Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Cancer that begins in the skin is by far the most common kind of skin cancer found everywhere in the globe. It is further subdivided into groups, such as basal cell carcinoma and cutaneous squamous cell carcinoma, in addition to other, less common types of skin cancer. In this article, the diagnostic aspects that need to be taken into consideration when utilizing these new guidelines, go over the essential features of cutaneous SCC, conduct an analysis of recent changes in the category of cutaneous SCC, and speak about recent advancements in the categorization of cutaneous SCC. Over the course of the past decade, photodynamic therapy has developed into a potentially effective treatment for a variety of solid tumors that may be found in people. The combination of metallic nanoparticles and phytoconstituents as a therapy for skin cancer has the potential to be more successful than each treatment used independently. In this article, the various treatment modalities for skin cancer were examined. This included excision surgery, Mohs surgery, radiation therapy, and immunotherapy. These were then followed by targeted therapy or immunotherapy, in addition to surgery, radiation, or photodynamic therapy. Since excision surgery is the most typical procedure used to eradicate skin cancer, we concentrate on it in particular.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385282163240220072251
2024-03-08
2025-09-05
Loading full text...

Full text loading...

References

  1. KupperT.S. FuhlbriggeR.C. Immune surveillance in the skin: Mechanisms and clinical consequences.Nat. Rev. Immunol.20044321122210.1038/nri1310 15039758
    [Google Scholar]
  2. SchererD. KumarR. Genetics of pigmentation in skin cancer: A review.Mutat. Res. Rev. Mutat. Res.2010705214115310.1016/j.mrrev.2010.06.002 20601102
    [Google Scholar]
  3. NaqviM. GilaniS.Q. SyedT. MarquesO. KimH.C. Skin cancer detection using deep learning: A review.Diagnostics20231311191110.3390/diagnostics13111911 37296763
    [Google Scholar]
  4. BichakjianC.K. HalpernA.C. JohnsonT.M. Guidelines of care for the management of primary cutaneous melanoma.J. Am. Acad. Dermatol.20116551032104710.1016/j.jaad.2011.04.031 21868127
    [Google Scholar]
  5. InT. Facts & Figures. The US cancer death rate has dropped 27% in 25 Years.2019Available from: https://www.wsj.com/articles/cancer-deaths-decline-27-over-25-years-11546959600
    [Google Scholar]
  6. KumarA. MishraR. MazumderR. MazumderA. Design, synthesis, characterization, and anti-cancer activity evaluation of novel thiosemicarbazide analogs.Indian J Pharma Edu Res202357121021710.5530/001954641768
    [Google Scholar]
  7. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  8. ApallaZ. LallasA. SotiriouE. LazaridouE. IoannidesD. Epidemiological trends in skin cancer.Dermatol. Pract. Concept.2017721610.5826/dpc.0702a01 28515985
    [Google Scholar]
  9. ZengL. GowdaB.H.J. AhmedM.G. Advancements in nanoparticle-based treatment approaches for skin cancer therapy.Mol. Cancer20232211010.1186/s12943‑022‑01708‑4 36635761
    [Google Scholar]
  10. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.21708 35020204
    [Google Scholar]
  11. QuaziS.J. AslamN. SaleemH. RahmanJ. KhanS. Surgical margin of excision in basal cell carcinoma: A systematic review of literature.Cureus2020127e921110.7759/cureus.9211 32821563
    [Google Scholar]
  12. MerrittB.G. LeeN.Y. BrodlandD.G. ZitelliJ.A. CookJ. The safety of Mohs surgery: A prospective multicenter cohort study.J. Am. Acad. Dermatol.20126761302130910.1016/j.jaad.2012.05.041 22892283
    [Google Scholar]
  13. BleakleyC. BieuzenF. DavisonG. CostelloJ. Whole-body cryotherapy: Empirical evidence and theoretical perspectives.Open Access J. Sports Med.20145253610.2147/OAJSM.S41655 24648779
    [Google Scholar]
  14. LevittS.H. PurdyJ.A. PerezC.A. VijayakumarS. Technical basis of radiation therapy.In: Practical Clinical Applications.Springer201210.1007/978‑3‑642‑11572‑1
    [Google Scholar]
  15. KashN. SilapuntS. Cryotherapy and electrodesiccation & curettage for basal cell carcinoma.Basal Cell Carcinoma Adv Treat Res2020101120
    [Google Scholar]
  16. LiX. LovellJ.F. YoonJ. ChenX. Clinical development and potential of photothermal and photodynamic therapies for cancer.Nat. Rev. Clin. Oncol.2020171165767410.1038/s41571‑020‑0410‑2 32699309
    [Google Scholar]
  17. MyersJ.A. MillerJ.S. Exploring the NK cell platform for cancer immunotherapy.Nat. Rev. Clin. Oncol.20211828510010.1038/s41571‑020‑0426‑7 32934330
    [Google Scholar]
  18. ZhangZ. LeeJ.H. RuanH. Transcriptional landscape and clinical utility of enhancer RNAs for eRNA-targeted therapy in cancer.Nat. Commun.2019101456210.1038/s41467‑019‑12543‑5 31594934
    [Google Scholar]
  19. GalluzziL. HumeauJ. BuquéA. ZitvogelL. KroemerG. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors.Nat. Rev. Clin. Oncol.2020171272574110.1038/s41571‑020‑0413‑z 32760014
    [Google Scholar]
  20. Bin YapF.B. Clinical characteristics of basal cell carcinoma in a tertiary hospital in Sarawak, Malaysia.Int. J. Dermatol.201049217617910.1111/j.1365‑4632.2009.04342.x 20465642
    [Google Scholar]
  21. KantorA.F. HartgeP. HooverR.N. FraumeniJ.F.Jr Epidemiological characteristics of squamous cell carcinoma and adenocarcinoma of the bladder.Cancer Res.1988481338533855 3378221
    [Google Scholar]
  22. LiaoS.K. DentP.B. McCullochP.B. Characterization of human maligant melanoma cell lines. I. Morphology and growth characteristics in culture.J. Natl. Cancer Inst.197554510371044 1127734
    [Google Scholar]
  23. HeathM. JaimesN. LemosB. Clinical characteristics of Merkel cell carcinoma at diagnosis in 195 patients: The AEIOU features.J. Am. Acad. Dermatol.200858337538110.1016/j.jaad.2007.11.020 18280333
    [Google Scholar]
  24. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.21654 33433946
    [Google Scholar]
  25. KocarnikJ.M. ComptonK. DeanF.E. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: A systematic analysis for the global burden of disease study 2019.JAMA Oncol.20228342044410.1001/jamaoncol.2021.6987 34967848
    [Google Scholar]
  26. FaniaL. DidonaD. MoreseR. Basal cell carcinoma: From pathophysiology to novel therapeutic approaches.Biomedicines202081144910.3390/biomedicines8110449 33113965
    [Google Scholar]
  27. LeiterU KeimU GarbeC. Epidemiology of Skin Cancer: Update 2019. Sunlight, Vitamin D, and Skin Cancer202012339
  28. BradfordP.T. Skin cancer in skin of color.Dermatol. Nurs.2009214170177
    [Google Scholar]
  29. FaniaL. DidonaD. Di PietroF.R. Cutaneous squamous cell carcinoma: From pathophysiology to novel therapeutic approaches.Biomedicines20219217110.3390/biomedicines9020171 33572373
    [Google Scholar]
  30. DoddsA. ChiaA. ShumackS. Actinic keratosis: Rationale and management.Dermatol. Ther.201441113110.1007/s13555‑014‑0049‑y 24627245
    [Google Scholar]
  31. WongC.S.M. StrangeR.C. LearJ.T. Basal cell carcinoma.BMJ2003327741879479810.1136/bmj.327.7418.794 14525881
    [Google Scholar]
  32. SimõesM.C.F. SousaJ.J.S. PaisA.A.C.C. Skin cancer and new treatment perspectives: A review.Cancer Lett.2015357184210.1016/j.canlet.2014.11.001 25444899
    [Google Scholar]
  33. Correia de SáT.R. SilvaR. LopesJ.M. Basal cell carcinoma of the skin (part 1): Epidemiology, pathology and genetic syndromes.Future Oncol.201511223011302110.2217/fon.15.246 26449153
    [Google Scholar]
  34. MillerS.J. Biology of basal cell carcinoma (Part I).J. Am. Acad. Dermatol.199124111310.1016/0190‑9622(91)70001‑I 1999506
    [Google Scholar]
  35. HeenenM. GalandP. Cell population kinetics in human epidermis: In vitro autoradiographic study by double-labeling method.J. Invest. Dermatol.197156642542910.1111/1523‑1747.ep12261346 5580042
    [Google Scholar]
  36. LearW. DahlkeE. MurrayC.A. Basal cell carcinoma: Review of epidemiology, pathogenesis, and associated risk factors.J. Cutan. Med. Surg.2007111193010.2310/7750.2007.00011 17274935
    [Google Scholar]
  37. MohanS.V. ChangA.L.S. Advanced basal cell carcinoma: Epidemiology and therapeutic innovations.Curr. Dermatol. Rep.201431404510.1007/s13671‑014‑0069‑y 24587976
    [Google Scholar]
  38. JiangL.P. ShenQ.S. YangC.P. ChenY.B. Establishment of basal cell carcinoma animal model in Chinese tree shrew (Tupaia belangeri chinensis).Zool. Res.2017384180190 28825448
    [Google Scholar]
  39. NoubissiF.K. KimT. KawaharaT.N. Role of CRD-BP in the growth of human basal cell carcinoma cells.J. Invest. Dermatol.201413461718172410.1038/jid.2014.17 24468749
    [Google Scholar]
  40. WaldmanA. SchmultsC. Cutaneous squamous cell carcinoma.Hematol. Oncol. Clin. North Am.2019331112
    [Google Scholar]
  41. GreenC.L. KhavariP.A. Targets for molecular therapy of skin cancer. In: Cancer Biol. Academic Press2004141639
    [Google Scholar]
  42. KaneC.L. KeehnC.A. SmithbergerE. GlassL.F. Histopathology of cutaneous squamous cell carcinoma and its variants. In: MedSurg. W. B. Saunders Company20042315461
    [Google Scholar]
  43. KalliniJ.R. HamedN. KhachemouneA. Squamous cell carcinoma of the skin: epidemiology, classification, management, and novel trends.Int. J. Dermatol.201554213014010.1111/ijd.12553 25428226
    [Google Scholar]
  44. TokerC. Trabecular carcinoma of the skin.Arch. Dermatol.1972105110711010.1001/archderm.1972.01620040075020 5009611
    [Google Scholar]
  45. MaricichS.M. WellnitzS.A. NelsonA.M. Merkel cells are essential for light-touch responses.Oncol Clini2019324593415801582
    [Google Scholar]
  46. BeckerJ.C. StangA. DeCaprioJ.A. Merkel cell carcinoma.Nat. Rev. Dis. Primers2017311707710.1038/nrdp.2017.77 29072302
    [Google Scholar]
  47. GauciM.L. AristeiC. BeckerJ.C. Diagnosis and treatment of Merkel cell carcinoma: European consensus-based interdisciplinary guideline: Update 2022.Eur. J. Cancer202217120323110.1016/j.ejca.2022.03.043 35732101
    [Google Scholar]
  48. OttP.A. Intralesional cancer immunotherapies.Hematol. Oncol. Clin. North Am.201933224926010.1016/j.hoc.2018.12.009 30832998
    [Google Scholar]
  49. TarhiniA. AtzingerC. Gupte-SinghK. JohnsonC. MacahiligC. RaoS. Treatment patterns and outcomes for patients with unresectable stage III and metastatic melanoma in the USA.J. Comp. Eff. Res.20198746147310.2217/cer‑2019‑0003 30832505
    [Google Scholar]
  50. CockerellC.J. The pathology of melanoma.Dermatol. Clin.201230344546810.1016/j.det.2012.04.007 22800551
    [Google Scholar]
  51. Gray-SchopferV. WellbrockC. MaraisR. Melanoma biology and new targeted therapy.Nature2007445713085185710.1038/nature05661 17314971
    [Google Scholar]
  52. DavidsL.M. KleemannB. The menace of melanoma: A photodynamic approach to adjunctive cancer therapy. In: Guy H, Huynh TD, Eds. Inmelanoma-from Early Detection to Treatment. GuyH. HuynhT.D. IntechOpen201310.5772/53676
    [Google Scholar]
  53. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2018.CA Cancer J. Clin.201868173010.3322/caac.21442 29313949
    [Google Scholar]
  54. NavesL.B. DhandC. VenugopalJ.R. RajamaniL. RamakrishnaS. AlmeidaL. Nanotechnology for the treatment of melanoma skin cancer.Prog. Biomater.201761-2132610.1007/s40204‑017‑0064‑z 28303522
    [Google Scholar]
  55. Kaposi. Idiopathisches multiples Pigmentsarkom der Haut.Arch. Dermatol. Res.18724226527310.1007/BF01830024
    [Google Scholar]
  56. AntmanK. ChangY. Kaposi’s sarcoma.N. Engl. J. Med.2000342141027103810.1056/NEJM200004063421407 10749966
    [Google Scholar]
  57. PantanowitzL. DezubeB.J. Advances in the pathobiology and treatment of Kaposi sarcoma.Curr. Opin. Oncol.200416544344910.1097/00001622‑200409000‑00006 15314513
    [Google Scholar]
  58. PantanowitzL. StebbingJ. DezubeB.J. Overview of Kaposi Sarcoma.In Kaposi Sarcoma: A Model of Oncogenesis Kerala.IndiaResearch Signpost2010140
    [Google Scholar]
  59. CesarmanE. DamaniaB. KrownS.E. MartinJ. BowerM. WhitbyD. Kaposi sarcoma.Nat. Rev. Dis. Primers201951910.1038/s41572‑019‑0060‑9 30705286
    [Google Scholar]
  60. El-MallawanyN.K. KamiyangoW. SloneJ.S. Clinical factors associated with long-term complete remission versus poor response to chemotherapy in HIV-infected children and adolescents with kaposi sarcoma receiving bleomycin and vincristine: a retrospective observational study.PLoS One2016114e015333510.1371/journal.pone.0153335 27082863
    [Google Scholar]
  61. ParraviciniC. OlsenS.J. CapraM. Risk of Kaposi’s sarcoma-associated herpes virus transmission from donor allografts among Italian posttransplant Kaposi’s sarcoma patients.Blood199790728262829 9326251
    [Google Scholar]
  62. EinspahrJ.G. StrattonS.P. BowdenG.T. AlbertsD.S. Chemoprevention of human skin cancer.Crit. Rev. Oncol. Hematol.200241326928510.1016/S1040‑8428(01)00185‑8 11880204
    [Google Scholar]
  63. KraemerK.H. LeeM.M. ScottoJ. Xeroderma pigmentosum.Arch. Dermatol.1987123224125010.1001/archderm.1987.01660260111026 3545087
    [Google Scholar]
  64. BebenekK. MatsudaT. MasutaniC. HanaokaF. KunkelT.A. Proofreading of DNA polymerase η-dependent replication errors.J. Biol. Chem.200127642317232010.1074/jbc.C000690200 11113111
    [Google Scholar]
  65. de GruijlF.R. van KranenH.J. MullendersL.H.F. UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer.J. Photochem. Photobiol. B2001631-3192710.1016/S1011‑1344(01)00199‑3 11684448
    [Google Scholar]
  66. JerantA.F. JohnsonJ.T. SheridanC.D. CaffreyT.J. Early detection and treatment of skin cancer.Am. Fam. Physician2000622357368, 375-376, 381-382 10929700
    [Google Scholar]
  67. JainA.K. JainS. AbourehabM.A.S. MehtaP. KesharwaniP. An insight on topically applied formulations for management of various skin disorders.J. Biomater. Sci. Polym. Ed.202233182406243210.1080/09205063.2022.2103625 35848901
    [Google Scholar]
  68. ShrinerD.L. McCoyD.K. GoldbergD.J. WagnerR.F.Jr Mohs micrographic surgery.J. Am. Acad. Dermatol.1998391799710.1016/S0190‑9622(98)70405‑0 9674401
    [Google Scholar]
  69. PrickettK.A. RamseyM.L. Mohs Micrographic Surgery.Treasure IslandStatPearls Publishing2018
    [Google Scholar]
  70. SalmonP. MortimerN. RademakerM. AdamsL. StanwayA. HillS. Surgical excision of skin cancer: The importance of training.Br. J. Dermatol.2010162111712210.1111/j.1365‑2133.2009.09548.x 19818068
    [Google Scholar]
  71. ChuJ. ChungY. ChaeS.W. ChoiY.J. KimH.S. DoS.I. Clinicopathological factors influencing resection margin involvement during mohs micrographic surgery for skin tumors.Anticancer Res.20234362707271510.21873/anticanres.16437 37247935
    [Google Scholar]
  72. DekkerP.K. MishuM.D. YounR. BakerS.B. Serial excision for treatment of non-melanoma skin cancer.Plast. Reconstr. Surg. Glob. Open202196e360710.1097/GOX.0000000000003607 34123684
    [Google Scholar]
  73. KleinC.A. BlankensteinT.J.F. Schmidt-KittlerO. Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer.Lancet2002360933468368910.1016/S0140‑6736(02)09838‑0 12241875
    [Google Scholar]
  74. BaumM. Does surgery disseminate or accelerate cancer?Lancet1996347899626010.1016/S0140‑6736(96)90433‑X 8551898
    [Google Scholar]
  75. BaumM. RadweB. Does Surgery Influence the Natural History of Breast Cancer?Future Publishing Company1994
    [Google Scholar]
  76. OliverR.T.D. Does surgery disseminate or accelerate cancer?Lancet199534689891506150710.1016/S0140‑6736(95)92046‑3 7491042
    [Google Scholar]
  77. DemicheliR. Tumour dormancy: Findings and hypotheses from clinical research on breast cancer.Semin. Cancer Biol.200111429730610.1006/scbi.2001.0385 11513565
    [Google Scholar]
  78. DemicheliR. ValagussaP. BonadonnaG. Does surgery modify growth kinetics of breast cancer micrometastases?Br. J. Cancer200185449049210.1054/bjoc.2001.1969 11506484
    [Google Scholar]
  79. BaumM. ChaplainM.A.J. AndersonA.R.A. DouekM. VaidyaJ.S. Does breast cancer exist in a state of chaos?Eur. J. Cancer199935688689110.1016/S0959‑8049(99)00067‑2 10533467
    [Google Scholar]
  80. GoldbergL.H. KaplanB. Vergilis-KalnerI. LandauJ. Liquid nitrogen: Temperature control in the treatment of actinic keratosis.Dermatol. Surg.201036121956196110.1111/j.1524‑4725.2010.01804.x 21070460
    [Google Scholar]
  81. HoffmannN.E. BischofJ.C. The cryobiology of cryosurgical injury.Urology2002602404910.1016/S0090‑4295(02)01683‑7 12206847
    [Google Scholar]
  82. BischofJ.C. Quantitative measurement and prediction of biophysical response during freezing in tissues.Annu. Rev. Biomed. Eng.20002125728810.1146/annurev.bioeng.2.1.257 11701513
    [Google Scholar]
  83. SwensonC. SwärdL. KarlssonJ. Cryotherapy in sports medicine.Scand. J. Med. Sci. Sports19966419320010.1111/j.1600‑0838.1996.tb00090.x 8896090
    [Google Scholar]
  84. HoffmannN.E. BischofJ.C. Cryosurgery of normal and tumor tissue in the dorsal skin flap chamber: Part I--thermal response.J. Biomech. Eng.2001123430130910.1115/1.1385838 11563754
    [Google Scholar]
  85. RogersS.J. PuricE. EberleB. DattaN.R. BodisS.B. Radiotherapy for melanoma: More than DNA damage.Dermatol. Res. Pract.201920191910.1155/2019/9435389 31073304
    [Google Scholar]
  86. WaylonisG.W. The physiologic effects of ice massage.Arch. Phys. Med. Rehabil.19674813742 6016565
    [Google Scholar]
  87. GreeneM.A. BoltaxA.J. LustigG.A. RogowE. Circulatory dynamics during the cold pressor test.Am. J. Cardiol.1965161546010.1016/0002‑9149(65)90007‑X 14314205
    [Google Scholar]
  88. JordanH. KleinschmidtJ. DrexelH. On the current status of cryotherapy.Munich Medical Weekly Magazine19771191314
    [Google Scholar]
  89. DoughertyT.J. MarcusS.L. Photodynamic therapy.Eur. J. Cancer199228101734174210.1016/0959‑8049(92)90080‑L 1327020
    [Google Scholar]
  90. WolfeC.M. CognettaA.B.Jr Radiation therapy (RT) for nonmelanoma skin cancer (NMSC), a cost comparison: Clarifying misconceptions.J. Am. Acad. Dermatol.201675365465510.1016/j.jaad.2016.01.035 27543227
    [Google Scholar]
  91. LuoD. CarterK.A. MirandaD. LovellJ.F. Chemophototherapy: An emerging treatment option for solid tumors.Adv. Sci.201741160010610.1002/advs.201600106 28105389
    [Google Scholar]
  92. KharkwalG.B. SharmaS.K. HuangY.Y. DaiT. HamblinM.R. Photodynamic therapy for infections: Clinical applications.Lasers Surg. Med.201143775576710.1002/lsm.21080 22057503
    [Google Scholar]
  93. SperandioF. HuangY.Y. HamblinM. Antimicrobial photodynamic therapy to kill Gram-negative bacteria.Recent Patents Anti-Infect. Drug Disc.20138210812010.2174/1574891X113089990012 23550545
    [Google Scholar]
  94. Treatment for cancer | cancer treatment options.Available from: https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types.html (Accessed September 4, 2022)
  95. VermaV. SpraveT. HaqueW. A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors.J. Immunother. Cancer20186112810.1186/s40425‑018‑0442‑7 30470252
    [Google Scholar]
  96. MusyuniP. BaiJ. SheikhA. Precision medicine: Ray of hope in overcoming cancer multidrug resistance.Drug Resist. Updat.20226510088910.1016/j.drup.2022.100889 36403342
    [Google Scholar]
  97. GowdaB.H.J. AhmedM.G. ChinnamS. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery.J. Drug Deliv. Sci. Technol.20227110330510.1016/j.jddst.2022.103305
    [Google Scholar]
  98. FouadO.A. KhderA.E.R.S. DaiQ. El-ShallM.S. Structural and catalytic properties of ZnO and Al2O3 nanostructures loaded with metal nanoparticles.J. Nanopart. Res.201113127075708310.1007/s11051‑011‑0620‑8
    [Google Scholar]
  99. AhmedS.A. Nur HasanM. BagchiD. Nano-MOFs as targeted drug delivery agents to combat antibiotic-resistant bacterial infections. In: R Soc Open Sci. The Royal Society publishing2020712
    [Google Scholar]
  100. ShiY. van der MeelR. ChenX. LammersT. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.Theranostics202010177921792410.7150/thno.49577 32685029
    [Google Scholar]
  101. WuJ. The Enhanced Permeability and Retention (EPR) effect: The significance of the concept and methods to enhance its application.J. Pers. Med.202111877110.3390/jpm11080771 34442415
    [Google Scholar]
  102. LiS.D. HuangL. Nanoparticles evading the reticuloendothelial system: Role of the supported bilayer.Biochim. Biophys. Acta Biomembr.20091788102259226610.1016/j.bbamem.2009.06.022 19595666
    [Google Scholar]
  103. MarianecciC. Di MarzioL. RinaldiF. Niosomes from 80s to present: The state of the art.Adv. Colloid Interface Sci.201420518720610.1016/j.cis.2013.11.018 24369107
    [Google Scholar]
  104. EstanqueiroM. AmaralM.H. ConceiçãoJ. Sousa LoboJ.M. Nanotechnological carriers for cancer chemotherapy: The state of the art.Colloids Surf. B Biointerfaces201512663164810.1016/j.colsurfb.2014.12.041 25591851
    [Google Scholar]
  105. PradhanM. SinghD. SinghM.R. Novel colloidal carriers for psoriasis: Current issues, mechanistic insight and novel delivery approaches.J. Control. Release2013170338039510.1016/j.jconrel.2013.05.020 23770117
    [Google Scholar]
  106. GrimaldiN. AndradeF. SegoviaN. Lipid-based nanovesicles for nanomedicine.Chem. Soc. Rev.201645236520654510.1039/C6CS00409A 27722570
    [Google Scholar]
  107. SalaM. DiabR. ElaissariA. FessiH. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications.Int. J. Pharm.20185351-211710.1016/j.ijpharm.2017.10.046 29111097
    [Google Scholar]
  108. BellefroidC. LechanteurA. EvrardB. PielG. Lipid gene nanocarriers for the treatment of skin diseases: Current state-of-the-art.Eur. J. Pharm. Biopharm.20191379511110.1016/j.ejpb.2019.02.012 30794856
    [Google Scholar]
  109. BunjesH. Structural properties of solid lipid-based colloidal drug delivery systems.Curr. Opin. Colloid Interface Sci.201116405411
    [Google Scholar]
  110. Borgheti-CardosoL.N. KooijmansS.A.A. FensM.H.A.M. In situ gelling liquid crystalline system as local siRNA delivery system.Mol. Pharm.20171451681169010.1021/acs.molpharmaceut.6b01141 28291360
    [Google Scholar]
  111. PracaF.G. PetrilliR. EloyJ.O. LeeR.J. Lopes Badra BentleyM.V. Liquid-crystalline nanodispersions containing monoolein for photodynamic therapy of skin diseases: A mini-review.Curr. Nanosci.20171351810.2174/1573413713666170529115831
    [Google Scholar]
  112. RossettiF.C. DepieriL.V. PraçaF.G. Optimization of protoporphyrin IX skin delivery for topical photodynamic therapy: nanodispersions of liquid-crystalline phase as nanocarriers.Eur. J. Pharm. Sci.20168399108
    [Google Scholar]
  113. EkladiousI. ColsonY.L. GrinstaffM.W. Polymer–drug conjugate therapeutics: Advances, insights and prospects.Nat. Rev. Drug Discov.201918427329410.1038/s41573‑018‑0005‑0 30542076
    [Google Scholar]
  114. ElzoghbyA.O. SamyW.M. ElgindyN.A. Protein-based nanocarriers as promising drug and gene delivery systems.J. Control. Release20121611384910.1016/j.jconrel.2012.04.036 22564368
    [Google Scholar]
  115. MatsumuraY. HamaguchiT. UraT. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin.Br. J. Cancer200491101775178110.1038/sj.bjc.6602204 15477860
    [Google Scholar]
  116. CabralH. KataokaK. Progress of drug-loaded polymeric micelles into clinical studies.J. Control. Release2014190465476
    [Google Scholar]
  117. ParkJ.H. LeeS. KimJ.H. ParkK. KimK. KwonI.C. Polymeric nanomedicine for cancer therapy.Prog. Polym. Sci.200833113137
    [Google Scholar]
  118. KimT.Y. KimD.W. ChungJ.Y. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies.Clin. Cancer Res.200410113708371610.1158/1078‑0432.CCR‑03‑0655 15173077
    [Google Scholar]
  119. MalafayaP.B. SilvaG.A. ReisR.L. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications.Adv. Drug Deliv. Rev.2007594-520723310.1016/j.addr.2007.03.012 17482309
    [Google Scholar]
  120. van OppenL.M.P.E. PilleJ. StuutC. Octa-arginine boosts the penetration of elastin-like polypeptide nanoparticles in 3D cancer models.Eur. J. Pharm. Biopharm.201913717518410.1016/j.ejpb.2019.02.010 30776413
    [Google Scholar]
  121. PilleJ. van LithS.A.M. van HestJ.C.M. LeendersW.P.J. Self-assembling VHHelastin-like peptides for photodynamic nanomedicine.Biomacromolecules20171841302131010.1021/acs.biomac.7b00064 28269985
    [Google Scholar]
  122. DuclairoirC. NakacheE. MarchaisH. OrecchioniA.M. Formation of gliadin nanoparticles: Influence of the solubility parameter of the protein solvent.Colloid Polym. Sci.1998276432132710.1007/s003960050246
    [Google Scholar]
  123. LuW. SenapatiD. WangS. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes.Chem. Phys. Lett.20104879296
    [Google Scholar]
  124. DasP. ColomboM. ProsperiD. Recent advances in magnetic fluid hyperthermia for cancer therapy.Colloids Surf. B Biointerfaces2019174425510.1016/j.colsurfb.2018.10.051 30428431
    [Google Scholar]
  125. YangX. YangM. PangB. VaraM. XiaY. Gold nanomaterials at work in biomedicine.Chem. Rev.20151151041010488
    [Google Scholar]
  126. ChenW. ZhangS. YuY. ZhangH. HeQ. Structural-engineering rationales of gold nanoparticles for cancer theranostics.Adv. Mater.201628398567858510.1002/adma.201602080 27461909
    [Google Scholar]
  127. YounisMR WangC AnR Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nano agents.ACS Nano2019132acsnano.8b09552.10.1021/acsnano.8b09552 30730695
    [Google Scholar]
  128. TanC. CaoX. WuX-J. Recent advances in ultrathin two-dimensional nanomaterials.Chem. Rev.201711762256331
    [Google Scholar]
  129. LarsenG.K. FarrW. Hunyadi MurphS.E. Multifunctional Fe2O3-Au nanoparticles with different shapes: Enhanced catalysis, photothermal effects, and magnetic recyclability.J. Phys. Chem. C201612028151621517210.1021/acs.jpcc.6b03733
    [Google Scholar]
  130. HuangN. WangH. ZhaoJ. LuiH. KorbelikM. ZengH. Single‐wall carbon nanotubes assisted photothermal cancer therapy: Animal study with a murine model of squamous cell carcinoma.Lasers Surg. Med.201042979880810.1002/lsm.20968 20949599
    [Google Scholar]
  131. ZhouF. WuS. WuB. ChenW.R. XingD. Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy.Small20117192727273510.1002/smll.201100669 21861293
    [Google Scholar]
  132. BiancoA. KostarelosK. PratoM. Applications of carbon nanotubes in drug delivery.Curr. Opin. Chem. Biol.20059674679
    [Google Scholar]
  133. SunM. PengD. HaoH. Thermally triggered in situ assembly of gold nanoparticles for cancer multimodal imaging and photothermal therapy.ACS Appl. Mater. Interfaces2017912104531046010.1021/acsami.6b16408 28271705
    [Google Scholar]
  134. BirdD. RavindraN.M. Transdermal drug delivery and patches: An overview.Med. Devices Sens.202036e1006910.1002/mds3.10069
    [Google Scholar]
  135. SongX. JiangY. ZhangW. Transcutaneous tumor vaccination combined with anti-programmed death-1 monoclonal antibody treatment produces a synergistic antitumor effect.Acta Biomater.202214024726010.1016/j.actbio.2021.11.033 34843953
    [Google Scholar]
  136. EkambaramR. SaravananS. SelvamN. DharmalingamS. Statistical optimization of novel acemannan polysaccharides assisted TiO2 nanorods based nanofibers for skin cancer application.Carbohydrate Polymer Technologies and Applications2021210004810.1016/j.carpta.2021.100048
    [Google Scholar]
  137. ZhiD. YangT. ZhangT. YangM. ZhangS. DonnellyR.F. Microneedles for gene and drug delivery in skin cancer therapy.J. Control. Release202133515817710.1016/j.jconrel.2021.05.009 33984344
    [Google Scholar]
  138. LiX. ZhaoZ. ZhangM. LingG. ZhangP. Research progress of microneedles in the treatment of melanoma.J. Control. Release202234863164710.1016/j.jconrel.2022.06.021 35718209
    [Google Scholar]
  139. BuckH.W. Imiquimod (Aldara cream).Infect. Dis. Obstet. Gynecol.1998624951 9702584
    [Google Scholar]
  140. First drug approved by the FDA for advanced cutaneous squamouscell carcinoma.2019Available from : https://www.theoncologypharmacist.com/2019-fourth-annual-oncology-guide-to-new-fda-approvals/17774-libtayo-cemiplimab-rwlc-a-pd-1-inhibitor-first-drug-approved-by-the-fda-for-patients-with-advanced-cutaneous-squamous-cell-carcinoma
  141. GuptaA.K. The management of actinic keratoses in the United States with topical fluorouracil: a pharmacoeconomic evaluation.Cutis20027023036 12353678
    [Google Scholar]
  142. GouldS.E. LowJ.A. MarstersJ.C.Jr Discovery and preclinical development of vismodegib.Expert Opin. Drug Discov.20149896998410.1517/17460441.2014.920816 24857041
    [Google Scholar]
  143. KwokG. YauT.C.C. ChiuJ.W. TseE. KwongY.L. Pembrolizumab.Hum. Vaccin. Immunother.201612112777278910.1080/21645515.2016.1199310 27398650
    [Google Scholar]
  144. AmariaR.N. ReubenA. CooperZ.A. WargoJ.A. Update on use of aldesleukin for treatment of high-risk metastatic melanoma.ImmunoTargets Ther.201547989 27471714
    [Google Scholar]
  145. Rodriguez-VidaA. BellmuntJ. Avelumab for the treatment of urothelial cancer.Expert Rev. Anticancer Ther.201818542142910.1080/14737140.2018.1448271 29540084
    [Google Scholar]
  146. ThomasJ ThomsonA E GrunhardS BishnoiR. Pembrolizumab-Induced Polymyalgia RheumaticaAvailable from : https://scholarlycommons.hcahealthcare.com/cgi/viewcontent.cgi?article=1084&context=southatlantic2023
  147. ThorntonJ. ChhabraG. SinghC.K. Guzmán-PérezG. ShirleyC.A. AhmadN. Mechanisms of immunotherapy resistance in cutaneous melanoma: Recognizing a shapeshifter.Front. Oncol.20221288087610.3389/fonc.2022.880876 35515106
    [Google Scholar]
  148. JainS. SongR. XieJ. Sonidegib: Mechanism of action, pharmacology, and clinical utility for advanced basal cell carcinomas.OncoTargets Ther.2017101645165310.2147/OTT.S130910 28352196
    [Google Scholar]
  149. McGettiganS. Dabrafenib: A new therapy for use in BRAF-mutated metastatic melanoma.J. Adv. Pract. Oncol.201453211215 25089220
    [Google Scholar]
  150. RissmannR. HesselM.H.M. CohenA.F. Vemurafenib/dabrafenib and trametinib.Br. J. Clin. Pharmacol.201580476576710.1111/bcp.12651 25847075
    [Google Scholar]
  151. RenB. KwahM.X.Y. LiuC. Resveratrol for cancer therapy: Challenges and future perspectives.Cancer Lett.2021515637210.1016/j.canlet.2021.05.001 34052324
    [Google Scholar]
  152. MarinheiroD. FerreiraB. OskoeiP. OliveiraH. Daniel-da-SilvaA. Encapsulation and enhanced release of resveratrol from mesoporous silica nanoparticles for melanoma therapy.Materials2021146138210.3390/ma14061382 33809119
    [Google Scholar]
  153. ChauhanP. Skin cancer and role of herbal medicines.Asian J. Pharm. Pharmacol.20184440441210.31024/ajpp.2018.4.4.5
    [Google Scholar]
  154. OwenR.W. HaubnerR. WürteleG. HullW.E. SpiegelhalderB. BartschH. Olives and olive oil in cancer prevention.Eur. J. Cancer Prev.200413431932610.1097/01.cej.0000130221.19480.7e 15554560
    [Google Scholar]
  155. KapadiaG.J. AzuineM.A. TokudaH. Chemopreventive effect of resveratrol, sesamol, sesame oil and sunflower oil in the epstein–barr virus early antigen activation assay and the mouse skin two-stage carcinogenesis.Pharmacol. Res.200245649950510.1006/phrs.2002.0992 12162952
    [Google Scholar]
  156. MataI.R. MataS.R. MenezesR.C.R. FaccioliL.S. BandeiraK.K. BoscoS.M.D. Benefits of turmeric supplementation for skin health in chronic diseases: a systematic review.Crit. Rev. Food Sci. Nutr.202161203421343510.1080/10408398.2020.1798353 32713186
    [Google Scholar]
  157. MangalathillamS. RejinoldN.S. NairA. LakshmananV.K. NairS.V. JayakumarR. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route.Nanoscale20124123925010.1039/C1NR11271F 22080352
    [Google Scholar]
  158. TadićV.M. NešićI. MartinovićM. Old plant, new possibilities: Wild bilberry (vaccinium myrtillus l., ericaceae) in topical skin preparation.Antioxidants202110346510.3390/antiox10030465 33809607
    [Google Scholar]
  159. EliR. FascianoJ.A. An adjunctive preventive treatment for cancer: Ultraviolet light and ginkgo biloba, together with other antioxidants, are a safe and powerful, but largely ignored, treatment option for the prevention of cancer.Med. Hypotheses20066661152115610.1016/j.mehy.2005.12.025 16483725
    [Google Scholar]
  160. MustaphaN. Mokdad-BzéouichI. MaatoukM. GhediraK. HennebelleT. Chekir-GhediraL. Antitumoral, antioxidant, and antimelanogenesis potencies of Hawthorn, a potential natural agent in the treatment of melanoma.Melanoma Res.201626321122210.1097/CMR.0000000000000240 26795272
    [Google Scholar]
  161. HarlevE. NevoE. LanskyE.P. LanskyS. BishayeeA. Anticancer attributes of desert plants.Anticancer Drugs201223325527110.1097/CAD.0b013e32834f968c 22217921
    [Google Scholar]
  162. TehS.S. EeG.C.L. MahS.H. In vitro cytotoxic, antioxidant, and antimicrobial activities of Mesua beccariana (Baill.) Kosterm., Mesua ferrea Linn., and Mesua congestiflora extracts.BioMed Res. Int.201320131910.1155/2013/517072 24089682
    [Google Scholar]
  163. FoucheG. CraggG.M. PillayP. KolesnikovaN. MaharajV.J. SenabeJ. In vitro anticancer screening of South African plants.J. Ethnopharmacol.2008119345546110.1016/j.jep.2008.07.005 18678239
    [Google Scholar]
  164. KrólS.K. KiełbusM. Rivero-MüllerA. StepulakA. Comprehensive review on betulin as a potent anticancer agent.BioMed Res. Int.2015201511110.1155/2015/584189 25866796
    [Google Scholar]
  165. BiswasR. MandalS.K. DuttaS. BhattacharyyaS.S. BoujedainiN. Thujone-rich fraction of thuja occidentalis demonstrates major anticancer potentials: Evidence from in vitro studies on A375 cells.Evid. Based Complement. Alternat. Med.20112011568148
    [Google Scholar]
  166. DattaA.K. SahaA. BhattacharyaA. MandalA. PaulR. SenGuptaS. Black cumin (Nigella sativa L.) A review.J. Plant Dev. Sci.201241143
    [Google Scholar]
  167. WangJ.J. SandersonB.J.S. ZhangW. Cytotoxic effect of xanthones from pericarp of the tropical fruit mangosteen (Garcinia mangostana Linn.) on human melanoma cells.Food Chem. Toxicol.20114992385239110.1016/j.fct.2011.06.051 21723363
    [Google Scholar]
  168. NigamN. BhuiK. PrasadS. GeorgeJ. ShuklaY. [6]-Gingerol induces reactive oxygen species regulated mitochondrial cell death pathway in human epidermoid carcinoma A431 cells.Chem. Biol. Interact.20091811778410.1016/j.cbi.2009.05.012 19481070
    [Google Scholar]
  169. KleinpenningM.M. WolberinkE.W. SmitsT. Fluorescence diagnosis in actinic keratosis and squamous cell carcinoma.Photodermatol. Photoimmunol. Photomed.201026629730210.1111/j.1600‑0781.2010.00546.x 21091787
    [Google Scholar]
  170. DonnellyR.F. McCarronP.A. WoolfsonA.D. Drug delivery of aminolevulinic acid from topical formulations intended for photodynamic therapy.Photochem. Photobiol.200581475076710.1562/2004‑08‑23‑IR‑283R1.1 15790300
    [Google Scholar]
  171. KleinpenningM.M. SmitsT. EwaldsE. Van ErpP.E.J. Van De KerkhofP.C.M. GerritsenM.J.P. Heterogeneity of fluorescence in psoriasis after application of 5-aminolaevulinic acid: An immunohistochemical study.Br. J. Dermatol.2006155353954510.1111/j.1365‑2133.2006.07341.x 16911278
    [Google Scholar]
  172. SmitsT. KleinpenningM.M. BlokxW.A.M. van de KerkhofP.C.M. van ErpP.E.J. GerritsenM.J.P. Fluorescence diagnosis in keratinocytic intraepidermal neoplasias.J. Am. Acad. Dermatol.200757582483110.1016/j.jaad.2007.06.031 17669544
    [Google Scholar]
  173. BensonH.A.E. WatkinsonA.C. Transdermal and topical drug delivery: Principles and practice.Hoboken, N.J.Wiley2012
    [Google Scholar]
  174. KleeszP. DarlenskiR. FluhrJ.W. Full-body skin mapping for six biophysical parameters: Baseline values at 16 anatomical sites in 125 human subjects.Skin Pharmacol. Physiol.2012251253310.1159/000330721 21912200
    [Google Scholar]
  175. KrishnanV. MitragotriS. Nanoparticles for topical drug delivery: Potential for skin cancer treatment.Adv. Drug Deliv. Rev.20201538710810.1016/j.addr.2020.05.011 32497707
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385282163240220072251
Loading
/content/journals/pnt/10.2174/0122117385282163240220072251
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test