Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Background

Alzheimer's disease (AD) is the most common form of dementia and is expected to greatly rise in future, making it a major worldwide health concern with severe impacts on individuals and society. Despite advancements in understanding the cellular and molecular aspects of Alzheimer's disease (AD) in recent decades, it still poses a significant problem. A major problem is accurately delivering drugs to diseased neurons while minimising effects on healthy neurons. This difficulty is worsened by the low water solubility of anti-Alzheimer's disease medicines and the blood-brain barrier (BBB) that hinders the entry of central nervous system pharmaceuticals that are highly lipophilic.

Objective

The focus of this article is on nanocarriers that are lipid-based. This is one of the more widely accepted methods of treating Alzheimer's disease, as it increases therapeutic efficacy while decreasing side effects related to cooperated neurological disorder payload.

Method

Searched many databases for papers published under the title (including PubMed, Elsevier, and Google Scholar).

Results/Conclusion

Nano Lipid Carriers (NLCs) are recognized for their ability to target the brain effectively due to their lipid-loving properties and compatibility with living tissues. They improve the absorption of drugs in the brain while decreasing the accumulation of drugs in unintended organs. This work emphasises the importance of nano lipid carriers, which are lipophilic and biocompatible and have demonstrated exceptional targeting efficiency, making them an ideal carrier system for delivering medications to the brain.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385300234240522100826
2024-06-11
2025-09-03
Loading full text...

Full text loading...

References

  1. FeiginV.L. AbajobirA.A. AbateK.H. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015.Lancet Neurol.2017161187789710.1016/S1474‑4422(17)30299‑5 28931491
    [Google Scholar]
  2. DhankarS. MujwarS. GargN. Artificial intelligence in the management of neurodegenerative disorders.CNS Neurol. Disord. Drug Targets202323110 37861051
    [Google Scholar]
  3. LanctôtK.L. Hviid Hahn-PedersenJ. EichingerC.S. Burden of illness in people with alzheimer’s disease: a systematic review of epidemiology, comorbidities and mortality.J. Prev. Alzheimers Dis.202311110.14283/jpad.2023.61 38230722
    [Google Scholar]
  4. AgrawalN. PallosJ. SlepkoN. Identification of combinatorial drug regimens for treatment of Huntington’s disease using Drosophila.Proc. Natl. Acad. Sci.2005102103777378110.1073/pnas.0500055102 15716359
    [Google Scholar]
  5. 2019 Alzheimer’s disease facts and figures.Alzheimers Dement.201915332138710.1016/j.jalz.2019.01.010
    [Google Scholar]
  6. DepressionW. Other common mental disorders: global health estimates.GenevaWorld Health Organization201724
    [Google Scholar]
  7. BaranM.F. KeskinC. BaranA. Green synthesis of silver nanoparticles from Allium cepa L. Peel extract, their antioxidant, antipathogenic, and anticholinesterase activity.Molecules2023285231010.3390/molecules28052310 36903556
    [Google Scholar]
  8. MittalP. DhankharS. ChauhanS. A review on natural antioxidants for their role in the treatment of parkinson’s disease.Pharmaceuticals202316790810.3390/ph16070908 37513820
    [Google Scholar]
  9. KhalilovR. A comprehensive review of advanced nano-biomaterials in regenerative medicine and drug delivery.Adv Biol & Earth Sci2023815
    [Google Scholar]
  10. BeydounR. HamoodM.A. Gomez ZubietaD.M. KondapalliK.C. Na+/H+ exchanger 9 regulates iron mobilization at the blood-brain barrier in response to iron starvation.J. Biol. Chem.2017292104293430110.1074/jbc.M116.769240 28130443
    [Google Scholar]
  11. O’BrownN.M. PfauS.J. GuC. Bridging barriers: a comparative look at the blood–brain barrier across organisms.Genes Dev.2018327-846647810.1101/gad.309823.117 29692355
    [Google Scholar]
  12. BenzF. LiebnerS. Structure and function of the blood–brain barrier (BBB). in Physiology, Pharmacology and Pathology of the Blood-Brain Barrier.Springer2020331
    [Google Scholar]
  13. McCarthyR.C. KosmanD.J. Iron transport across the blood–brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy.Cell. Mol. Life Sci.201572470972710.1007/s00018‑014‑1771‑4 25355056
    [Google Scholar]
  14. KaurN. Anti-inflammatory and analgesic activity of curcumin with different nsaids.Indian Drugs2018557727610.53879/id.55.07.10632
    [Google Scholar]
  15. Villabona-RuedaA. EriceC. PardoC.A. StinsM.F. The evolving concept of the blood brain barrier (BBB): from a single static barrier to a heterogeneous and dynamic relay center.Front. Cell. Neurosci.20191340510.3389/fncel.2019.00405 31616251
    [Google Scholar]
  16. JagtianiE. YeolekarM. NaikS. PatravaleV. In vitro blood brain barrier models: An overview.J. Control. Release2022343133010.1016/j.jconrel.2022.01.011 35026351
    [Google Scholar]
  17. AbdullahiW. TripathiD. RonaldsonP.T. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection.Am. J. Physiol. Cell Physiol.20183153C343C35610.1152/ajpcell.00095.2018 29949404
    [Google Scholar]
  18. AsklundT. KvarnbrinkS. HolmlundC. Synergistic killing of glioblastoma stem-like cells by bortezomib and HDAC inhibitors.Anticancer Res.201232724072413 22753697
    [Google Scholar]
  19. KeaneyJ. CampbellM. The dynamic blood–brain barrier.FEBS J.2015282214067407910.1111/febs.13412 26277326
    [Google Scholar]
  20. MatsumotoJ. StewartT. BanksW.A. ZhangJ. The transport mechanism of extracellular vesicles at the blood-brain barrier.Curr. Pharm. Des.201823406206621410.2174/1381612823666170913164738 28914201
    [Google Scholar]
  21. LalatsaA. ButtA.M. Physiology of the blood–brain barrier and mechanisms of transport across the BBB.Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors.Elsevier2018497410.1016/B978‑0‑12‑812218‑1.00003‑8
    [Google Scholar]
  22. WinklerE.A. NishidaY. SagareA.P. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration.Nat. Neurosci.201518452153010.1038/nn.3966 25730668
    [Google Scholar]
  23. SongJ. LuC. LeszekJ. ZhangJ. Design and development of nanomaterial-based drug carriers to overcome the blood–brain barrier by using different transport mechanisms.Int. J. Mol. Sci.202122181011810.3390/ijms221810118 34576281
    [Google Scholar]
  24. TenreiroM.M. FerreiraR. BernardinoL. BritoM.A. Cellular response of the blood-brain barrier to injury: Potential biomarkers and therapeutic targets for brain regeneration.Neurobiol. Dis.20169126227310.1016/j.nbd.2016.03.014 26996728
    [Google Scholar]
  25. DhankharS. ChauhanS. MehtaD.K. Novel targets for potential therapeutic use in Diabetes mellitus.Diabetol. Metab. Syndr.20231511710.1186/s13098‑023‑00983‑5 36782201
    [Google Scholar]
  26. AbbottN.J. PatabendigeA.A.K. DolmanD.E.M. YusofS.R. BegleyD.J. Structure and function of the blood–brain barrier.Neurobiol. Dis.2010371132510.1016/j.nbd.2009.07.030 19664713
    [Google Scholar]
  27. PathanS. IqbalZ. ZaidiS. CNS drug delivery systems: novel approaches.Recent Pat. Drug Deliv. Formul.200931718910.2174/187221109787158355 19149731
    [Google Scholar]
  28. RohillaM Rishabh BansalS et al Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy.Biomed. Pharmacother.202316911588110.1016/j.biopha.2023.115881 37989030
    [Google Scholar]
  29. RohillaS. SharmaP. KambojS. Anabolic androgenic steroids: A review.Emir. Med. J.2024511010.2174/0102506882253706240104073440
    [Google Scholar]
  30. SaharanR. KaurJ. DhankharS. Hydrogel-based drug delivery system in diabetes management.Pharm. Nanotechnol.20231211110.2174/0122117385266276230928064235 37818559
    [Google Scholar]
  31. Samrat ChauhanL.K. NavpreetK. RandhirS. Potential anti-arthritic agents from indian medicinal plants.Res. Rev. J. Pharm. Pharm. Sci.2015431022
    [Google Scholar]
  32. SaraivaC. PraçaC. FerreiraR. SantosT. FerreiraL. BernardinoL. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases.J. Control. Release2016235344710.1016/j.jconrel.2016.05.044 27208862
    [Google Scholar]
  33. NarwalS. DhandaT. SharmaP. Current therapeutic strategies for chagas disease.Antiinfect. Agents20232111110.2174/2211352521666230823122601
    [Google Scholar]
  34. PanchalM. RanaP. GargN. DhankharS. SharmaH. ChauhanS. A comprehensive review of alternative therapeutic approaches for nausea and vomiting relief in pregnancy.Emir. Med. J.20245e0250688228292910.2174/0102506882282929231212074538
    [Google Scholar]
  35. AbbottN.J. In vitro models of CNS barriers. Drug Delivery to the Brain: Physiological Concepts, Methodologies and Approaches201416319710.1007/978‑1‑4614‑9105‑7_6
    [Google Scholar]
  36. WilhelmI. KrizbaiI.A. In vitro models of the blood-brain barrier for the study of drug delivery to the brain.Mol. Pharm.20141171949196310.1021/mp500046f 24641309
    [Google Scholar]
  37. El-AndaloussiS. LeeY. Lakhal-LittletonS. Exosome-mediated delivery of siRNA in vitro and in vivo.Nat. Protoc.20127122112212610.1038/nprot.2012.131 23154783
    [Google Scholar]
  38. WolburgH. NeuhausJ. KnieselU. Modulation of tight junction structure in blood-brain barrier endothelial cells Effects of tissue culture, second messengers and cocultured astrocytes.J. Cell Sci.199410751347135710.1242/jcs.107.5.1347 7929640
    [Google Scholar]
  39. HoriS. OhtsukiS. TachikawaM. Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte‐derived soluble factor(s).J. Neurochem.200490352653610.1111/j.1471‑4159.2004.02537.x 15255930
    [Google Scholar]
  40. Sá-PereiraI. BritesD. BritoM.A. Neurovascular unit: a focus on pericytes.Mol. Neurobiol.201245232734710.1007/s12035‑012‑8244‑2 22371274
    [Google Scholar]
  41. DekmakA. MantashS. ShaitoA. Stem cells and combination therapy for the treatment of traumatic brain injury.Behav. Brain Res.2018340496210.1016/j.bbr.2016.12.039 28043902
    [Google Scholar]
  42. YamanakaS. BlauH.M. Nuclear reprogramming to a pluripotent state by three approaches.Nature2010465729970471210.1038/nature09229 20535199
    [Google Scholar]
  43. ChauhanS. Current approaches in healing of wounds in diabetes and diabetic foot ulcers.Curr. Bioact. Compd.2023193104121
    [Google Scholar]
  44. ChauhanS. Antihyperglycemic and antioxidant potential of plant extract of litchi chinensis and glycine max.Int. J. Nutr. Pharmacol. Neurol. Dis.2021113225233
    [Google Scholar]
  45. EschM.B. SungJ.H. YangJ. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic ‘body-on-a-chip’ devices.Biomed. Microdevices201214589590610.1007/s10544‑012‑9669‑0 22847474
    [Google Scholar]
  46. YeonJ.H. NaD. ChoiK. RyuS.W. ChoiC. ParkJ.K. Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures.Biomed. Microdevices20121461141114810.1007/s10544‑012‑9680‑5 22821236
    [Google Scholar]
  47. RibeiroF.M. CamargosE.R.S. SouzaL.C. TeixeiraA.L. Animal models of neurodegenerative diseases.Rev. Bras. Psiquiatr.201335Suppl. 2S82S9110.1590/1516‑4446‑2013‑1157 24271230
    [Google Scholar]
  48. QuerfurthH.W. LaFerlaF.M. Alzheimer’s Disease.N. Engl. J. Med.2010362432934410.1056/NEJMra0909142 20107219
    [Google Scholar]
  49. DhankharS. SharmaP. ChauhanS. Cognitive rehabilitation for early-stage dementia: A review.Current Psychiatry Research and Reviews20242011410.2174/0126660822275618231129073551
    [Google Scholar]
  50. LalitK. Phyto-pharmacological review of Coccinia indica.World J. Pharm. Pharm. Sci.20143217341745WJPPS
    [Google Scholar]
  51. LaFerlaF.M. GreenK.N. Animal models of Alzheimer disease.Cold Spring Harb. Perspect. Med.2012211a00632010.1101/cshperspect.a006320 23002015
    [Google Scholar]
  52. Blurton-JonesM. LaFerlaF. Pathways by which Abeta facilitates tau pathology.Curr. Alzheimer Res.20063543744810.2174/156720506779025242 17168643
    [Google Scholar]
  53. ElderG.A. Gama SosaM.A. De GasperiR. Transgenic mouse models of Alzheimer's disease. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine2010771698110.1002/msj.20159
    [Google Scholar]
  54. GötzJ. ChenF. van DorpeJ. NitschR.M. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils.Science200129355341491149510.1126/science.1062097 11520988
    [Google Scholar]
  55. GamesD. AdamsD. AlessandriniR. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein.Nature1995373651452352710.1038/373523a0 7845465
    [Google Scholar]
  56. CalhounM.E. WiederholdK.H. AbramowskiD. Neuron loss in APP transgenic mice.Nature1998395670475575610.1038/27351 9796810
    [Google Scholar]
  57. HsiaoK. ChapmanP. NilsenS. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice.Science199627452849910310.1126/science.274.5284.99 8810256
    [Google Scholar]
  58. RichardsJ.G. HigginsG.A. OuagazzalA.M. PS2APP transgenic mice, coexpressing hPS2mut and hAPPswe, show age-related cognitive deficits associated with discrete brain amyloid deposition and inflammation.J. Neurosci.200323268989900310.1523/JNEUROSCI.23‑26‑08989.2003 14523101
    [Google Scholar]
  59. JamesN.D. DavisD.R. SindonJ. Neurodegenerative changes including altered tau phosphorylation and neurofilament immunoreactivity in mice transgenic for the serine/threonine kinase mos.Neurobiol. Aging199617223524110.1016/0197‑4580(95)02068‑3 8744404
    [Google Scholar]
  60. SchindowskiK. BrettevilleA. LeroyK. Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits.Am. J. Pathol.2006169259961610.2353/ajpath.2006.060002 16877359
    [Google Scholar]
  61. FormanM.S. LalD. ZhangB. Transgenic mouse model of tau pathology in astrocytes leading to nervous system degeneration.J. Neurosci.200525143539355010.1523/JNEUROSCI.0081‑05.2005 15814784
    [Google Scholar]
  62. HeadE. McClearyR. HahnF.F. MilgramN.W. CotmanC.W. Region-specific age at onset of β-amyloid in dogs.Neurobiol. Aging2000211899610.1016/S0197‑4580(00)00093‑2 10794853
    [Google Scholar]
  63. SolàC. García-LadonaF.J. SarasaM. β APP gene expression is increased in the rat brain after motor neuron axotomy.Eur. J. Neurosci.19935779580810.1111/j.1460‑9568.1993.tb00931.x 8281291
    [Google Scholar]
  64. YasunobuO. YasuyukiN. Senescence-accelerated mouse (SAM) as an animal model of senile dementia: pharmacological, neurochemical and molecular biological approach.Jpn. J. Pharmacol.199878439940410.1254/jjp.78.399 9920195
    [Google Scholar]
  65. HouY. WhiteR.G. BobikM. MarksJ.S. RussellM.J. Distribution of β-amyloid in the canine brain.Neuroreport1997841009101210.1097/00001756‑199703030‑00038 9141082
    [Google Scholar]
  66. YueF. LuC. AiY. ChanP. ZhangZ. Age-associated changes of cerebrospinal fluid amyloid-β and tau in cynomolgus monkeys.Neurobiol. Aging20143571656165910.1016/j.neurobiolaging.2014.01.139 24581480
    [Google Scholar]
  67. HerculanoB. TamuraM. OhbaA. ShimataniM. KutsunaN. HisatsuneT. β-alanyl-L-histidine rescues cognitive deficits caused by feeding a high fat diet in a transgenic mouse model of Alzheimer’s disease.J. Alzheimers Dis.201333498399710.3233/JAD‑2012‑121324 23099816
    [Google Scholar]
  68. ZhangJ. LiP. WangY. Ameliorative effects of a combination of baicalin, jasminoidin and cholic acid on ibotenic acid-induced dementia model in rats.PLoS One201382e5665810.1371/journal.pone.0056658 23437202
    [Google Scholar]
  69. BarilarJ.O. KnezovicA. PerhocA.B. HomolakJ. RiedererP. Salkovic-PetrisicM. Shared cerebral metabolic pathology in non-transgenic animal models of Alzheimer’s and Parkinson’s disease.J. Neural Transm.2020127223125010.1007/s00702‑020‑02152‑8 32030485
    [Google Scholar]
  70. LombardoD KiselevMA CaccamoMT Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J nanomateri201920191212610.1155/2019/3702518
    [Google Scholar]
  71. Chandra BoroR. KaushalJ. NangiaY. WangooN. BhasinA. SuriC.R. Gold nanoparticles catalyzed chemiluminescence immunoassay for detection of herbicide 2,4-dichlorophenoxyacetic acid.Analyst2011136102125213010.1039/c0an00810a 21455533
    [Google Scholar]
  72. WangooN. KaushalJ. BhasinK.K. MehtaS.K. SuriC.R. Zeta potential based colorimetric immunoassay for the direct detection of diabetic marker HbA1c using gold nanoprobes.Chem. Commun.201046315755575710.1039/c0cc00224k 20571696
    [Google Scholar]
  73. BhattacharyaT. SoaresG.A.B. ChopraH. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders.Materials202215380410.3390/ma15030804 35160749
    [Google Scholar]
  74. DomínguezA. ÁlvarezA. HilarioE. Suarez-MerinoB. Goñi-de-CerioF. Central nervous system diseases and the role of the blood-brain barrier in their treatment.Neurosci Discov201311310.7243/2052‑6946‑1‑3
    [Google Scholar]
  75. KumarA. BehlT. ChadhaS. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects.Int. J. Biol. Macromol.20201491262127410.1016/j.ijbiomac.2020.02.048 32044364
    [Google Scholar]
  76. VieiraD. GamarraL. Getting into the brain: liposome-based strategies for effective drug delivery across the blood–brain barrier.Int. J. Nanomedicine2016115381541410.2147/IJN.S117210 27799765
    [Google Scholar]
  77. MudgilM. PawarP.K. Preparation and in vitro/ex vivo evaluation of moxifloxacin-loaded PLGA nanosuspensions for ophthalmic application.Sci. Pharm.201381259160610.3797/scipharm.1204‑16 23833723
    [Google Scholar]
  78. AllenT.M. CullisP.R. Liposomal drug delivery systems: From concept to clinical applications.Adv. Drug Deliv. Rev.2013651364810.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  79. WelderfaelT. YadavO.P. TaddesseA.M. KaushalJ. Synthesis, characterization and photocatalytic activities of Ag-N-codoped ZnO nanoparticles for degradation of methyl red.Bull. Chem. Soc. Ethiop.201327222123210.4314/bcse.v27i2.7
    [Google Scholar]
  80. KuotsuK. KarimK.M. MandalA.S. Niosome: A future of targeted drug delivery systems.J. Adv. Pharm. Technol. Res.20101437438010.4103/0110‑5558.76435 22247876
    [Google Scholar]
  81. KhanbabaieR. JahanshahiM. Revolutionary impact of nanodrug delivery on neuroscience.Curr. Neuropharmacol.201210437039210.2174/157015912804499456 23730260
    [Google Scholar]
  82. FazilM. Shadab, Baboota S, Sahni JK, Ali J. Nanotherapeutics for Alzheimer’s disease (AD): Past, present and future.J. Drug Target.20122029711310.3109/1061186X.2011.607499 22023651
    [Google Scholar]
  83. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.57282 20502539
    [Google Scholar]
  84. FarajiA.H. WipfP. Nanoparticles in cellular drug delivery.Bioorg. Med. Chem.20091782950296210.1016/j.bmc.2009.02.043 19299149
    [Google Scholar]
  85. ThomfordN. SenthebaneD. RoweA. Natural products for drug discovery in the 21st century: innovations for novel drug discovery.Int. J. Mol. Sci.2018196157810.3390/ijms19061578 29799486
    [Google Scholar]
  86. KangY.J. CutlerE.G. ChoH. Therapeutic nanoplatforms and delivery strategies for neurological disorders.Nano Converg.2018513510.1186/s40580‑018‑0168‑8 30499047
    [Google Scholar]
  87. JeongW. BuJ. KubiatowiczL.J. ChenS.S. KimY. HongS. Peptide–nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms?Nano Converg.2018513810.1186/s40580‑018‑0170‑1 30539365
    [Google Scholar]
  88. KarthivashanG. GanesanP. ParkS.Y. KimJ.S. ChoiD.K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease.Drug Deliv.201825130732010.1080/10717544.2018.1428243 29350055
    [Google Scholar]
  89. MüllerR.H. RadtkeM. WissingS.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations.Adv. Drug Deliv. Rev.200254Suppl. 1S131S15510.1016/S0169‑409X(02)00118‑7 12460720
    [Google Scholar]
  90. MüllerR.H. MäderK. GohlaS. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art.Eur. J. Pharm. Biopharm.200050116117710.1016/S0939‑6411(00)00087‑4 10840199
    [Google Scholar]
  91. zur MühlenA. SchwarzC. MehnertW. Solid lipid nanoparticles (SLN) for controlled drug delivery – Drug release and release mechanism.Eur. J. Pharm. Biopharm.199845214915510.1016/S0939‑6411(97)00150‑1 9704911
    [Google Scholar]
  92. CavalliR. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles.Int. J. Pharm.19971481475410.1016/S0378‑5173(96)04822‑3
    [Google Scholar]
  93. GascoM. Solid Lipid Nanospheres from Warm Micro-Emulsions: Improvements in SLN production for more efficient drug delivery.Pharmaceu Techno Euro199795258
    [Google Scholar]
  94. IgartuaM. SaulnierP. HeurtaultB. Development and characterization of solid lipid nanoparticles loaded with magnetite.Int. J. Pharm.20022331-214915710.1016/S0378‑5173(01)00936‑X 11897419
    [Google Scholar]
  95. SiekmannB. WestesenK. Investigations on solid lipid nanoparticles prepared by precipitation in o/w emulsions.Eur. J. Pharm. Biopharm.1996422104109
    [Google Scholar]
  96. TrottaM. DebernardiF. CaputoO. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique.Int. J. Pharm.20032571-215316010.1016/S0378‑5173(03)00135‑2 12711170
    [Google Scholar]
  97. MorelS. UgazioE. CavalliR. GascoM.R. Thymopentin in solid lipid nanoparticles.Int. J. Pharm.19961321-225926110.1016/0378‑5173(95)04388‑8
    [Google Scholar]
  98. MeiZ. ChenH. WengT. YangY. YangX. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide.Eur. J. Pharm. Biopharm.200356218919610.1016/S0939‑6411(03)00067‑5 12957632
    [Google Scholar]
  99. MehnertW. MäderK. Solid lipid nanoparticles.Adv. Drug Deliv. Rev.2012648310110.1016/j.addr.2012.09.021 11311991
    [Google Scholar]
  100. DubesA. Parrot-LopezH. AbdelwahedW. Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins.Eur. J. Pharm. Biopharm.200355327928210.1016/S0939‑6411(03)00020‑1 12754001
    [Google Scholar]
  101. HouD. XieC. HuangK. ZhuC. The production and characteristics of solid lipid nanoparticles (SLNs).Biomaterials200324101781178510.1016/S0142‑9612(02)00578‑1 12593960
    [Google Scholar]
  102. BunjesH. WestesenK. KochM.H.J. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles.Int. J. Pharm.19961291-215917310.1016/0378‑5173(95)04286‑5
    [Google Scholar]
  103. WestesenK. SiekmannB. KochM.H.J. Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction.Int. J. Pharm.1993931-318919910.1016/0378‑5173(93)90177‑H
    [Google Scholar]
  104. HeurtaultB. SaulnierP. PechB. ProustJ.E. BenoitJ.P. Physico-chemical stability of colloidal lipid particles.Biomaterials200324234283430010.1016/S0142‑9612(03)00331‑4 12853260
    [Google Scholar]
  105. JoresK. MehnertW. DrechslerM. BunjesH. JohannC. MäderK. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy.J. Control. Release200495221722710.1016/j.jconrel.2003.11.012 14980770
    [Google Scholar]
  106. KusonwiriyawongC. PichayakornW. LipipunV. RitthidejG.C. Retained integrity of protein encapsulated in spray-dried chitosan microparticles.J. Microencapsul.200926211112110.1080/02652040802190937 18608802
    [Google Scholar]
  107. XuR. Progress in nanoparticles characterization: Sizing and zeta potential measurement.Particuology20086211211510.1016/j.partic.2007.12.002
    [Google Scholar]
  108. RadomskasoukharevA. Stability of lipid excipients in solid lipid nanoparticles.Adv. Drug Deliv. Rev.200759641141810.1016/j.addr.2007.04.004 17553589
    [Google Scholar]
  109. GillP. MoghadamT.T. RanjbarB. Differential scanning calorimetry techniques: applications in biology and nanoscience.JBT2010214167193 21119929
    [Google Scholar]
  110. TeeranachaideekulV. SoutoE.B. JunyaprasertV.B. MüllerR.H. Cetyl palmitate-based NLC for topical delivery of Coenzyme Q10 – Development, physicochemical characterization and in vitro release studies.Eur. J. Pharm. Biopharm.200767114114810.1016/j.ejpb.2007.01.015 17346953
    [Google Scholar]
  111. JoshiM. PatravaleV. Nanostructured lipid carrier (NLC) based gel of celecoxib.Int. J. Pharm.20083461-212413210.1016/j.ijpharm.2007.05.060 17651933
    [Google Scholar]
  112. YouJ. WanF. DecuiF. SunY. DuY. HuF. Preparation and characteristic of vinorelbine bitartrate-loaded solid lipid nanoparticles.Int. J. Pharm.20073431-227027610.1016/j.ijpharm.2007.07.003 17706383
    [Google Scholar]
  113. EspositoE. RavaniL. DrechslerM. Cannabinoid antagonist in nanostructured lipid carriers (NLCs): design, characterization and in vivo study.Mater. Sci. Eng. C20154832833610.1016/j.msec.2014.12.012 25579930
    [Google Scholar]
  114. HaqueS. MdS. Intekhab AlamM. Kaur SahniJ. AliJ. BabootaS. Nanomedicines for brain targeting: A patent review.Recent Pat. Nanomed.20111214916110.2174/1877912311101020149
    [Google Scholar]
  115. GanesanP. KimB. RamalingamP. Antineuroinflammatory activities and neurotoxicological assessment of curcumin loaded solid lipid nanoparticles on LPS-stimulated BV-2 microglia cell models.Molecules2019246117010.3390/molecules24061170 30934561
    [Google Scholar]
  116. AlexanderA. AgrawalM. SarafS. SarafS. Ajazuddin, Chougule MB. Formulation strategies of nano lipid carrier for effective brain targeting of anti-AD drugs.Curr. Pharm. Des.202026273269328010.2174/1381612826666200212120947 32048957
    [Google Scholar]
  117. D’ArrigoJ.S. Naonotherapy to delay cognitive impairment: Using colloidal nanocarriers to block amyloid-beta-induced damage in brain cell membranes.SDRP J Nanotech Mat Sci2019294105
    [Google Scholar]
  118. TaliyanR. KakotyV. SarathlalK.C. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer’s disease.J. Control. Release202234352855010.1016/j.jconrel.2022.01.044 35114208
    [Google Scholar]
  119. LiW. ZhouM. XuN. Comparative analysis of protective effects of curcumin, curcumin-β-cyclodextrin nanoparticle and nanoliposomal curcumin on unsymmetrical dimethyl hydrazine poisoning in mice.Bioengineered20167533434110.1080/21655979.2016.1197029 27710431
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385300234240522100826
Loading
/content/journals/pnt/10.2174/0122117385300234240522100826
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test