.Rev. Sci. Instrum.200677404110110.1063/1.2195024
    [Google Scholar]
  51. HuangL. TerakawaM. ZhiyentayevT. Innovative cationic fullerenes as broad-spectrum light-activated antimicrobials.Nanomedicine20106344245210.1016/j.nano.2009.10.005 19914400
    [Google Scholar]
  52. ChenZ. MaL. LiuY. ChenC. Applications of functionalized fullerenes in tumor theranostics.Theranostics20122323825010.7150/thno.3509 22509193
    [Google Scholar]
  53. IijimaS. Helical microtubules of graphite carbon.Nature199956354
    [Google Scholar]
  54. De La ZerdaA. ZavaletaC. KerenS. Carbon nanotubes as photoacoustic molecular imaging agents in living mice.Nat. Nanotechnol.20083955756210.1038/nnano.2008.231 18772918
    [Google Scholar]
  55. ZerdaA. LiuZ. BodapatiS. Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice.Nano Lett.20101062168217210.1021/nl100890d 20499887
    [Google Scholar]
  56. KerenS. ZavaletaC. ChengZ. de la ZerdaA. GheysensO. GambhirS.S. Noninvasive molecular imaging of small living subjects using Raman spectroscopy.Proc. Natl. Acad. Sci.2008105155844584910.1073/pnas.0710575105 18378895
    [Google Scholar]
  57. LiuZ. CaiW. HeL. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice.Nat. Nanotechnol.200721475210.1038/nnano.2006.170 18654207
    [Google Scholar]
  58. RuggieroA. VillaC.H. HollandJ.P. Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes.Int. J. Nanomedicine20105783802 21042424
    [Google Scholar]
  59. LiuZ. ChenK. DavisC. Drug delivery with carbon nanotubes for in vivo cancer treatment.Cancer Res.200868166652666010.1158/0008‑5472.CAN‑08‑1468 18701489
    [Google Scholar]
  60. BhirdeA.A. PatelV. GavardJ. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery.ACS Nano20093230731610.1021/nn800551s 19236065
    [Google Scholar]
  61. HuangN. WangH. ZhaoJ. LuiH. KorbelikM. ZengH. Single‐wall carbon nanotubes assisted photothermal cancer therapy: Animal study with a murine model of squamous cell carcinoma.Lasers Surg. Med.201042979880810.1002/lsm.20968 20949599
    [Google Scholar]
  62. MoonH.K. LeeS.H. ChoiH.C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes.ACS Nano20093113707371310.1021/nn900904h 19877694
    [Google Scholar]
  63. ZhangZ. YangX. ZhangY. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth.Clin. Cancer Res.200612164933493910.1158/1078‑0432.CCR‑05‑2831 16914582
    [Google Scholar]
  64. HongH. YangK. ZhangY. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene.ACS Nano2012632361237010.1021/nn204625e 22339280
    [Google Scholar]
  65. HongH. ZhangY. EngleJ.W. In vivo targeting and positron emission tomography imaging of tumor vasculature with 66Ga-labeled nano-graphene.Biomaterials201233164147415610.1016/j.biomaterials.2012.02.031 22386918
    [Google Scholar]
  66. WangC. ChengL. LiuZ. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics.Theranostics20133531733010.7150/thno.5284 23650479
    [Google Scholar]
  67. LvR. WangD. XiaoL. ChenG. XiaJ. PrasadP.N. Stable ICG-loaded upconversion nanoparticles: silica core/shell theranostic nanoplatform for dual-modal upconversion and photoacoustic imaging together with photothermal therapy.Sci. Rep.2017711575310.1038/s41598‑017‑16016‑x 29147000
    [Google Scholar]
  68. LiuH. RenF. ZhouX. Ultra-sensitive detection and inhibition of the metastasis of breast cancer cells to adjacent lymph nodes and distant organs by using long-persistent luminescence nanoparticles.Anal. Chem.20199123150641507210.1021/acs.analchem.9b03739 31588731
    [Google Scholar]
  69. SongJ. ZhangY. DaiY. Polyelectrolyte-mediated nontoxic AgGa x In1–x S2 QDs/low-density lipoprotein nanoprobe for selective 3D fluorescence imaging of cancer stem cells.ACS Appl. Mater. Interfaces201911109884989210.1021/acsami.9b00121 30779876
    [Google Scholar]
  70. DuW. YuanY. WangL. Multifunctional bioconjugate for cancer cell-targeted theranostics.Bioconjug. Chem.201526122571257810.1021/acs.bioconjchem.5b00570 26580576
    [Google Scholar]
  71. WangY. WangY. ChenG. LiY. XuW. GongS. Quantum-dot-based theranostic micelles conjugated with an anti-EGFR nanobody for triple-negative breast cancer therapy.ACS Appl. Mater. Interfaces2017936302973030510.1021/acsami.7b05654 28845963
    [Google Scholar]
  72. LvR. YangP. HeF. A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light.ACS Nano2015921630164710.1021/nn5063613 25581331
    [Google Scholar]
  73. GuoW. QiuZ. GuoC. Multifunctional theranostic agent of Cu2 (OH) PO4 quantum dots for photoacoustic image-guided photothermal/photodynamic combination cancer therapy.ACS Appl. Mater. Interfaces20179119348935810.1021/acsami.6b15703 28248076
    [Google Scholar]
  74. YooD. LeeJ.H. ShinT.H. CheonJ. Theranostic magnetic nanoparticles.Acc. Chem. Res.2011441086387410.1021/ar200085c 21823593
    [Google Scholar]
  75. ShevtsovM.A. NikolaevB.P. RyzhovV.A. Detection of experimental myocardium infarction in rats by MRI using heat shock protein 70 conjugated superparamagnetic iron oxide nanoparticle.Nanomedicine201612361162110.1016/j.nano.2015.10.017 26656626
    [Google Scholar]
  76. FernandesD.A. KoliosM.C. Near-infrared absorbing nanoemulsions as nonlinear ultrasound contrast agents for cancer theranostics.J. Mol. Liq.201928711084810.1016/j.molliq.2019.04.125
    [Google Scholar]
  77. DinaliR. EbrahiminezhadA. Manley-HarrisM. GhasemiY. BerenjianA. Iron oxide nanoparticles in modern microbiology and biotechnology.Crit. Rev. Microbiol.201743449350710.1080/1040841X.2016.1267708 28068855
    [Google Scholar]
  78. HouH. WangC. NanK. FreemanW.R. SailorM.J. ChengL. Controlled release of dexamethasone from an intravitreal delivery system using porous silicon dioxide.Invest. Ophthalmol. Vis. Sci.201657255756610.1167/iovs.15‑18559 26882530
    [Google Scholar]
  79. AkbabaH. KaragözU. SelametY. KantarcıA.G. Synthesis and characterization of cationic lipid coated magnetic nanoparticles using multiple emulsions as microreactors.J. Magn. Magn. Mater.201742651852410.1016/j.jmmm.2016.11.126
    [Google Scholar]
  80. AlbiniM. SalviM. AltamuraE. Movement of giant lipid vesicles induced by millimeter wave radiation change when they contain magnetic nanoparticles.Drug Deliv. Transl. Res.20199113114310.1007/s13346‑018‑0572‑y 30203364
    [Google Scholar]
  81. OliveiraR.R. CarriãoM.S. PachecoM.T. Triggered release of paclitaxel from magnetic solid lipid nanoparticles by magnetic hyperthermia.Mater. Sci. Eng. C20189254755310.1016/j.msec.2018.07.011 30184781
    [Google Scholar]
  82. LyerS. SinghR. TietzeR. AlexiouC. Magnetic nanoparticles for magnetic drug targeting.Biomed. Eng.201560546547510.1515/bmt‑2015‑0049
    [Google Scholar]
  83. KandasamyG. MaityD. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and In vivo cancer nanotheranostics.Int. J. Pharm.2015496219121810.1016/j.ijpharm.2015.10.058 26520409
    [Google Scholar]
  84. BasukiJ.S. DuongH.T.T. MacmillanA. Using fluorescence lifetime imaging microscopy to monitor theranostic nanoparticle uptake and intracellular doxorubicin release.ACS Nano2013711101751018910.1021/nn404407g 24131276
    [Google Scholar]
  85. YanL. LuoL. AmirshaghaghiA. Dextran-benzoporphyrin derivative (BPD) coated superparamagnetic iron oxide nanoparticle (SPION) micelles for T2-weighted magnetic resonance imaging and photodynamic therapy.Bioconjug. Chem.201930112974298110.1021/acs.bioconjchem.9b00676 31661959
    [Google Scholar]
  86. KaewsanehaC. TangboriboonratP. PolpanichD. ElaissariA. Multifunctional fluorescent-magnetic polymeric colloidal particles: Preparations and bioanalytical applications.ACS Appl. Mater. Interfaces2015742233732338610.1021/acsami.5b07515 26439897
    [Google Scholar]
  87. MokH. ZhangM. Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics.Expert Opin. Drug Deliv.2013101738710.1517/17425247.2013.747507 23199200
    [Google Scholar]
  88. LaurentS. SaeiA.A. BehzadiS. PanahifarA. MahmoudiM. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: Opportunities and challenges.Expert Opin. Drug Deliv.20141191449147010.1517/17425247.2014.924501 24870351
    [Google Scholar]
  89. KaakiK. Hervé-AubertK. ChiperM. Magnetic nanocarriers of doxorubicin coated with poly(ethylene glycol) and folic acid: Relation between coating structure, surface properties, colloidal stability, and cancer cell targeting.Langmuir20122821496150510.1021/la2037845 22172203
    [Google Scholar]
  90. ChowdhuriA.R. SinghT. GhoshS.K. SahuS.K. Carbon dots embedded magnetic nanoparticles@ chitosan@ metal organic framework as a nanoprobe for pH sensitive targeted anticancer drug delivery.ACS Appl. Mater. Interfaces2016826165731658310.1021/acsami.6b03988 27305490
    [Google Scholar]
  91. ColeA.J. YangV.C. DavidA.E. Cancer theranostics: The rise of targeted magnetic nanoparticles.Trends Biotechnol.201129732333210.1016/j.tibtech.2011.03.001 21489647
    [Google Scholar]
  92. KleibertA. RosellenW. GetzlaffM. BansmannJ. Structure, morphology, and magnetic properties of Fe nanoparticles deposited onto single-crystalline surfaces.Beilstein J. Nanotechnol.20112475610.3762/bjnano.2.6 21977415
    [Google Scholar]
  93. RasmussenJ.W. MartinezE. LoukaP. WingettD.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications.Expert Opin. Drug Deliv.2010791063107710.1517/17425247.2010.502560 20716019
    [Google Scholar]
  94. ThomasR. ParkI.K. JeongY. Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer.Int. J. Mol. Sci.2013148159101593010.3390/ijms140815910 23912234
    [Google Scholar]
  95. De MatteisV. CascioneM. TomaC. LeporattiS. Silver nanoparticles: Synthetic routes, in vitro toxicity and theranostic applications for cancer disease.Nanomaterials20188531910.3390/nano8050319 29748469
    [Google Scholar]
  96. BurdușelA.C. GherasimO. GrumezescuA.M. MogoantăL. FicaiA. AndronescuE. Biomedical applications of silver nanoparticles: An up-to-date overview.Nanomaterials20188968110.3390/nano8090681 30200373
    [Google Scholar]
  97. ChughH. SoodD. ChandraI. TomarV. DhawanG. ChandraR. Role of gold and silver nanoparticles in cancer nano-medicine.Artif. Cells Nanomed. Biotechnol.201846S11210122010.1080/21691401.2018.1449118
    [Google Scholar]
  98. ZhangZ. LiuC. BaiJ. Silver nanoparticle gated, mesoporous silica coated gold nanorods (AuNR@MS@AgNPs): Low premature release and multifunctional cancer theranostic platform.ACS Appl. Mater. Interfaces20157116211621910.1021/acsami.5b00368 25707533
    [Google Scholar]
  99. ZhuS. WangX. LiS. LiuL. LiL. Near-infrared-light-assisted in situ reduction of antimicrobial peptide-protected gold nanoclusters for stepwise killing of bacteria and cancer cells.ACS Appl. Mater. Interfaces2020129110631107110.1021/acsami.0c00310 32027113
    [Google Scholar]
  100. SztanderaK. GorzkiewiczM. MaculewiczK.B. Gold nanoparticles in cancer treatment.Mol. Pharm.201916112310.1021/acs.molpharmaceut.8b00810 30452861
    [Google Scholar]
  101. SinghP. PanditS. MokkapatiV.R.S.S. GargA. RavikumarV. MijakovicI. Gold nanoparticles in diagnostics and therapeutics for human cancer.Int. J. Mol. Sci.2018197197910.3390/ijms19071979 29986450
    [Google Scholar]
  102. WangJ. ZhangG. LiQ. In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters.Sci. Rep.201331115710.1038/srep01157 23362457
    [Google Scholar]
  103. MukherjeeS. SauS. MadhuriD. Green synthesis and characterization of monodispersed gold nanoparticles: Toxicity study, delivery of doxorubicin and its bio-distribution in mouse model.J. Biomed. Nanotechnol.201612116518110.1166/jbn.2016.2141 27301182
    [Google Scholar]
  104. MangadlaoJ.D. WangX. McCleeseC. Prostate-specific membrane antigen targeted gold nanoparticles for theranostics of prostate cancer.ACS Nano20181243714372510.1021/acsnano.8b00940 29641905
    [Google Scholar]
  105. YeoE.L.L. CheahJ.U.J. ThongP.S.P. SooK.C. KahJ.C.Y. Gold nanorods coated with apolipoprotein E protein corona for drug delivery.ACS Appl. Nano Mater.20192106220622910.1021/acsanm.9b01196
    [Google Scholar]
  106. SunC. FangC. StephenZ. Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles.Nanomedicine20083449550510.2217/17435889.3.4.495
    [Google Scholar]
  107. SankarR. MaheswariR. KarthikS. ShivashangariK.S. RavikumarV. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles.Mater. Sci. Eng. C20144423423910.1016/j.msec.2014.08.030 25280701
    [Google Scholar]
  108. WangY. CuiH. ZhouJ. Cytotoxicity, DNA damage, and apoptosis induced by titanium dioxide nanoparticles in human non-small cell lung cancer A549 cells.Environ. Sci. Pollut. Res. Int.20152275519553010.1007/s11356‑014‑3717‑7 25339530
    [Google Scholar]
  109. LiJ. JiangF. YangB. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy.Sci. Rep.201331199810.1038/srep01998 23770650
    [Google Scholar]
  110. CiofaniG. DantiS. D’AlessandroD. MoscatoS. PetriniM. MenciassiA. Barium titanate nanoparticles: Highly cytocompatible dispersions in glycol-chitosan and doxorubicin complexes for cancer therapy.Nanoscale Res. Lett.2010571093110110.1007/s11671‑010‑9607‑0 20596329
    [Google Scholar]
  111. HarringtonK.J. MohammadtaghiS. UsterP.S. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes.Clin. Cancer Res.200172243254 11234875
    [Google Scholar]
  112. BukhariS.I. ImamS.S. AhmadM.Z. Recent progress in lipid nanoparticles for cancer theranostics: opportunity and challenges.Pharmaceutics202113684010.3390/pharmaceutics13060840 34200251
    [Google Scholar]
  113. BukhariS.Z. ZethK. IftikharM. Supramolecular lipid nanoparticles as delivery carriers for non-invasive cancer theranostics.Curr. Res. Pharmacol. Drug Discov.2021210006710.1016/j.crphar.2021.100067 34909685
    [Google Scholar]
  114. TsakiriM. NazirisN. DemetzosC. Innovative vaccine platforms against infectious diseases: Under the scope of the COVID-19 pandemic.Int. J. Pharm.202161012121210.1016/j.ijpharm.2021.121212 34687816
    [Google Scholar]
  115. Gonzalez-AnguloA.M. Meric-BernstamF. ChawlaS. Weekly nab-Rapamycin in patients with advanced nonhematologic malignancies: Final results of a phase I trial.Clin. Cancer Res.201319195474548410.1158/1078‑0432.CCR‑12‑3110 24089446
    [Google Scholar]
  116. LiK. ZhangZ.P. LuoM. Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells.Nanoscale20124118819310.1039/C1NR11132A 22080281
    [Google Scholar]
  117. LiangM. FanK. ZhouM. H-ferritin–nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection.Proc. Natl. Acad. Sci. 201411141149001490510.1073/pnas.1407808111 25267615
    [Google Scholar]
  118. YuX. ZhuW. DiY. Triple-functional albumin-based nanoparticles for combined chemotherapy and photodynamic therapy of pancreatic cancer with lymphatic metastases.Int. J. Nanomedicine2017126771678510.2147/IJN.S131295 28979117
    [Google Scholar]
  119. DattaA. HookerJ.M. BottaM. FrancisM.B. AimeS. RaymondK.N. High relaxivity gadolinium hydroxypyridonate-viral capsid conjugates: Nanosized MRI contrast agents.J. Am. Chem. Soc.200813082546255210.1021/ja0765363 18247608
    [Google Scholar]
  120. FlexmanJ.A. CrossD.J. LewellenB.L. MiyoshiS. KimY. MinoshimaS. Magnetically targeted viral envelopes: A PET investigation of initial biodistribution.IEEE Trans. Nanobiosci.20087322323210.1109/TNB.2008.2002288 18779103
    [Google Scholar]
  121. SuciP.A. VarpnessZ. GillitzerE. DouglasT. YoungM. Targeting and photodynamic killing of a microbial pathogen using protein cage architectures functionalized with a photosensitizer.Langmuir20072324122801228610.1021/la7021424 17949022
    [Google Scholar]
  122. PikeD.B. GhandehariH. HPMA copolymer–cyclic RGD conjugates for tumor targeting☆☆☆.Adv. Drug Deliv. Rev.201062216718310.1016/j.addr.2009.11.027 19951733
    [Google Scholar]
  123. ChristianD.A. CaiS. BowenD.M. KimY. PajerowskiJ.D. DischerD.E. Polymersome carriers: From self-assembly to siRNA and protein therapeutics.Eur. J. Pharm. Biopharm.200971346347410.1016/j.ejpb.2008.09.025 18977437
    [Google Scholar]
  124. TalelliM. RijckenC.J.F. van NostrumC.F. StormG. HenninkW.E. Micelles based on HPMA copolymers.Adv. Drug Deliv. Rev.201062223123910.1016/j.addr.2009.11.029 20004693
    [Google Scholar]
  125. DharS. LiuZ. ThomaleJ. DaiH. LippardS.J. Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device.J. Am. Chem. Soc.200813034114671147610.1021/ja803036e 18661990
    [Google Scholar]
  126. ShubayevV.I. PisanicT.R.II JinS. Magnetic nanoparticles for theragnostics.Adv. Drug Deliv. Rev.200961646747710.1016/j.addr.2009.03.007 19389434
    [Google Scholar]
  127. LiS.D. HuangL. Pharmacokinetics and biodistribution of nanoparticles.Mol. Pharm.20085449650410.1021/mp800049w 18611037
    [Google Scholar]
  128. SalatinS. DizajM.S. Yari KhosroushahiA. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles.Cell Biol. Int.201539888189010.1002/cbin.10459 25790433
    [Google Scholar]
  129. KangH. MintriS. MenonA.V. LeeH.Y. ChoiH.S. KimJ. Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles.Nanoscale2015745188481886210.1039/C5NR05264E 26528835
    [Google Scholar]
  130. SonajeK. LinK.J. WeyS.P. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: Oral delivery using pH-Responsive nanoparticles vs. subcutaneous injection.Biomaterials201031266849685810.1016/j.biomaterials.2010.05.042 20619787
    [Google Scholar]
  131. WangS. KimG. LeeY.E.K. Multifunctional biodegradable polyacrylamide nanocarriers for cancer theranostics--A “see and treat” strategy.ACS Nano2012686843685110.1021/nn301633m 22702416
    [Google Scholar]
  132. AlexisF. RheeJ.W. RichieJ.P. Radovic-MorenoA.F. LangerR. FarokhzadO.C. New frontiers in nanotechnology for cancer treatment.In: Urologic Oncology: Seminars and Original Investigations.Elsevier2008748510.1016/j.urolonc.2007.03.017
    [Google Scholar]
  133. NaveedN. Nanomedicine-The solutions to modern medicine’s unsolved problems.Asian J Sci Technol20178751405143
    [Google Scholar]
  134. ChenL. HongW. RenW. XuT. QianZ. HeZ. Recent progress in targeted delivery vectors based on biomimetic nanoparticles.Signal Transduct. Target. Ther.20216122510.1038/s41392‑021‑00631‑2 34099630
    [Google Scholar]
  135. ParisJ.L. VillaverdeG. GrañaG.S. RegíV.M. Nanoparticles for multimodal antivascular therapeutics: Dual drug release, photothermal and photodynamic therapy.Acta Biomater.202010145946810.1016/j.actbio.2019.11.004 31706040
    [Google Scholar]
  136. GaoD. GuoX. ZhangX. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment.Mater. Today Bio2020510003510.1016/j.mtbio.2019.100035 32211603
    [Google Scholar]
  137. FuscoL. GazziA. PengG. Graphene and other 2D materials: A multidisciplinary analysis to uncover the hidden potential as cancer theranostics.Theranostics202010125435548810.7150/thno.40068 32373222
    [Google Scholar]
  138. AhmedN. FessiH. ElaissariA. Theranostic applications of nanoparticles in cancer.Drug Discov. Today20121717-1892893410.1016/j.drudis.2012.03.010 22484464
    [Google Scholar]
  139. KashyapB.K. SinghV.V. SolankiM.K. KumarA. RuokolainenJ. KesariK.K. Smart nanomaterials in cancer theranostics: Challenges and opportunities.ACS Omega2023816142901432010.1021/acsomega.2c07840 37125102
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385300471240408063205
Loading
/content/journals/pnt/10.2174/0122117385300471240408063205
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test