Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Keratomycosis, also termed fungal keratitis (FK), is an invasive eye condition for which there is a lack of available effective treatment due to pharmacological shortages and vital ocular obstacles. This severe corneal infection typically suppurates and eventually ulcerates, ultimately causing blindness or decreased vision. According to epidemiological studies, FK is more common in warm, humid places with an agricultural economy. The use of nanoemulsion carriers for ocular fungal infection has been promoting better treatment and patient compliance. The persistent fungal infection like FK, affecting particularly the stroma heralds complications thereby posing difficulty in diagnosis and treatment. To help treat refractory cases and improve outcomes, recently targeted drug delivery techniques and novel antifungal drugs shall be explored. A delay in diagnosis may cause corneal fungal infections to have irreversible consequences, which cannot be avoided. However, infections can develop into ocular perforation even after receiving intense care. The commonly used chemotherapy for FK is based on topical (natamycin 5% is typically first-line therapy) and systemic administration of azole drugs. To address the problems related to better treatment, various nanoemulsion carriers were discussed. Novel drug delivery systems based on nanoemulsions are a viable therapeutic option for treating keratomycosis and may be a candidate method for overcoming obstacles in the treatment of many other ocular illnesses when combined with different hydrophobic medicines. With a brief explanation of the pathogenesis, this article seeks to give readers a thorough analysis of current trends, various treatment choices, and care strategies for fungal keratitis.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385294591240427051402
2024-05-23
2025-09-03
Loading full text...

Full text loading...

References

  1. KredicsL. NarendranV. ShobanaC.S. VágvölgyiC. ManikandanP. Filamentous fungal infections of the cornea: a global overview of epidemiology and drug sensitivity.Mycoses201558424326010.1111/myc.12306 25728367
    [Google Scholar]
  2. ThomasP.A. Fungal infections of the cornea.Eye200317885286210.1038/sj.eye.6700557 14631389
    [Google Scholar]
  3. NayakN. Fungal infections of the eye--laboratory diagnosis and treatment.Nepal Med. Coll. J.20081014863 18700633
    [Google Scholar]
  4. KalkanciA. OzdekS. Ocular fungal infections.Curr. Eye Res.201136317918910.3109/02713683.2010.533810 21158591
    [Google Scholar]
  5. TuliS. Fungal keratitis.Clin. Ophthalmol.2011527527910.2147/OPTH.S10819 21468333
    [Google Scholar]
  6. HoffmanJ.J. ArungaS. Mohamed AhmedA.H.A. HuV.H. BurtonM.J. Management of filamentous fungal keratitis: A pragmatic approach.J. Fungi2022810106710.3390/jof8101067 36294633
    [Google Scholar]
  7. HuaX. YuanX. Di PietroA. WilhelmusK.R. The molecular pathogenicity of Fusarium keratitis: a fungal transcriptional regulator promotes hyphal penetration of the cornea.Cornea201029121440144410.1097/ICO.0b013e3181d8383a 20856109
    [Google Scholar]
  8. SrinivasanM. GonzalesC.A. GeorgeC. Epidemiology and aetiological diagnosis of corneal ulceration in Madurai, south India.Br. J. Ophthalmol.1997811196597110.1136/bjo.81.11.965 9505820
    [Google Scholar]
  9. BhandariL. PatilA.S. BolmalU.K. MasareddyR. DandagiP. Formulation and evaluation of natamycin solid dispersion incorporated ophthalmic films Ind J Pharm.Educ. Res.202256110311110.5530/ijper.56.1.13
    [Google Scholar]
  10. HungN. YehL.K. MaD.H.K. Filamentous fungal keratitis in taiwan: Based on molecular diagnosis.Transl. Vis. Sci. Technol.2020983210.1167/tvst.9.8.32 32855878
    [Google Scholar]
  11. KhamesA. KhaleelM.A. El-BadawyM.F. El-NezhawyA.O.H. Natamycin solid lipid nanoparticles – sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: preparation and optimization.Int. J. Nanomedicine2019142515253110.2147/IJN.S190502 31040672
    [Google Scholar]
  12. ChakrabortyT. SainiV. SharmaS. KaurB. DhingraG. Antifungal gel: For different routes of administration and different drug delivery system Medi Mater Sci.2014Available from: https://api.semanticscholar.org/CorpusID:212616696
    [Google Scholar]
  13. VadlapudiA.D. CholkarK. VadlapatlaR.K. MitraA.K. Aqueous nanomicellar formulation for topical delivery of biotinylated lipid prodrug of acyclovir: formulation development and ocular biocompatibility.J. Ocul. Pharmacol. Ther.2014301495810.1089/jop.2013.0157 24192229
    [Google Scholar]
  14. RajasekaranA SivakumarV KarthikaK PreethaJP AbiramiT Design and evaluation of polymeric controlled release natamycin ocular inserts Kathmandu Univer J Sci Enginee Technol2010611081510.3126/kuset.v6i1.3318
    [Google Scholar]
  15. PatelP.B. ShastriD.H. ShelatP.K. ShuklaA.K. Ophthalmic drug delivery system: Challenges and approaches.System Rev. Pharm.20101211412010.4103/0975‑8453.75042
    [Google Scholar]
  16. ShastriD.H. PatelL.D. ParikhR.K. Studies on in situ hydrogel: A smart way for safe and sustained ocular drug delivery.J. Young Pharm.20102211612010.4103/0975‑1483.63144 21264112
    [Google Scholar]
  17. SumanS. KumarA. SaxenaI. KumarM. Fungal Keratitis: Recent Advances in Diagnosis and Treatment In: Eye Infections - Recent Advances in Diagnosis and Treatment. IntechOpen202120610.5772/intechopen.98411
    [Google Scholar]
  18. AnsariZ. MillerD. GalorA. Current thoughts in fungal keratitis: Diagnosis and treatment.Curr. Fungal Infect. Rep.20137320921810.1007/s12281‑013‑0150‑1 24040467
    [Google Scholar]
  19. BiswasN.R. GuptaS.K. DasG.K. Evaluation of Ophthacare ® eye drops—a herbal formulation in the management of various ophthalmic disorders.Phytother. Res.200115761862010.1002/ptr.896 11746845
    [Google Scholar]
  20. SRK KNR An insight into ophthalmic drug delivery system.Int. J. Pharm. Sci. Drug Res.2009111510.25004/IJPSDR.2009.010101
    [Google Scholar]
  21. GoldschmidtP. DegorgeS. Che SarriaP. New strategy for rapid diagnosis and characterization of fungal infections: the example of corneal scrapings.PLoS One201277e3766010.1371/journal.pone.0037660 22768289
    [Google Scholar]
  22. MohammedN. RejinoldN.S. MangalathillamS. BiswasR. NairS.V. JayakumarR. Fluconazole loaded chitin nanogels as a topical ocular drug delivery agent for corneal fungal infections.J. Biomed. Nanotechnol.2013991521153110.1166/jbn.2013.1647 23980500
    [Google Scholar]
  23. SuharyaniI. PamudjiJ.S. WikarsaS. KurniatiN.F. Natamycin nanosuspension for ophthalmic drug delivery system.Res. J. Pharm. Biol. Chem. Sci.20178113120
    [Google Scholar]
  24. AmeeduzzafarAli J. FazilM. QumbarM. KhanN. AliA. Colloidal drug delivery system: amplify the ocular delivery.Drug Deliv.201623370071610.3109/10717544.2014.923065 24892625
    [Google Scholar]
  25. DaveV.S. Formulation Approaches for Ocular Drug Delivery.Nano-Biomaterials For Ophthalmic Drug Delivery201614717510.1007/978‑3‑319‑29346‑2_8
    [Google Scholar]
  26. ThakurN ShuklaSK PatyalM In-vitro analysis of a broad-spectrum polyspectrum formulation for treatment of neonatal eye infections Res Squa202210.21203/rs.3.rs‑1568675/v1
    [Google Scholar]
  27. AbdellatifM.M. JosefM. El-NabarawiM.A. TeaimaM. Sertaconazole-nitrate-loaded leciplex for treating keratomycosis: Optimization using d-optimal design and in vitro, ex vivo, and in vivo studies.Pharmaceutics20221410221510.3390/pharmaceutics14102215 36297650
    [Google Scholar]
  28. VelpandianT. NirmalJ. SharmaH.P. SharmaS. SharmaN. HalderN. Novel water soluble sterile natamycin formulation (Natasol) for fungal keratitis.Eur. J. Pharm. Sci.202116310585710.1016/j.ejps.2021.105857 33882328
    [Google Scholar]
  29. Lorenzo-VeigaB. SigurdssonH.H. LoftssonT. Alvarez-LorenzoC. Cyclodextrin–amphiphilic copolymer supramolecular assemblies for the ocular delivery of natamycin.Nanomaterials20199574510.3390/nano9050745 31096569
    [Google Scholar]
  30. NasrM. TeiamaM. IsmailA. EbadaA. SaberS. In vitro and in vivo evaluation of cubosomal nanoparticles as an ocular delivery system for fluconazole in treatment of keratomycosis.Drug Deliv. Transl. Res.20201061841185210.1007/s13346‑020‑00830‑4 32779112
    [Google Scholar]
  31. ThakurN. KumariJ. SharmaM. Antimicrobial potential of herbal and chemical neonatal eye drops.Asian J. Pharm. Clin. Res.2018111131932310.22159/ajpcr.2018.v11i11.28026
    [Google Scholar]
  32. MahboobianM.M. SeyfoddinA. RupenthalI.D. AboofazeliR. ForoutanS.M. Formulation development and evaluation of the therapeutic efficacy of brinzolamide containing nanoemulsions.Iran. J. Pharm. Res.2017163847857 29201076
    [Google Scholar]
  33. KumarM. BishnoiR.S. ShuklaA.K. JainC.P. Techniques for formulation of nanoemulsion drug delivery system: A review.Prev. Nutr. Food Sci.201924322523410.3746/pnf.2019.24.3.225 31608247
    [Google Scholar]
  34. FetihgG. Fluconazole-loaded niosomal gels as a topical ocular drug delivery system for corneal fungal infections.J. Drug Deliv. Sci. Technol.20163581510.1016/j.jddst.2016.06.002
    [Google Scholar]
  35. PrajnaN.V. KrishnanT. RajaramanR. Effect of oral voriconazole on fungal keratitis in the mycotic ulcer treatment trial ii (mutt ii): a randomized clinical trial.JAMA Ophthalmol.2016134121365137210.1001/jamaophthalmol.2016.4096 27787540
    [Google Scholar]
  36. ScheinO.D. Evidence-Based Treatment of Fungal Keratitis.JAMA Ophthalmol.2016134121372137310.1001/jamaophthalmol.2016.4167 27787542
    [Google Scholar]
  37. Capriotti CapriottiJ Carapeltier Jesse. Novel iodophor composition and method of use Japan Patent: JP6359217B22018
    [Google Scholar]
  38. ShaL RuiL XiaocuiY Itraconazole temperature-sensitive type gel preparation as well as preparation method and application thereof Canada Patent: CN104027299A2014
    [Google Scholar]
  39. YoungS. BradyT. MachathaS.G. ClarkD. MacdonaldS. Treatment of allergic eye conditions with cyclodextrins United States Patent: US10426790B22019
    [Google Scholar]
  40. BhagatR BlandaWM ChouD Ocular implant made by a double extrusion process Australia Patent AU2010235967B22012
    [Google Scholar]
  41. KnappeT LauferB RauH SprogoeK VoigtT WeisbrodS Prevention and treatment of ocular conditions Canada Patent: CA2849192C2019
    [Google Scholar]
  42. YajunY YongfuM Eye drop and preparation method and application thereof Canada Patent: CN102670494B2013
    [Google Scholar]
  43. LiangB. BaldwinJ.J. LuY. Slow-releasing ophthalmic compositions comprising povidone iodine United States Patent: US9308173B22016
    [Google Scholar]
  44. MurioE MercierF Aqueous ophthalmic solution based on cyclosporin a Russia Patent: RU2634267C2,2017
    [Google Scholar]
  45. MitraAK VelagaletiPR GrauUM Topical drug delivery systems for ophthalmic use Europe Patent: EP2440185B12015
    [Google Scholar]
  46. GoelK. Formulation development of natamycin loaded nanoemulsion for ocular drug delivery In: Electronic Theses and Dissertations. University of Mississippi - eGrove20191699
    [Google Scholar]
  47. Quality Considerations for Topical Ophthalmic Drug Products: Guidance for Industry – Revision 1 In: US Department of Health and Human Services Food and Drug Administration. Center for Drug Evaluation and Research (CDER)2023113
    [Google Scholar]
  48. VivekanandanK. PrakashJ. MuthusamyK. SinghG.N. Quality standards and current status of ophthalmic formulations in indian pharmacopoeia and national formulary of india.Ther. Innov. Regul. Sci.201448338639210.1177/2168479013513455 30235542
    [Google Scholar]
  49. DongL.K. KrebsD.B. An intracameral approach for recalcitrant fungal keratitis.Am. J. Ophthalmol. Case Rep.20222510136910.1016/j.ajoc.2022.101369 35146213
    [Google Scholar]
  50. YangJ. LiangZ. LuP. Development of a luliconazole nanoemulsion as a prospective ophthalmic delivery system for the treatment of fungal keratitis: In vitro and in vivo evaluation.Pharmaceutics20221410205210.3390/pharmaceutics14102052 36297487
    [Google Scholar]
  51. ShahidM. HussainA. KhanA.A. Ketoconazole-loaded cationic nanoemulsion: in vitro – ex vivo – in vivo evaluations to control cutaneous fungal infections.ACS Omega2022723202672027910.1021/acsomega.2c02219 35721949
    [Google Scholar]
  52. MehrandishS. MirzaeeiS. Design of novel nanoemulsion formulations for topical ocular delivery of itraconazole: development, characterization and in vitro bioassay.Adv. Pharm. Bull.20211219310110.34172/apb.2022.009 35517876
    [Google Scholar]
  53. TavakoliM. MahboobianM.M. NouriF. MohammadiM. Studying the ophthalmic toxicity potential of developed ketoconazole loaded nanoemulsion in situ gel formulation for ophthalmic administration.Toxicol. Mech. Methods202131857258010.1080/15376516.2021.1941461 34126859
    [Google Scholar]
  54. PathakM.K. ChhabraG. PathakK. Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole: Ex-vivo transcorneal permeation, corneal toxicity and irritation testing.Drug Dev. Ind. Pharm.201339578079010.3109/03639045.2012.707203 22873799
    [Google Scholar]
  55. NasserS.T. AbdulrassolA.A. GhareebM.M. Design, preparation and in-vitro evaluation of novel ocular antifungal nanoemulsion using posaconazole as a model drug.Int J Dru Deliv Technol20211131058106410.25258/ijddt.11.3.71
    [Google Scholar]
  56. SamimiM.S. MahboobianM.M. MohammadiM. Ocular toxicity assessment of nanoemulsion in-situ gel formulation of fluconazole.Hum. Exp. Toxicol.202140122039204710.1177/09603271211017314 34036827
    [Google Scholar]
  57. BordinP. Corneal ulcer treated with 0.66% nanoemulsion povidone-iodine: A case report.Am. J. Case Rep.202021e91982210.12659/AJCR.919822 31974332
    [Google Scholar]
  58. BonferoniM.C. SandriG. RossiS. A novel ionic amphiphilic chitosan derivative as a stabilizer of nanoemulsions: Improvement of antimicrobial activity of Cymbopogon citratus essential oil.Coll Surf B Biointerfa201715238539210.1016/j.colsurfb.2017.01.043 28152462
    [Google Scholar]
  59. SosaL. ClaresB. AlvaradoH.L. BozalN. DomenechO. CalpenaA.C. Amphotericin B releasing topical nanoemulsion for the treatment of candidiasis and aspergillosis.Nanomedicine20171372303231210.1016/j.nano.2017.06.021 28712917
    [Google Scholar]
  60. TayelS.A. El-NabarawiM.A. TadrosM.I. Abd-ElsalamW.H. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: Design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits.Int. J. Pharm.20134431-229330510.1016/j.ijpharm.2012.12.049 23333217
    [Google Scholar]
  61. ShivhareR. PathakA. ShrivastavaN. SinghC. TiwariG. GoyalR. An update review on novel advanced ocular drug delivery system.World J. Pharm. Pharm. Sci.201212545568
    [Google Scholar]
  62. LangJ.C. Ocular drug delivery conventional ocular formulations.Adv. Drug Deliv. Rev.1995161394310.1016/0169‑409X(95)00012‑V
    [Google Scholar]
  63. UrimiD. WidenbringR. Pérez GarcíaR.O. Formulation development and upscaling of lipid nanocapsules as a drug delivery system for a novel cyclic GMP analogue intended for retinal drug delivery.Int. J. Pharm.202160212064010.1016/j.ijpharm.2021.120640 33901599
    [Google Scholar]
  64. LiJ. LiZ. LiangZ. Fabrication of a drug delivery system that enhances antifungal drug corneal penetration.Drug Deliv.201825193894910.1080/10717544.2018.1461278 29658325
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385294591240427051402
Loading
/content/journals/pnt/10.2174/0122117385294591240427051402
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test