Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

The purpose of this review article is to provide a complete overview of the fast-developing topic of biobased nanomaterials and the various uses that they have. An extensive study into the utilization of biological resources for nanotechnology has been motivated by the growing demand for materials that are both sustainable and favorable to the environment. In this review, the different uses of biobased nanomaterials across a variety of fields are investigated. When it comes to drug delivery systems, biosensors, nanocarriers, and catalysts, biobased nanomaterials are interesting choices because of their unique qualities. These properties include biocompatibility, programmable surface chemistry, and inherent functionality. Also, in the biomedical field, biobased nanomaterials offer promising prospects for revolutionizing medical diagnostics and therapies. Their biocompatibility, tunable surface chemistry, and inherent functionalities make them attractive candidates for applications such as targeted drug delivery, imaging contrast agents, and tissue engineering scaffolds. In addition, the study discusses the current difficulties and potential future developments in the industry, emphasizing the necessity of interdisciplinary collaboration and ongoing innovation. The incorporation of nanomaterials derived from biological sources into conventional applications holds tremendous potential for the advancement of sustainable development and provides solutions to global concerns. For the purpose of providing researchers, scientists, and professionals with a complete grasp of the synthesis, characterization, and applications of biobased nanomaterials, the purpose of this review is to serve as a helpful resource.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385291530240305044703
2024-03-18
2025-09-03
Loading full text...

Full text loading...

References

  1. SiddiquiM.N. RedhwiH.H. Al-ArfajA.A. AchiliasD.S. Chemical recycling of pet in the presence of the bio-based polymers, pla, phb and pef: A review.Sustainability202113191052810.3390/su131910528
    [Google Scholar]
  2. RaghavendraG.M. VaraprasadK. JayaramuduT. Biomaterials: Design, development and biomedical applications. In: inNanotechnology applications for tissue engineering.Elsevier20152144
    [Google Scholar]
  3. KumarA. BehlT. ChadhaS. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects.Int. J. Biol. Macromol.20201491262127410.1016/j.ijbiomac.2020.02.048 32044364
    [Google Scholar]
  4. WelderfaelT. YadavO.P. TaddesseA.M. KaushalJ. Synthesis, characterization and photocatalytic activities of Ag-N-codoped ZnO nanoparticles for degradation of methyl red.Bull. Chem. Soc. Ethiop.201327222123210.4314/bcse.v27i2.7
    [Google Scholar]
  5. Wojnowska-BaryłaI. KulikowskaD. BernatK. Effect of bio-based products on waste management.Sustainability2020125208810.3390/su12052088
    [Google Scholar]
  6. KurhadeP. KodapeS. ChoudhuryR. Overview on green synthesis of metallic nanoparticles.Chem. Zvesti202175105187522210.1007/s11696‑021‑01693‑w
    [Google Scholar]
  7. YadavM. AgarwalM. Biobased building materials for sustainable future: An overview.Mater. Today Proc.2021432895290210.1016/j.matpr.2021.01.165
    [Google Scholar]
  8. ClarkJ. FarmerT. HuntA. SherwoodJ. Opportunities for bio-based solvents created as petrochemical and fuel products transition towards renewable resources.Int. J. Mol. Sci.2015168171011715910.3390/ijms160817101 26225963
    [Google Scholar]
  9. BhatiaS BhatiaS Current progress on bio-based polymers and their future trends. Natural polymer drug delivery systems: nanoparticles, plants, and algae20169511810.1007/978‑3‑319‑41129‑3_3
  10. BabuR.P. O’ConnorK. SeeramR. Current progress on bio-based polymers and their future trends.Prog. Biomater.201321810.1186/2194‑0517‑2‑8 29470779
    [Google Scholar]
  11. Bensaude-VincentB. Simon J. Chemistry: The impure science.World Scientific201210.1142/p832
    [Google Scholar]
  12. GoldbergM. LangerR. JiaX. Nanostructured materials for applications in drug delivery and tissue engineering.J. Biomater. Sci. Polym. Ed.200718324126810.1163/156856207779996931 17471764
    [Google Scholar]
  13. MannS. Life as a nanoscale phenomenon.Angew. Chem. Int. Ed.200847295306532010.1002/anie.200705538 18512208
    [Google Scholar]
  14. ChiaraG. LetiziaF. LorenzoF. Nanostructured biomaterials for tissue engineered bone tissue reconstruction.Int. J. Mol. Sci.2012131737475710.3390/ijms13010737 22312283
    [Google Scholar]
  15. CocciaM. FinardiU. Emerging nanotechnological research for future pathways of biomedicine.Int. J. Biomed. Nanosci. Nanotechnol.201223/429931710.1504/IJBNN.2012.051223
    [Google Scholar]
  16. FreitasR.A.Jr The future of nanofabrication and molecular scale devices in nanomedicine. In: Future of Health Technology.IOS Press20024559
    [Google Scholar]
  17. MabroukM. DasD.B. SalemZ.A. BehereiH.H. Nanomaterials for biomedical applications: Production, characterisations, recent trends and difficulties.Molecules2021264107710.3390/molecules26041077 33670668
    [Google Scholar]
  18. SubramanianK. TranD. NguyenK.T. Cellular responses to nanoscale surface modifications of titanium implants for dentistry and bone tissue engineering applications. In: Emerging Nanotechnologies in Dentistry.Elsevier201211313610.1016/B978‑1‑4557‑7862‑1.00008‑0
    [Google Scholar]
  19. PatilR.M. DeshpandeP.P. AalhateM. GananadhamuS. SinghP.K. An update on sophisticated and advanced analytical tools for surface characterization of nanoparticles.Surf. Interfaces20223310216510.1016/j.surfin.2022.102165
    [Google Scholar]
  20. MokhterM.A. Biomaterial-based waste for membranes and energy applications. In: Valorization of Wastes for Sustainable Development.Elsevier202333336910.1016/B978‑0‑323‑95417‑4.00013‑5
    [Google Scholar]
  21. FacklamA.L. VolpattiL.R. AndersonD.G. Biomaterials for personalized cell therapy.Adv. Mater.20203213190200510.1002/adma.201902005 31495970
    [Google Scholar]
  22. Elieh-Ali-KomiD. HamblinM.R. Chitin and chitosan: Production and application of versatile biomedical nanomaterials.Int. J. Adv. Res.201643411427 27819009
    [Google Scholar]
  23. AzumaK. IfukuS. OsakiT. OkamotoY. MinamiS. Preparation and biomedical applications of chitin and chitosan nanofibers.J. Biomed. Nanotechnol.201410102891292010.1166/jbn.2014.1882 25992423
    [Google Scholar]
  24. KalantariK. AfifiA.M. JahangirianH. WebsterT.J. Biomedical applications of chitosan electrospun nanofibers as a green polymer. Review.Carbohydr. Polym.201920758860010.1016/j.carbpol.2018.12.011 30600043
    [Google Scholar]
  25. PrasadS.K. Modern concepts in nanotechnology. Discovery Publishing House20085
    [Google Scholar]
  26. DufresneA. Cellulose-based composites and nanocomposites. In: Monomers, polymers and composites from renewable resources.Elsevier200840141810.1016/B978‑0‑08‑045316‑3.00019‑3
    [Google Scholar]
  27. AhadianS. ObregónR. Ramón-AzcónJ. Carbon nanotubes and graphene-based nanomaterials for stem cell differentiation and tissue regeneration.J. Nanosci. Nanotechnol.20161698862888010.1166/jnn.2016.12729
    [Google Scholar]
  28. LeBlancS. Monitoring metabolic health of dairy cattle in the transition period. J reprod Devel.201056S293510.1262/jrd.1056S29
  29. WanZ.L. GuoJ. YangX.Q. Plant protein-based delivery systems for bioactive ingredients in foods.Food Funct.2015692876288910.1039/C5FO00050E 26156251
    [Google Scholar]
  30. IravaniS. VarmaR.S. Plants and plant-based polymers as scaffolds for tissue engineering.Green Chem.201921184839486710.1039/C9GC02391G
    [Google Scholar]
  31. SaharanR. KaurJ. DhankharS. Hydrogel-based drug delivery system in diabetes management.Pharm. Nanotechnol.20231211110.2174/0122117385266276230928064235 37818559
    [Google Scholar]
  32. SharmaS. KumariN. GargD. ChauhanS. A compendium of bioavailability enhancement via niosome technology.Pharm. Nanotechnol.202311432433810.2174/2211738511666230309104323 36892113
    [Google Scholar]
  33. FurthM.E. AtalaA. Van DykeM.E. Smart biomaterials design for tissue engineering and regenerative medicine.Biomaterials200728345068507310.1016/j.biomaterials.2007.07.042 17706763
    [Google Scholar]
  34. NasrollahzadehM. SajjadiM. Biopolymers: Production to consumption. biopolymer-based metal nanoparticle chemistry for sustainable applications: Classification.Properties and Synthesis2021123
    [Google Scholar]
  35. SahuT. RatreY.K. ChauhanS. BhaskarL.V.K.S. NairM.P. VermaH.K. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science.J. Drug Deliv. Sci. Technol.20216310248710.1016/j.jddst.2021.102487
    [Google Scholar]
  36. Kumar TeliM. MutalikS. RajanikantG.K. Nanotechnology and nanomedicine: Going small means aiming big.Curr. Pharm. Des.201016161882189210.2174/138161210791208992 20222866
    [Google Scholar]
  37. MilburnC. Digital matters: Video games and the cultural transcoding of nanotechnology. In: Governing future technologies: Nanotechnology and the rise of an assessment regime.201010927
    [Google Scholar]
  38. YanL. ZhaoF. LiS. HuZ. ZhaoY. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes.Nanoscale20113236238210.1039/C0NR00647E 21157592
    [Google Scholar]
  39. KumarR. MondalK. PandaP.K. Core–shell nanostructures: Perspectives towards drug delivery applications.J. Mater. Chem. B Mater. Biol. Med.20208398992902710.1039/D0TB01559H 32902559
    [Google Scholar]
  40. CoelhoP.G. GranjeiroJ.M. RomanosG.E. Basic research methods and current trends of dental implant surfaces.J. Biomed. Mater. Res. B Appl. Biomater.200988B257959610.1002/jbm.b.31264 18973274
    [Google Scholar]
  41. StreicherR.M. SchmidtM. FioritoS. Nanosurfaces and nanostructures for artificial orthopedic implants.Nanomedicine20072686187410.2217/17435889.2.6.861
    [Google Scholar]
  42. DhankarS. MujwarS. GargN. Artificial intelligence in the management of neurodegenerative disorders.CNS Neurol. Disord. Drug Targets202323110 37861051
    [Google Scholar]
  43. SwainS. RautrayT.R. Effect of surface roughness on titanium medical implants.Nanostructured Materials and Their Applications2021558010.1007/978‑981‑15‑8307‑0_3
    [Google Scholar]
  44. DhankharS. ChauhanS. MehtaD.K. Novel targets for potential therapeutic use in Diabetes mellitus.Diabetol. Metab. Syndr.20231511710.1186/s13098‑023‑00983‑5 36782201
    [Google Scholar]
  45. WoodM.A. Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications.J. R. Soc. Interface200741211710.1098/rsif.2006.0149 17015295
    [Google Scholar]
  46. MittalP. DhankharS. ChauhanS. A review on natural antioxidants for their role in the treatment of parkinson’s disease.Pharmaceuticals202316790810.3390/ph16070908 37513820
    [Google Scholar]
  47. KatakamP. Top-down and bottom-up approaches in 3D printing technologies for drug delivery challenges.Crit. Rev. Ther. Drug Carrier Syst.2015321618710.1615/CritRevTherDrugCarrierSyst.2014011157
    [Google Scholar]
  48. RohillaM Rishabh BansalS et al Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy.Biomed. Pharmacother.202316911588110.1016/j.biopha.2023.115881 37989030
    [Google Scholar]
  49. SmithR.K. LewisP.A. WeissP.S. Patterning self-assembled monolayers.Prog. Surf. Sci.2004751-216810.1016/j.progsurf.2003.12.001
    [Google Scholar]
  50. YangJ. CuiF. LeeI.S. Surface modifications of magnesium alloys for biomedical applications.Ann. Biomed. Eng.20113971857187110.1007/s10439‑011‑0300‑y 21445692
    [Google Scholar]
  51. WenM. LiY. ZhangJ. Synthesis and characterization of nanostructured Ag on porous titania.Appl. Surf. Sci.2011257114836484310.1016/j.apsusc.2010.12.102
    [Google Scholar]
  52. KulkarniM. Biomaterial surface modification of titanium and titanium alloys for medical applications.Nanomedicine2014111615111
    [Google Scholar]
  53. KumarN. KumbhatS. Essentials in nanoscience and nanotechnology.John Wiley & Sons201610.1002/9781119096122
    [Google Scholar]
  54. ShirwaikerR.A. SambergM.E. CohenP.H. WyskR.A. Monteiro-RiviereN.A. Nanomaterials and synergistic low‐intensity direct current (LIDC) stimulation technology for orthopedic implantable medical devices.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20135319120410.1002/wnan.1201 23335493
    [Google Scholar]
  55. WangQ. HuangY. QianZ. Nanostructured surface modification to bone implants for bone regeneration.J. Biomed. Nanotechnol.201814462864810.1166/jbn.2018.2516 31352938
    [Google Scholar]
  56. CausaF. NettiP.A. AmbrosioL. A multi-functional scaffold for tissue regeneration: The need to engineer a tissue analogue.Biomaterials200728345093509910.1016/j.biomaterials.2007.07.030 17675151
    [Google Scholar]
  57. ZhangW. ZhuY. LiJ. Cell-derived extracellular matrix: Basic characteristics and current applications in orthopedic tissue engineering.Tissue Eng. Part B Rev.201622319320710.1089/ten.teb.2015.0290 26671674
    [Google Scholar]
  58. RouwkemaJ. KoopmanB.F.J.M. BlitterswijkC.A.V. DhertW.J.A. MaldaJ. Supply of nutrients to cells in engineered tissues.Biotechnol. Genet. Eng. Rev.200926116317810.5661/bger‑26‑163 21415880
    [Google Scholar]
  59. MaksoudF.J. Velázquez de la PazM.F. HannA.J. Porous biomaterials for tissue engineering: A review.J. Mater. Chem. B Mater. Biol. Med.202210408111816510.1039/D1TB02628C 36205119
    [Google Scholar]
  60. FamaE.F. Efficient capital markets: A review of theory and empirical work.J. Finance197025238341710.2307/2325486
    [Google Scholar]
  61. PatnaikS. GorainB. PadhiS. Recent update of toxicity aspects of nanoparticulate systems for drug delivery.Eur. J. Pharm. Biopharm.202116110011910.1016/j.ejpb.2021.02.010 33639254
    [Google Scholar]
  62. SilvermanR.B. HolladayM.W. The organic chemistry of drug design and drug action.Academic press2014
    [Google Scholar]
  63. SchiekerM. SeitzH. DrosseI. SeitzS. MutschlerW. Biomaterials as scaffold for bone tissue engineering.Eur. J. Trauma200632211412410.1007/s00068‑006‑6047‑8
    [Google Scholar]
  64. GoffmanE. On face-work.Psychiatry195518321323110.1080/00332747.1955.11023008 13254953
    [Google Scholar]
  65. TanM.J. OwhC. CheeP.L. KyawA.K.K. KaiD. LohX.J. Biodegradable electronics: Cornerstone for sustainable electronics and transient applications.J. Mater. Chem. C Mater. Opt. Electron. Devices20164245531555810.1039/C6TC00678G
    [Google Scholar]
  66. OschmanJ. ChevalierG. BrownR. The effects of grounding (earthing) on inflammation, the immune response, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases.J. Inflamm. Res.20158839610.2147/JIR.S69656 25848315
    [Google Scholar]
  67. RosetiL. ParisiV. PetrettaM. Scaffolds for bone tissue engineering: State of the art and new perspectives.Mater. Sci. Eng. C2017781246126210.1016/j.msec.2017.05.017 28575964
    [Google Scholar]
  68. LundbergO.S.A. Investigating the proliferative effects of seven vegetable-derived protein hydrolysates on bovine skeletal muscle cells. In: Master thesis. Norwegian University of Life Sciences2022
    [Google Scholar]
  69. PathakM.K. JoshiA. MerK.K.S. Evaluating tensile properties and fracture toughness of Al 2014 alloy processed by different rolling methods.Mater. Res. Express201961010501210.1088/2053‑1591/ab35c1
    [Google Scholar]
  70. SharmaR. KirschR. ValenteK.P. PerezM.R. WillerthS.M. Physical and mechanical characterization of fibrin-based bioprinted constructs containing drug-releasing microspheres for neural tissue engineering applications.Processes202197120510.3390/pr9071205
    [Google Scholar]
  71. GarengoP. BiazzoS. BititciU.S. Performance measurement systems in SMEs: A review for a research agenda.Int. J. Manag. Rev.200571254710.1111/j.1468‑2370.2005.00105.x
    [Google Scholar]
  72. HollisterS.J. Scaffold design and manufacturing: From concept to clinic.Adv. Mater.20092132-333330334210.1002/adma.200802977 20882500
    [Google Scholar]
  73. SalgadoA.J. CoutinhoO.P. ReisR.L. Bone tissue engineering: State of the art and future trends.Macromol. Biosci.20044874376510.1002/mabi.200400026 15468269
    [Google Scholar]
  74. FilippiM. BornG. ChaabanM. ScherberichA. Natural polymeric scaffolds in bone regeneration.Front. Bioeng. Biotechnol.2020847410.3389/fbioe.2020.00474 32509754
    [Google Scholar]
  75. TreccaniL. Introduction to ceramic materials. In: Surface‐Functionalized Ceramics: For Biotechnological and Environmental Applications.Wiley202310.1002/9783527698042.ch1
    [Google Scholar]
  76. SinghB. DubeyA.K. KumarS. SahaN. BasuB. GuptaR. In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10−xAgx(PO4)6(OH)2 (0.0≤x≤0.5) hydroxyapatites.Mater. Sci. Eng. C20113171320132910.1016/j.msec.2011.04.015
    [Google Scholar]
  77. SmithT.M. TafforeauP. New visions of dental tissue research: Tooth development, chemistry, and structure.Evol. Anthropol.200817521322610.1002/evan.20176
    [Google Scholar]
  78. AgrawalS SrivastavaR Osteoinductive and osteoconductive biomaterials. Racing for the Surface: Antimicrobial and Interface Tissue Engineering20203559510.1007/978‑3‑030‑34471‑9_15
  79. AgbebohN.I. OladeleI.O. DaramolaO.O. AdediranA.A. OlasukanmiO.O. TanimolaM.O. Environmentally sustainable processes for the synthesis of hydroxyapatite.Heliyon202064e0376510.1016/j.heliyon.2020.e03765 32368642
    [Google Scholar]
  80. SedighiO. AlaghmandfardA. MontazerianM. BainoF. A critical review of bioceramics for magnetic hyperthermia.J. Am. Ceram. Soc.202210531723174710.1111/jace.17861
    [Google Scholar]
  81. Mohd Pu’adN.A.S. KoshyP. AbdullahH.Z. IdrisM.I. LeeT.C. Syntheses of hydroxyapatite from natural sources.Heliyon201955e0158810.1016/j.heliyon.2019.e01588 31080905
    [Google Scholar]
  82. LinK. WangX. ZhangN. ShenY. Strontium (Sr) strengthens the silicon (Si) upon osteoblast proliferation, osteogenic differentiation and angiogenic factor expression.J. Mater. Chem. B Mater. Biol. Med.20164213632363810.1039/C6TB00735J 32263301
    [Google Scholar]
  83. UllahI. ZhangW. YangL. Impact of structural features of Sr/Fe co-doped HAp on the osteoblast proliferation and osteogenic differentiation for its application as a bone substitute.Mater. Sci. Eng. C202011011063310.1016/j.msec.2020.110633 32204069
    [Google Scholar]
  84. PoliniA. YangF. Physicochemical characterization of nanofiber composites. In: Nanofiber composites for biomedical applications.Elsevier20179711510.1016/B978‑0‑08‑100173‑8.00005‑3
    [Google Scholar]
  85. JoseJ.P. JosephK. Advances in polymer composites: Macro‐and microcomposites–state of the art, new challenges, and opportunities.Polym. Compos.2012116
    [Google Scholar]
  86. SridharR. LakshminarayananR. MadhaiyanK. Amutha BarathiV. LimK.H.C. RamakrishnaS. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals.Chem. Soc. Rev.201544379081410.1039/C4CS00226A 25408245
    [Google Scholar]
  87. LipnerJ. LiuW. LiuY. The mechanics of PLGA nanofiber scaffolds with biomimetic gradients in mineral for tendon-to-bone repair.J. Mech. Behav. Biomed. Mater.201440596810.1016/j.jmbbm.2014.08.002 25194525
    [Google Scholar]
  88. TeoW.E. RamakrishnaS. Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite.Compos. Sci. Technol.20096911-121804181710.1016/j.compscitech.2009.04.015
    [Google Scholar]
  89. RamalingamM. RamakrishnaS. Introduction to nanofiber composites. In: Nanofiber Composites for Biomedical Applications.Elsevier201732910.1016/B978‑0‑08‑100173‑8.00001‑6
    [Google Scholar]
  90. SantoJ. PenumakalaP.K. AdusumalliR.B. Mechanical and electrical properties of three‐dimensional printed polylactic acid–graphene–ca rbon nanofiber composites.Polym. Compos.20214273231324210.1002/pc.26053
    [Google Scholar]
  91. IdumahC.I. ObeleC.M. Understanding interfacial influence on properties of polymer nanocomposites.Surf. Interfaces20212210087910.1016/j.surfin.2020.100879
    [Google Scholar]
  92. ChhikaraB.S. Prospects of applied nanomedicine: Potential clinical and (bio) medical interventions via nanoscale research advances.J Mat NanoSci2016325056
    [Google Scholar]
  93. ChengC. LiS. ThomasA. KotovN.A. HaagR. Functional graphene nanomaterials based architectures: Biointeractions, fabrications, and emerging biological applications.Chem. Rev.201711731826191410.1021/acs.chemrev.6b00520 28075573
    [Google Scholar]
  94. ChenG. RoyI. YangC. PrasadP.N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy.Chem. Rev.201611652826288510.1021/acs.chemrev.5b00148 26799741
    [Google Scholar]
  95. ChenH. RogalskiM.M. AnkerJ.N. Advances in functional X-ray imaging techniques and contrast agents.Phys. Chem. Chem. Phys.20121439134691348610.1039/c2cp41858d 22962667
    [Google Scholar]
  96. ZhuS. YungB.C. ChandraS. NiuG. AntarisA.L. ChenX. Near-infrared-II (NIR-II) bioimaging via off-peak NIR-I fluorescence emission.Theranostics20188154141415110.7150/thno.27995 30128042
    [Google Scholar]
  97. GubalaV. GiovanniniG. KuncF. MonopoliM.P. MooreC.J. Dye-doped silica nanoparticles: Synthesis, surface chemistry and bioapplications.Cancer Nanotechnol.202011114310.1186/s12645‑019‑0056‑x
    [Google Scholar]
  98. LichaK. Contrast agents for optical imaging. In: Contrast Agents II.Springer200212910.1007/3‑540‑46009‑8_1
    [Google Scholar]
  99. CaravanP. EllisonJ.J. McMurryT.J. LaufferR.B. Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications.Chem. Rev.19999992293235210.1021/cr980440x 11749483
    [Google Scholar]
  100. JunghannsJ-U.A. MüllerR.H. Nanocrystal technology, drug delivery and clinical applications.Int. J. Nanomedicine200833295309 18990939
    [Google Scholar]
  101. McMillanJ. BatrakovaE. GendelmanH.E. Cell delivery of therapeutic nanoparticles.Prog. Mol. Biol. Transl. Sci.201110456360110.1016/B978‑0‑12‑416020‑0.00014‑0 22093229
    [Google Scholar]
  102. ChrastinaA. MasseyK.A. SchnitzerJ.E. Overcoming in vivo barriers to targeted nanodelivery.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20113442143710.1002/wnan.143 21538941
    [Google Scholar]
  103. RogersL. BriggsN. AchermannR. Continuous production of five active pharmaceutical ingredients in flexible plug-and-play modules: A demonstration campaign.Org. Process Res. Dev.202024102183219610.1021/acs.oprd.0c00208
    [Google Scholar]
  104. ChenJ.B. YousefiH. NemrC.R. Nanostructured architectures for biomolecular detection inside and outside the cell.Adv. Funct. Mater.20203037190770110.1002/adfm.201907701
    [Google Scholar]
  105. LohK.P. HoD. ChiuG.N.C. LeongD.T. PastorinG. ChowE.K.H. Clinical applications of carbon nanomaterials in diagnostics and therapy.Adv. Mater.20183047180236810.1002/adma.201802368 30133035
    [Google Scholar]
  106. HolzingerM. Le GoffA. CosnierS. Nanomaterials for biosensing applications: A review.Front Chem.201426310.3389/fchem.2014.00063 25221775
    [Google Scholar]
  107. NareshV. LeeN. A review on biosensors and recent development of nanostructured materials-enabled biosensors.Sensors2021214110910.3390/s21041109 33562639
    [Google Scholar]
  108. BijuV. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy.Chem. Soc. Rev.201443374476410.1039/C3CS60273G 24220322
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385291530240305044703
Loading
/content/journals/pnt/10.2174/0122117385291530240305044703
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test