Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Cancer nanomedicine has the potential to take advantage of the multifunctionality and diverse biological activity of nanostructures based on biomolecules. Novel drug delivery vehicles can be designed by programming the supramolecular features of biomolecules to achieve multiple therapeutic goals at once, including efficient transport and targeted drug administration. Proteins, peptides, nucleic acids, and polysaccharides can all be engineered into multipurpose nanomedicines. Even while numerous cancer medications reduce mortality, they are still insufficient. Early cancer cell detection and high-specificity therapeutic administration optimise treatment and prevent toxicity. Nanotechnology is improving cancer diagnosis and treatment due to increased systemic toxicity and refractoriness with current methods. Nanotechnology-based immunotherapeutic drugs have reduced cancer cell invasiveness while protecting healthy cells in several cancer types. Carbon nanotubes, polymeric micelles, and liposomes improve cancer medication pharmacokinetics and pharmacodynamics. Nanomedicines' use in patient care and promising nanotechnology-based cancer interventions have been covered in this article. Nanomaterials used in treating cancer have been discussed. Additionally, nanomaterial obstacles that hinder their applicability and clinical translation in certain cancer types are addressed.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385297455240508055620
2024-05-20
2025-09-03
Loading full text...

Full text loading...

References

  1. AnandU. DeyA. ChandelA.K.S. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  2. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  3. IgarashiH. FukushiM. NagoN. Oxygen use and survival in patients with advanced cancer and low oxygen saturation in home care: A preliminary retrospective cohort study.BMC Palliat. Care2020191310.1186/s12904‑019‑0511‑9 31900147
    [Google Scholar]
  4. Mosleh-ShiraziS. AbbasiM. MoaddeliM. Nanotechnology advances in the detection and treatment of cancer: An overview.Nanotheranostics20226440042310.7150/ntno.74613 36051855
    [Google Scholar]
  5. KempJ.A. KwonY.J. Cancer nanotechnology: Current status and perspectives.Nano Converg.2021813410.1186/s40580‑021‑00282‑7 34727233
    [Google Scholar]
  6. KhanY. SadiaH. Ali ShahS.Z. Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review.Catalysts20221211138610.3390/catal12111386
    [Google Scholar]
  7. DessaleM. MengistuG. MengistH.M. Nanotechnology: A promising approach for cancer diagnosis, therapeutics and theragnosis.Int. J. Nanomedicine2022173735374910.2147/IJN.S378074 36051353
    [Google Scholar]
  8. ChengZ. LiM. DeyR. ChenY. Nanomaterials for cancer therapy: Current progress and perspectives.J. Hematol. Oncol.20211418510.1186/s13045‑021‑01096‑0 34059100
    [Google Scholar]
  9. TranS. DegiovanniP.J. PielB. RaiP.J.C. MedicineT. Cancer nanomedicine: A review of recent success in drug delivery.Clin. Transl. Med.2017614410.1186/s40169‑017‑0175‑0
    [Google Scholar]
  10. HuangD. WuK. ZhangY. NiZ. ZhuX. ZhuC. Recent advances in tissue plasminogen activator-based nanothrombolysis for ischemic stroke.Rev. Adv. Mater. Sci.20195815917010.1515/rams‑2019‑0024
    [Google Scholar]
  11. HuJ. HuangS. ZhuL. Tissue plasminogen activator-porous magnetic microrods for targeted thrombolytic therapy after ischemic stroke.ACS Appl. Mater. Interfaces20181039329883299710.1021/acsami.8b09423 30192506
    [Google Scholar]
  12. ChaturvediV.K. SinghA. SinghV.K. SinghM.P. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy.Curr. Drug Metab.201920641642910.2174/1389200219666180918111528 30227814
    [Google Scholar]
  13. YeF. ZhaoY. El-SayedR. MuhammedM. HassanM.J.N.T. Advances in nanotechnology for cancer biomarkers.Nano Today20181810312310.1016/j.nantod.2017.12.008
    [Google Scholar]
  14. BharaliD.J. MousaS.A. Emerging nanomedicines for early cancer detection and improved treatment: Current perspective and future promise.Pharmacol. Ther.2010128232433510.1016/j.pharmthera.2010.07.007 20705093
    [Google Scholar]
  15. LiuK. JiangX. HunzikerP. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy.Nanoscale2016836160911615610.1039/C6NR04489A 27714108
    [Google Scholar]
  16. ThambiT. PhanV.H.G. LeeD.S. Stimuli-sensitive injectable hydrogels based on polysaccharides and their biomedical applications.Macromol. Rapid Commun.201637231881189610.1002/marc.201600371 27753168
    [Google Scholar]
  17. BhairamM. PrasadJ. VermaK. JainP. GidwaniB. Formulation of transdermal patch of Losartan Potassium & Glipizide for the treatment of hypertension & diabetes.Mater. Today Proc.202383596810.1016/j.matpr.2023.01.147
    [Google Scholar]
  18. HuH. YuanW. LiuF.S. ChengG. XuF.J. MaJ. Redox-responsive polycation-functionalized cotton cellulose nanocrystals for effective cancer treatment.ACS Appl. Mater. Interfaces20157168942895110.1021/acsami.5b02432 25845425
    [Google Scholar]
  19. SwierczewskaM HanHS KimK ParkJH LeeS Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv Drug Deliv Rev201699(Pt A)708410.1016/j.addr.2015.11.015 26639578
    [Google Scholar]
  20. SeemanN.C. Nucleic acid junctions and lattices.J. Theor. Biol.198299223724710.1016/0022‑5193(82)90002‑9 6188926
    [Google Scholar]
  21. GuoP. ZhangC. ChenC. GarverK. TrottierM. Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation.Mol. Cell19982114915510.1016/S1097‑2765(00)80124‑0 9702202
    [Google Scholar]
  22. JainP. SatapathyT. PandeyR.K. Acaricidal activity and biochemical analysis of Citrus limetta seed oil for controlling Ixodid Tick Rhipicephalus microplus infesting cattle.Syst. Appl. Acarol.202152610.11158/saa.26.7.13
    [Google Scholar]
  23. GuoP. The emerging field of RNA nanotechnology.Nat. Nanotechnol.201051283384210.1038/nnano.2010.231 21102465
    [Google Scholar]
  24. XuC. HaqueF. JasinskiD.L. BinzelD.W. ShuD. GuoP. Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy.Cancer Lett.2018414577010.1016/j.canlet.2017.09.043 28987384
    [Google Scholar]
  25. JasinskiD. HaqueF. BinzelD.W. GuoP. Advancement of the emerging field of RNA nanotechnology.ACS Nano20171121142116410.1021/acsnano.6b05737 28045501
    [Google Scholar]
  26. WattsJ. DeleaveyG. DamhaM. Chemically modified siRNA: tools and applications.Drug Discov. Today20081319-2084285510.1016/j.drudis.2008.05.007 18614389
    [Google Scholar]
  27. PiaoX. XiaX. MaoJ. BongD. Peptide ligation and RNA cleavage via an abiotic template interface.J. Am. Chem. Soc.2015137113751375410.1021/jacs.5b00236 25747470
    [Google Scholar]
  28. WinfreeE. LiuF. WenzlerL.A. SeemanN.C. Design and self-assembly of two-dimensional DNA crystals.Nature1998394669353954410.1038/28998 9707114
    [Google Scholar]
  29. RothemundP.W.K. Folding DNA to create nanoscale shapes and patterns.Nature2006440708229730210.1038/nature04586 16541064
    [Google Scholar]
  30. WeiB. DaiM. YinP. Complex shapes self-assembled from single-stranded DNA tiles.Nature2012485740062362610.1038/nature11075 22660323
    [Google Scholar]
  31. AliM.M. LiF. ZhangZ. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine.Chem. Soc. Rev.201443103324334110.1039/c3cs60439j 24643375
    [Google Scholar]
  32. WangC. SunW. WrightG. WangA.Z. GuZ. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody.Adv. Mater.201628408912892010.1002/adma.201506312 27558441
    [Google Scholar]
  33. RamezaniH. DietzH. Building machines with DNA molecules.Nat. Rev. Genet.202021152610.1038/s41576‑019‑0175‑6 31636414
    [Google Scholar]
  34. WangP. Hyeon KoS. TianC. HaoC. MaoC. RNA–DNA hybrid origami: folding of a long RNA single strand into complex nanostructures using short DNA helper strands.Chem. Commun.201349485462546410.1039/c3cc41707g 23660602
    [Google Scholar]
  35. LeeH. Lytton-JeanA.K.R. ChenY. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery.Nat. Nanotechnol.20127638939310.1038/nnano.2012.73 22659608
    [Google Scholar]
  36. ZhangQ. JiangQ. LiN. DNA origami as an in vivo drug delivery vehicle for cancer therapy.ACS Nano2014876633664310.1021/nn502058j 24963790
    [Google Scholar]
  37. YangY. ZhuW. FengL. G-quadruplex-based nanoscale coordination polymers to modulate tumor hypoxia and achieve nuclear-targeted drug delivery for enhanced photodynamic therapy.Nano Lett.201818116867687510.1021/acs.nanolett.8b02732 30303384
    [Google Scholar]
  38. VeetilA.T. ChakrabortyK. XiaoK. MinterM.R. SisodiaS.S. KrishnanY. Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules.Nat. Nanotechnol.201712121183118910.1038/nnano.2017.159 28825714
    [Google Scholar]
  39. HabibiN. KamalyN. MemicA. ShafieeH. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery.Nano Today2016111416010.1016/j.nantod.2016.02.004 27103939
    [Google Scholar]
  40. Sudhir DhoteN. Dineshbhai PatelR. KuwarU. AgrawalM. AlexanderA. JainP. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting.Curr. Cancer Drug Targets202424122
    [Google Scholar]
  41. QinH. DingY. MujeebA. ZhaoY. NieG. Tumor microenvironment targeting and responsive peptide-based nanoformulations for improved tumor therapy.Mol. Pharmacol.201792321923110.1124/mol.116.108084 28420679
    [Google Scholar]
  42. EskandariS. GuerinT. TothI. StephensonR.J. Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering.Adv. Drug Deliv. Rev.2017110-11116918710.1016/j.addr.2016.06.013 27356149
    [Google Scholar]
  43. QiG.B. GaoY.J. WangL. WangH. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy.Adv. Mater.20183022170344410.1002/adma.201703444 29460400
    [Google Scholar]
  44. RathoreP. RaoS.P. RoyA. SatapathyT. SinghV. JainP. Hepatoprotective activity of isolated herbal compounds. Research.J. Pharm. Technol.201472
    [Google Scholar]
  45. BeesleyJ.L. BaumH.E. HodgsonL.R. VerkadeP. BantingG.S. WoolfsonD.N. Modifying self-assembled peptide cages to control internalization into mammalian cells.Nano Lett.20181895933593710.1021/acs.nanolett.8b02633 30084257
    [Google Scholar]
  46. JainP. SatapathyT. PandeyR.K. A mini review of methods to control ticks population infesting cattle in Chhattisgarh with special emphasis on herbal acaricides.Indian J. Nat. Prod. Resour.20201112217223
    [Google Scholar]
  47. UedaM. SeoS. NairB.G. End-sealed high aspect ratio hollow nanotubes encapsulating an anticancer drug: torpedo-shaped peptidic nanocapsules.ACS Nano201913130531210.1021/acsnano.8b06189 30606006
    [Google Scholar]
  48. MolinoN.M. WangS.W. Caged protein nanoparticles for drug delivery.Curr. Opin. Biotechnol.201428758210.1016/j.copbio.2013.12.007 24832078
    [Google Scholar]
  49. NeekM. KimT.I. WangS.W. Protein-based nanoparticles in cancer vaccine development.Nanomedicine201915116417410.1016/j.nano.2018.09.004 30291897
    [Google Scholar]
  50. ZhuangJ. HolayM. ParkJ.H. FangR.H. ZhangJ. ZhangL. Nanoparticle delivery of immunostimulatory agents for cancer immunotherapy.Theranostics20199257826784810.7150/thno.37216 31695803
    [Google Scholar]
  51. EdwardsonT.G.W. HilvertD. Virus-inspired function in engineered protein cages.J. Am. Chem. Soc.2019141249432944310.1021/jacs.9b03705 31117660
    [Google Scholar]
  52. CannonK.A. OchoaJ.M. YeatesT.O. High-symmetry protein assemblies: patterns and emerging applications.Curr. Opin. Struct. Biol.201955778410.1016/j.sbi.2019.03.008 31005680
    [Google Scholar]
  53. JainA. SinghS.K. AryaS.K. KunduS.C. KapoorS. Protein nanoparticles: promising platforms for drug delivery applications.ACS Biomater. Sci. Eng.20184123939396110.1021/acsbiomaterials.8b01098 33418796
    [Google Scholar]
  54. YassineH.M. BoyingtonJ.C. McTamneyP.M. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection.Nat. Med.20152191065107010.1038/nm.3927 26301691
    [Google Scholar]
  55. KuanS.L. BergaminiF.R.G. WeilT. Functional protein nanostructures: A chemical toolbox.Chem. Soc. Rev.201847249069910510.1039/C8CS00590G 30452046
    [Google Scholar]
  56. HeJ. FanK. YanX. Ferritin drug carrier (FDC) for tumor targeting therapy.J. Control. Release2019311-31228830010.1016/j.jconrel.2019.09.002 31494184
    [Google Scholar]
  57. KarimiM. BahramiS. RavariS.B. Albumin nanostructures as advanced drug delivery systems.Expert Opin. Drug Deliv.201613111609162310.1080/17425247.2016.1193149 27216915
    [Google Scholar]
  58. HeZ. RanganathanN. LiP. Evaluating nanomedicine with microfluidics.Nanotechnology2018294949200110.1088/1361‑6528/aae18a 30215611
    [Google Scholar]
  59. CarvalhoM.R. BarataD. TeixeiraL.M. Colorectal tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine.Sci. Adv.201955eaaw131710.1126/sciadv.aaw1317 31131324
    [Google Scholar]
  60. JainP. SatapathyT. PandeyR.K. Acaricidal activity and clinical safety of arecoline hydrobromide on calves infested with cattle tick Rhipicephalus microplus (Acari: Ixodidae).Vet. Parasitol.2021298May10949010.1016/j.vetpar.2021.109490 34271319
    [Google Scholar]
  61. DanaJ. AgnusV. OuhmichF. GallixB. Multimodality imaging and artificial intelligence for tumor characterization: Current status and future perspective.Semin. Nucl. Med.202050654154810.1053/j.semnuclmed.2020.07.003 33059823
    [Google Scholar]
  62. SunR. LimkinE.J. VakalopoulouM. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: An imaging biomarker, retrospective multicohort study.Lancet Oncol.20181991180119110.1016/S1470‑2045(18)30413‑3 30120041
    [Google Scholar]
  63. AdirO. PoleyM. ChenG. Integrating artificial intelligence and nanotechnology for precision cancer medicine.Adv. Mater.20203213190198910.1002/adma.201901989 31286573
    [Google Scholar]
  64. KimD. JeongY.Y. JonS. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer.ACS Nano2010473689369610.1021/nn901877h 20550178
    [Google Scholar]
  65. AkhterS. AhmadI. AhmadM.Z. Nanomedicines as cancer therapeutics: Current status.Curr. Cancer Drug Targets201313436237810.2174/1568009611313040002 23517593
    [Google Scholar]
  66. WangJ. SuiM. FanW. Nanoparticles for tumor targeted therapies and their pharmacokinetics.Curr. Drug Metab.201011212914110.2174/138920010791110827 20359289
    [Google Scholar]
  67. PopescuR.C. FufăM.O. GrumezescuA.M. Metal-based nanosystems for diagnosis. Romanian journal of morphology and embryology =.Rev. Roum. Morphol. Embryol.201556635649
    [Google Scholar]
  68. SinghR. Nanotechnology based therapeutic application in cancer diagnosis and therapy. 3 Biotech20199415
  69. WanX. SongY. SongN. The preliminary study of immune superparamagnetic iron oxide nanoparticles for the detection of lung cancer in magnetic resonance imaging.Carbohydr. Res.2016419334010.1016/j.carres.2015.11.003 26649917
    [Google Scholar]
  70. SherryA.D. WoodsM. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging.Annu. Rev. Biomed. Eng.200810139141110.1146/annurev.bioeng.9.060906.151929 18647117
    [Google Scholar]
  71. KimH.S. OhS.Y. JooH.J. SonK.R. SongI.C. MoonW.K. The effects of clinically used MRI contrast agents on the biological properties of human mesenchymal stem cells.NMR Biomed.201023551452210.1002/nbm.1487 20175151
    [Google Scholar]
  72. JafariA. SaloutiM. ShayestehS.F. Synthesis and characterization of Bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI.Nanotechnology201526707510110.1088/0957‑4484/26/7/075101 25642737
    [Google Scholar]
  73. StockeN.A. MeenachS.A. ArnoldS.M. MansourH.M. HiltJ.Z. Formulation and characterization of inhalable magnetic nanocomposite microparticles (MnMs) for targeted pulmonary delivery via spray drying.Int. J. Pharm.2015479232032810.1016/j.ijpharm.2014.12.050 25542988
    [Google Scholar]
  74. GarrigueP. TangJ. DingL. Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors.Proc. Natl. Acad. Sci.201811545114541145910.1073/pnas.1812938115 30348798
    [Google Scholar]
  75. JiT. ZhaoY. WangJ. ZhengX. TianY. ZhaoY. Tumor fibroblast specific activation of a hybrid ferritin nanocage-based optical probe for tumor microenvironment imaging.Small2013924272431
    [Google Scholar]
  76. ParungoC.P. OhnishiS. De GrandA.M. in vivo optical imaging of pleural space drainage to lymph nodes of prognostic significance.Ann. Surg. Oncol.200411121085109210.1245/ASO.2004.03.054 15545502
    [Google Scholar]
  77. DubertretB. SkouridesP. NorrisD.J. NoireauxV. BrivanlouA.H. LibchaberA. in vivo imaging of quantum dots encapsulated in phospholipid micelles.Science200229855991759176210.1126/science.1077194 12459582
    [Google Scholar]
  78. ZhangY. YangH. AnX. WangZ. YangX. YuM. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.Proc. Natl. Acad. Sci. United States of America20201001354913554
    [Google Scholar]
  79. HirschL.R. StaffordR.J. BanksonJ.A. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.Proc. Natl. Acad. Sci.200310023135491355410.1073/pnas.2232479100 14597719
    [Google Scholar]
  80. LooC. LinA. HirschL. Nanoshell-enabled photonics-based imaging and therapy of cancer.Technol. Cancer Res. Treat.200431334010.1177/153303460400300104 14750891
    [Google Scholar]
  81. NunesT. PonsT. HouX. Pulsed-laser irradiation of multifunctional gold nanoshells to overcome trastuzumab resistance in HER2-overexpressing breast cancer.J. Exp. Clin. Cancer Res.201938130610.1186/s13046‑019‑1305‑x 31299997
    [Google Scholar]
  82. FuN. HuY. ShiS. Au nanoparticles on two-dimensional MoS 2 nanosheets as a photoanode for efficient photoelectrochemical miRNA detection.Analyst201814371705171210.1039/C8AN00105G 29517787
    [Google Scholar]
  83. FuF. LiL. LuoQ. Selective and sensitive detection of lysozyme based on plasmon resonance light-scattering of hydrolyzed peptidoglycan stabilized-gold nanoparticles.Analyst201814351133114010.1039/C7AN01570D 29392248
    [Google Scholar]
  84. ShrivasK. NirmalkarN. ThakurS.S. DebM.K. ShindeS.S. ShankarR. Sucrose capped gold nanoparticles as a plasmonic chemical sensor based on non-covalent interactions: Application for selective detection of vitamins B1 and B6 in brown and white rice food samples.Food Chem.2018250142110.1016/j.foodchem.2018.01.002 29412903
    [Google Scholar]
  85. DasP.M. BastR.C.Jr Early detection of ovarian cancer. Biomark Med. 2008; 2: 291-303. 33. Kuk C, Kulasingam V, Gunawardana CG, Smith CR, Batruch I, Diamandis EP. Mining the ovarian cancer ascites proteome for potential ovarian cancer biomarkers.Mol. Cell. Proteomics20098661669
    [Google Scholar]
  86. FredoliniC. MeaniF. LuchiniA. Investigation of the ovarian and prostate cancer peptidome for candidate early detection markers using a novel nanoparticle biomarker capture technology.AAPS J.201012450451810.1208/s12248‑010‑9211‑3 20549403
    [Google Scholar]
  87. Di MicheleM. MarconeS. CicchillittiL. Glycoproteomics of paclitaxel resistance in human epithelial ovarian cancer cell lines: Towards the identification of putative biomarkers.J. Proteomics201073587989810.1016/j.jprot.2009.11.012 19951750
    [Google Scholar]
  88. JainP. SatapathyT. PandeyR.K. First report on ticks (Acari: Ixodidae) controlling activity of cottonseed oil (Gossypium Sp.).Int. J. Acarol.202046426326710.1080/01647954.2020.1767203
    [Google Scholar]
  89. GehoD.H. LiottaL.A. PetricoinE.F. ZhaoW. The amplified peptidome: the new treasure chest of candidate biomarkers.Araujo RPJCOiCB2006105055
    [Google Scholar]
  90. ZhouM. LucasD.A. ChanK.C. An investigation into the human serum “interactome”.Electrophoresis20042591289129810.1002/elps.200405866 15174051
    [Google Scholar]
  91. MerrellK. SouthwickK. GravesS.W. EsplinM.S. Thulin CDJJoBTJ. Analysis of low-abundance.Low-Molecular-Weight Serum Proteins Using Mass Spectrometry200515238248
    [Google Scholar]
  92. GehoD. JonesC. PetricoinE. LiottaL. Nanoparticles: Potential biomarker harvesters.Curr. Opin. Chem. Biol.2006101566110.1016/j.cbpa.2006.01.003 16413816
    [Google Scholar]
  93. JainA. JainP. SoniP. TiwariA. TiwariS.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell Line (HT-29).J. Gastrointest. Cancer2023541909510.1007/s12029‑021‑00788‑7 35043370
    [Google Scholar]
  94. TerraccianoR. PasquaL. CasadonteF. Derivatized mesoporous silica beads for MALDI-TOF MS profiling of human plasma and urine.Bioconjug. Chem.200920591392310.1021/bc800510f 19338374
    [Google Scholar]
  95. PatelR. KuwarU. DhoteN. AlexanderA. NakhateK. JainP. Natural polymers as a carrier for the effective delivery of antineoplastic drugs.Curr. Drug Deliv.202421219321010.2174/1567201820666230112170035 36644864
    [Google Scholar]
  96. LongoC. PatanarutA. GeorgeT. Core-shell hydrogel particles harvest, concentrate and preserve labile low abundance biomarkers.PLoS One200943e476310.1371/journal.pone.0004763 19274087
    [Google Scholar]
  97. GaspariM. Ming-Cheng ChengM. TerraccianoR. Nanoporous surfaces as harvesting agents for mass spectrometric analysis of peptides in human plasma.J. Proteome Res.2006551261126610.1021/pr050417+ 16674117
    [Google Scholar]
  98. TerraccianoR. GaspariM. TestaF. Selective binding and enrichment for low‐molecular weight biomarker molecules in human plasma after exposure to nanoporous silica particles.Proteomics20066113243325010.1002/pmic.200500614 16645983
    [Google Scholar]
  99. Najam-ul-HaqM. RainerM. SzabóZ. VallantR. HuckC.W. BonnG.K. Role of carbon nano-materials in the analysis of biological materials by laser desorption/ionization-mass spectrometry.J. Biochem. Biophys. Methods200770231932810.1016/j.jbbm.2006.11.004 17188752
    [Google Scholar]
  100. XuS. LiY. ZouH. QiuJ. GuoZ. GuoB. Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry.Anal. Chem.200375226191619510.1021/ac0345695 14616000
    [Google Scholar]
  101. WangC. LiJ. YaoS. GuoY. XiaX. High-sensitivity matrix-assisted laser desorption/ionization Fourier transform mass spectrometry analyses of small carbohydrates and amino acids using oxidized carbon nanotubes prepared by chemical vapor deposition as matrix.Anal. Chim. Acta2007604215816410.1016/j.aca.2007.10.001 17996537
    [Google Scholar]
  102. JokerstJ.V. RaamanathanA. ChristodoulidesN. Nano-bio-chips for high performance multiplexed protein detection: Determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels.Biosens. Bioelectron.200924123622362910.1016/j.bios.2009.05.026 19576756
    [Google Scholar]
  103. HungY.C. PanH.A. TaiS.M. HuangG.S. A nanodevice for rapid modulation of proliferation, apoptosis, invasive ability, and cytoskeletal reorganization in cultured cells.Lab Chip20101091189119810.1039/b921354f 20390139
    [Google Scholar]
  104. PrabhakarU. MaedaH. JainR.K. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology.Cancer Res.20137382412241710.1158/0008‑5472.CAN‑12‑4561 23423979
    [Google Scholar]
  105. AnchordoquyT.J. BarenholzY. BoraschiD. Mechanisms and barriers in cancer nanomedicine: Addressing challenges, looking for solutions.ACS Nano2017111121810.1021/acsnano.6b08244 28068099
    [Google Scholar]
  106. LeeH. ShieldsA.F. SiegelB.A. 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer.Clin. Cancer Res.201723154190420210.1158/1078‑0432.CCR‑16‑3193 28298546
    [Google Scholar]
  107. WilhelmS. TavaresA.J. DaiQ. Analysis of nanoparticle delivery to tumours.Nat. Rev. Mater.2016151601410.1038/natrevmats.2016.14
    [Google Scholar]
  108. GabizonA. PapahadjopoulosD. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors.Proc. Natl. Acad. Sci.198885186949695310.1073/pnas.85.18.6949 3413128
    [Google Scholar]
  109. EdmondsS. VolpeA. ShmeedaH. Exploiting the metal-chelating properties of the drug cargo for in vivo positron emission tomography imaging of liposomal nanomedicines.ACS Nano20161011102941030710.1021/acsnano.6b05935 27781436
    [Google Scholar]
  110. HarringtonK.J. MohammadtaghiS. UsterP.S. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes.Clin. Cancer Res.200172243254 11234875
    [Google Scholar]
  111. MalamY. LoizidouM. SeifalianA.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer.Trends Pharmacol. Sci.2009301159259910.1016/j.tips.2009.08.004 19837467
    [Google Scholar]
  112. BozzutoG. MolinariA. Liposomes as nanomedical devices.Int. J. Nanomedicine20151097599910.2147/IJN.S68861 25678787
    [Google Scholar]
  113. FenskeD.B. CullisP.R. Liposomal nanomedicines.Expert Opin. Drug Deliv.200851254410.1517/17425247.5.1.25 18095927
    [Google Scholar]
  114. AllenT.M. CullisP.R. Liposomal drug delivery systems: From concept to clinical applications.Adv. Drug Deliv. Rev.2013651364810.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  115. ImmordinoM.L. DosioF. CattelL. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential.Int. J. Nanomedicine200613297315 17717971
    [Google Scholar]
  116. BergerJ.L. SmithA. ZornK.K. Outcomes analysis of an alternative formulation of PEGylated liposomal doxorubicin in recurrent epithelial ovarian carcinoma during the drug shortage era.OncoTargets Ther.2014714091413 25143745
    [Google Scholar]
  117. ChouH. LinH. LiuJ.M. A tale of the two PEGylated liposomal doxorubicins.OncoTargets Ther.2015817191720 26203262
    [Google Scholar]
  118. KesharwaniP. IyerA.K. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery.Drug Discov. Today201520553654710.1016/j.drudis.2014.12.012 25555748
    [Google Scholar]
  119. BiancoA. KostarelosK. PratoM. Applications of carbon nanotubes in drug delivery.Curr. Opin. Chem. Biol.20059667467910.1016/j.cbpa.2005.10.005 16233988
    [Google Scholar]
  120. BrennanM.E. ColemanJ.N. DruryA. LahrB. KobayashiT. BlauW.J. Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes.Opt. Lett.200328426626810.1364/OL.28.000266 12653367
    [Google Scholar]
  121. KamN.W.S. O’ConnellM. WisdomJ.A. DaiH. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction.Proc. Natl. Acad. Sci.200510233116001160510.1073/pnas.0502680102 16087878
    [Google Scholar]
  122. BurlakaA. LukinS. PrylutskaS. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: in vitro studies.Exp. Oncol.20103214850 20332757
    [Google Scholar]
  123. YuX. GaoD. GaoL. Inhibiting metastasis and preventing tumor relapse by triggering host immunity with tumor-targeted photodynamic therapy using photosensitizer-loaded functional nanographenes.ACS Nano20171110101471015810.1021/acsnano.7b04736 28901740
    [Google Scholar]
  124. KarnatiK.R. WangY. Understanding the co-loading and releasing of doxorubicin and paclitaxel using chitosan functionalized single-walled carbon nanotubes by molecular dynamics simulations.Phys. Chem. Chem. Phys.201820149389940010.1039/C8CP00124C 29565091
    [Google Scholar]
  125. CouvreurP. Polyalkylcyanoacrylates as colloidal drug carriers.Crit. Rev. Ther. Drug Carrier Syst.198851120 3293806
    [Google Scholar]
  126. DuncanR. The dawning era of polymer therapeutics.Nat. Rev. Drug Discov.20032534736010.1038/nrd1088 12750738
    [Google Scholar]
  127. MiyataK. ChristieR.J. KataokaK.J.R. PolymersF. Polymeric micelles for nano-scale drug delivery.React. Funct. Polym.201171322723410.1016/j.reactfunctpolym.2010.10.009
    [Google Scholar]
  128. BlancoE. BeyE.A. KhemtongC. Beta-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy.Cancer Res.201070103896390410.1158/0008‑5472.CAN‑09‑3995 20460521
    [Google Scholar]
  129. NakanishiT. FukushimaS. OkamotoK. SuzukiM. MatsumuraY. YokoyamaM. Development of the polymer micelle carrier system for doxorubicin.J. Control. Release2001741-329530210.1016/S0168‑3659(01)00341‑8
    [Google Scholar]
  130. SavićR. LuoL. EisenbergA. MaysingerD. Micellar nanocontainers distribute to defined cytoplasmic organelles.Science2003300561961561810.1126/science.1078192 12714738
    [Google Scholar]
  131. JonesM. Polymeric micelles : A new generation of colloidal drug carriers.Europ j pharmac biopharmac199948101111
    [Google Scholar]
  132. SungJ.C. PulliamB.L. EdwardsD.A. Nanoparticles for drug delivery to the lungs.Trends Biotechnol.2007251256357010.1016/j.tibtech.2007.09.005 17997181
    [Google Scholar]
  133. DavisM.E. ChenZ. ShinD.M. Nanoparticle therapeutics: An emerging treatment modality for cancer.Nat. Rev. Drug Discov.20087977178210.1038/nrd2614 18758474
    [Google Scholar]
  134. BerryG. BillinghamM. AldermanE. The use of cardiac biopsy to demonstrate reduced cardiotoxicity in AIDS Kaposi’s sarcoma patients treated with pegylated liposomal doxorubicin.Ann. Oncol.19989771171610.1023/A:1008216430806 9739435
    [Google Scholar]
  135. EwerM.S. MartinF.J. HendersonI.C. ShapiroC.L. BenjaminR.S. GabizonA.A. Cardiac safety of liposomal anthracyclines.Semin. Oncol.2004316Suppl. 1316118110.1053/j.seminoncol.2004.08.006 15717742
    [Google Scholar]
  136. SharmaG. AnabousiS. EhrhardtC. Ravi KumarM.N.V. Liposomes as targeted drug delivery systems in the treatment of breast cancer.J. Drug Target.200614530131010.1080/10611860600809112 16882550
    [Google Scholar]
  137. MahnerS. MeierW. du BoisA. BrownC. LorussoD. Dell’AnnaT. Carboplatin and pegylated liposomal doxorubicin versus carboplatin and paclitaxel in very platinum-sensitive ovarian cancer patients: Results from a subset analysis of the CALYPSO phase III trial.Eur. J. Cancer201551335235810.1016/j.ejca.2014.11.017
    [Google Scholar]
  138. LuB. SunL. YanX. AiZ. XuJ. Intratumoral chemotherapy with paclitaxel liposome combined with systemic chemotherapy: A new method of neoadjuvant chemotherapy for stage III unresectable non-small cell lung cancer.Med. Oncol.201532134510.1007/s12032‑014‑0345‑5 25429832
    [Google Scholar]
  139. QianZ. WangX. SongZ. A phase I trial to evaluate the multiple-dose safety and antitumor activity of ursolic acid liposomes in subjects with advanced solid tumors.BioMed Res. Int.201520151710.1155/2015/809714 25866811
    [Google Scholar]
  140. GolanT. GrenaderT. OhanaP. Pegylated liposomal mitomycin C prodrug enhances tolerance of mitomycin C: A phase 1 study in advanced solid tumor patients.Cancer Med.20154101472148310.1002/cam4.491 26172205
    [Google Scholar]
  141. BegM.S. BrennerA.J. SachdevJ. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors.Invest. New Drugs201735218018810.1007/s10637‑016‑0407‑y 27917453
    [Google Scholar]
  142. ShahN.N. MerchantM.S. ColeD.E. Vincristine sulfate liposomes injection (VSLI, Marqibo®): Results from a phase i study in children, adolescents, and young adults with refractory solid tumors or leukemias.Pediatr. Blood Cancer2016636997100510.1002/pbc.25937 26891067
    [Google Scholar]
  143. ChiangN.J. ChaoT.Y. HsiehR.K. A phase I dose-escalation study of PEP02 (irinotecan liposome injection) in combination with 5-fluorouracil and leucovorin in advanced solid tumors.BMC Cancer201616190710.1186/s12885‑016‑2933‑6 27871319
    [Google Scholar]
  144. LevinsenM. Harila-SaariA. GrellK. Efficacy and toxicity of intrathecal liposomal cytarabine in first-line therapy of childhood acute lymphoblastic leukemia.J. Pediatr. Hematol. Oncol.201638860260910.1097/MPH.0000000000000642 27571129
    [Google Scholar]
  145. CornelyO.A. LeguayT. MaertensJ. Randomized comparison of liposomal amphotericin B versus placebo to prevent invasive mycoses in acute lymphoblastic leukaemia.J. Antimicrob. Chemother.20177282359236710.1093/jac/dkx133 28575414
    [Google Scholar]
  146. ClarkeJ.L. MolinaroA.M. CabreraJ.R. A phase 1 trial of intravenous liposomal irinotecan in patients with recurrent high-grade glioma.Cancer Chemother. Pharmacol.201779360361010.1007/s00280‑017‑3247‑3 28233053
    [Google Scholar]
  147. LancetJ.E. UyG.L. CortesJ.E. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia.J. Clin. Oncol.201836262684269210.1200/JCO.2017.77.6112 30024784
    [Google Scholar]
  148. GreilR. Greil-ResslerS. WeissL. A phase 1 dose-escalation study on the safety, tolerability and activity of liposomal curcumin (Lipocurc™) in patients with locally advanced or metastatic cancer.Cancer Chemother. Pharmacol.201882469570610.1007/s00280‑018‑3654‑0 30074076
    [Google Scholar]
  149. van EijkelenburgN.K.A. RascheM. GhazalyE. Clofarabine, high-dose cytarabine and liposomal daunorubicin in pediatric relapsed/refractory acute myeloid leukemia: A phase IB study.Haematologica201810391484149210.3324/haematol.2017.187153 29773602
    [Google Scholar]
  150. GargettT. AbbasM.N. RolanP. Phase I trial of Lipovaxin-MM, a novel dendritic cell-targeted liposomal vaccine for malignant melanoma.Cancer Immunol. Immunother.20186791461147210.1007/s00262‑018‑2207‑z 30014244
    [Google Scholar]
  151. SchillerG.J. DamonL.E. CoutreS.E. HsuP. BhatG. DouerD. High-dose vincristine sulfate liposome injection, for advanced, relapsed, or refractory philadelphia chromosome-negative acute lymphoblastic leukemia in an adolescent and young adult subgroup of a phase 2 clinical trial.J. Adolesc. Young Adult Oncol.20187554655210.1089/jayao.2018.0041 30239252
    [Google Scholar]
  152. OhanianM. Tari AshizawaA. Garcia-ManeroG. Liposomal Grb2 antisense oligodeoxynucleotide (BP1001) in patients with refractory or relapsed haematological malignancies: A single-centre, open-label, dose-escalation, phase 1/1b trial.Lancet Haematol.201854e136e14610.1016/S2352‑3026(18)30021‑8 29550383
    [Google Scholar]
  153. EvansT.R.J. DeanE. MolifeL.R. Phase 1 dose-finding and pharmacokinetic study of eribulin-liposomal formulation in patients with solid tumours.Br. J. Cancer2019120437938610.1038/s41416‑019‑0377‑x 30679780
    [Google Scholar]
  154. MukaiH. KogawaT. MatsubaraN. NaitoY. SasakiM. HosonoA. A first-in-human Phase 1 study of epirubicin-conjugated polymer micelles (K-912/NC-6300) in patients with advanced or recurrent solid tumors.Invest. New Drugs201735330731410.1007/s10637‑016‑0422‑z 28054329
    [Google Scholar]
  155. LeeS.W. KimY.M. ChoC.H. An open-label, randomized, parallel, phase II trial to evaluate the efficacy and safety of a cremophor-free polymeric micelle formulation of paclitaxel as first-line treatment for ovarian cancer: a korean gynecologic oncology group study (KGOG-3021).Cancer Res. Treat.201850119520310.4143/crt.2016.376 28324920
    [Google Scholar]
  156. FujiwaraY. MukaiH. SaekiT. A multi-national, randomised, open-label, parallel, phase III non-inferiority study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients.Br. J. Cancer2019120547548010.1038/s41416‑019‑0391‑z 30745582
    [Google Scholar]
  157. SvensonS. TomaliaD. Dendrimers in biomedical applications—reflections on the field.Adv. Drug Deliv. Rev.200557152106212910.1016/j.addr.2005.09.018 16305813
    [Google Scholar]
  158. Palmerston MendesL. PanJ. TorchilinV. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy.Molecules2017229140110.3390/molecules22091401 28832535
    [Google Scholar]
  159. RaoS.P. JainP. RathoreP. SinghV.K. Larvicidal and knockdown activity of Citrus limetta Risso oil against dengue virus vector.Indian J. Nat. Prod. Resour.201673256260
    [Google Scholar]
  160. SherjeA.P. JadhavM. DravyakarB.R. KadamD. Dendrimers: A versatile nanocarrier for drug delivery and targeting.Int. J. Pharm.2018548170772010.1016/j.ijpharm.2018.07.030 30012508
    [Google Scholar]
  161. TomaliaD.A.H. BakerH. DewaldJ.R. HallM.J. SmithP.B.J.P.J. A new class of polymers.StarbDendrit Macromolec198517117132
    [Google Scholar]
  162. WienerE.C. KondaS. ShadronA. BrechbielM. GansowO. Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor.Invest. Radiol.1997321274875410.1097/00004424‑199712000‑00005 9406015
    [Google Scholar]
  163. QuintanaA. RaczkaE. PiehlerL. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor.Pharm. Res.20021991310131610.1023/A:1020398624602 12403067
    [Google Scholar]
  164. KonoK. LiuM. FréchetJ.M.J. Design of dendritic macromolecules containing folate or methotrexate residues.Bioconjug. Chem.19991061115112110.1021/bc990082k 10563782
    [Google Scholar]
  165. RoyR. BaekM.G. Glycodendrimers: novel glycotope isosteres unmasking sugar coding. case study with T-antigen markers from breast cancer MUC1 glycoprotein.J. Biotechnol.2002903-4291309 12071230
    [Google Scholar]
  166. Kastner, Marc AJPT.Artificial Atoms19934624
    [Google Scholar]
  167. ShioharaA. HoshinoA. HanakiK. SuzukiK. YamamotoK. On the cyto-toxicity caused by quantum dots.Microbiol. Immunol.200448966967510.1111/j.1348‑0421.2004.tb03478.x 15383704
    [Google Scholar]
  168. RuanY. YuW. ChengF. ZhangX. RaoT. XiaY. Comparison of quantum-dots and fluorescein-isothiocyanate-based technology for detecting prostate-specific antigen expression in human prostate cancer.IET nanobiotechnol.2011547
    [Google Scholar]
  169. MedintzI.L. UyedaH.T. GoldmanE.R. MattoussiH. Quantum dot bioconjugates for imaging, labelling and sensing.Nat. Mater.20054643544610.1038/nmat1390 15928695
    [Google Scholar]
  170. SungS.Y. SuY.L. ChengW. Graphene quantum dots-mediated theranostic penetrative delivery of drug and photolytics in deep tumors by targeted biomimetic nanosponges.Nano Lett.2019191698110.1021/acs.nanolett.8b03249 30521346
    [Google Scholar]
  171. ChenC. PengJ. XiaH.S. Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer.Biomaterials200930152912291810.1016/j.biomaterials.2009.02.010 19251316
    [Google Scholar]
  172. GoldbergM.S. ImmunoengineeringS. Immunoengineering: how nanotechnology can enhance cancer immunotherapy.Cell2015161220120410.1016/j.cell.2015.03.037 25860604
    [Google Scholar]
  173. AllaouiR. BergenfelzC. MohlinS. Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers.Nat. Commun.2016711305010.1038/ncomms13050 27725631
    [Google Scholar]
  174. MillerM.A. ZhengY.R. GaddeS. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug.Nat. Commun.201561869210.1038/ncomms9692 26503691
    [Google Scholar]
  175. RajanR. SabnaniM.K. MavinkurveV. Liposome-induced immunosuppression and tumor growth is mediated by macrophages and mitigated by liposome-encapsulated alendronate.J. Control. Release201827113914810.1016/j.jconrel.2017.12.023 29277680
    [Google Scholar]
  176. GuerrieroJ.L. MacrophagesL. Macrophages: The road less traveled, changing anticancer therapy.Trends Mol. Med.201824547248910.1016/j.molmed.2018.03.006 29655673
    [Google Scholar]
  177. GuerrieroJ.L. SotayoA. PonichteraH.E. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages.Nature2017543764542843210.1038/nature21409 28273064
    [Google Scholar]
  178. EhlerdingE.B. GrodzinskiP. CaiW. LiuC.H. Big potential from small agents: nanoparticles for imaging-based companion diagnostics.ACS Nano20181232106212110.1021/acsnano.7b07252 29462554
    [Google Scholar]
  179. HarisinghaniM.G. BarentszJ. HahnP.F. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer.N. Engl. J. Med.2003348252491249910.1056/NEJMoa022749 12815134
    [Google Scholar]
  180. KircherM.F. MahmoodU. KingR.S. WeisslederR. JosephsonL. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation.Cancer Res.2003632381228125 14678964
    [Google Scholar]
  181. JainR.K. StylianopoulosT. Delivering nanomedicine to solid tumors.Nat. Rev. Clin. Oncol.201071165366410.1038/nrclinonc.2010.139 20838415
    [Google Scholar]
  182. SignorellR.D. LucianiP. BrambillaD. LerouxJ.C. Pharmacokinetics of lipid-drug conjugates loaded into liposomes.Eur. J. Pharm. Biopharm.201812818819910.1016/j.ejpb.2018.04.003 29678733
    [Google Scholar]
  183. Alnylam Announces First-Ever FDA Approval of an RNAi Therapeutic.Available from: https://investors.alnylam.com/press-release?id=22946 (Accessed June 17, 2019).
/content/journals/pnt/10.2174/0122117385297455240508055620
Loading
/content/journals/pnt/10.2174/0122117385297455240508055620
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; clinical; drug; nanomaterials; Nanotechnology; supramolecular features
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test