Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

For centuries, people have used herbal medicine to treat a diversity of health complications and as a natural substance, they have a favourable effect on our health. Herbal ingredients can be utilized as lead molecules in the innovation and development of a new drug. Flavonoids are a class of chemical compounds with diverse phenolic structures, and they are found in a wide variety of foods, including fruits, vegetables, cereals, bark, roots, stems, flowers, tea, and wine. Quercetin is the most prevalent polyphenolic bioflavonoid or flavonoid. Quercetin is found in many food products and has demonstrated a wide range of pharmacological activities, including the treatment of allergies, ocular diseases, metabolic ailments, inflammatory illnesses, cardiovascular ailments and arthritis. Quercetin has attracted interest as an emerging pharmacophore with the potential to significantly advance research and the development of novel therapeutic medicines for a variety of diseases. Despite having a huge therapeutic potential, these flavonoids have unfavourable pharmacokinetic characteristics, low bioavailability, and poor solubility, limiting their application in therapeutics. The objective of the current study is to present a new update on the major therapeutic uses of quercetin and other types of nanocarriers that contain quercetin to treat various ailments.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385271262231114075737
2024-01-17
2025-09-04
Loading full text...

Full text loading...

References

  1. PanS.Y. ZhouS.F. GaoS.H. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics.Evid. Based Complement. Alternat. Med.2013201312510.1155/2013/627375 23634172
    [Google Scholar]
  2. NisarB. SultanA. RubabS.L. Comparison of medicinally important natural products versus synthetic drugs-a short commentary.Nat. Prod. Chem. Res.20186230810.4172/2329‑6836.1000308
    [Google Scholar]
  3. SenS. ChakrabortyR. DeB. Challenges and opportunities in the advancement of herbal medicine: India’s position and role in a global context.J. Herb. Med.201113-4677510.1016/j.hermed.2011.11.001
    [Google Scholar]
  4. DubeyN.K. KumarR. TripathiP. Global promotion of herbal medicine: India’s opportunity.Curr. Sci.20048613741
    [Google Scholar]
  5. YuanH. MaQ. YeL. PiaoG. The traditional medicine and modern medicine from natural products.Molecules201621555910.3390/molecules21050559 27136524
    [Google Scholar]
  6. BanjariI. MisirA. ŠavikinK. Antidiabetic effects of Aronia melanocarpa and its patent therapeutic properties.Front. Nutr.201745310.3389/fnut.2017.00053 29164127
    [Google Scholar]
  7. KesslerR.C. DavisR.B. FosterD.F. Long-term trends in the use of complementary and alternative medical therapies in the United States.Ann. Intern. Med.2001135426226810.7326/0003‑4819‑135‑4‑200108210‑00011 11511141
    [Google Scholar]
  8. KongJ.M. GohN.K. ChiaL.S. ChiaT.F. Recent advances in traditional plant drugs and orchids.Acta Pharmacol. Sin.2003241721 12511224
    [Google Scholar]
  9. KocheD. ShirsatR. KawaleM.A. An overview of major classes of phytochemicals: Their types and role in disease prevention.Hislopia Journal201691/2111
    [Google Scholar]
  10. JanA.T. KamliM.R. MurtazaI. SinghJ.B. AliA. HaqQ.M.R. Dietary flavonoid quercetin and associated health benefits—an overview.Food Rev. Int.201026330231710.1080/87559129.2010.484285
    [Google Scholar]
  11. AltomareA. FioreM. D’ErcoleG. Protective role of natural compounds under radiation-induced injury.Nutrients20221424537410.3390/nu14245374 36558533
    [Google Scholar]
  12. FakhriS. GravandiM.M. AbdianS. MoradiS.Z. EcheverríaJ. Quercetin derivatives in combating spinal cord injury: A mechanistic and systematic review.Life20221212196010.3390/life12121960 36556325
    [Google Scholar]
  13. ParasuramanS. Anand DavidA.V. ArulmoliR. Overviews of biological importance of quercetin: A bioactive flavonoid.Pharmacogn. Rev.20161020848910.4103/0973‑7847.194044 28082789
    [Google Scholar]
  14. WongS.K. ChinK.Y. Ima-NirwanaS. Quercetin as an agent for protecting the bone: A review of the current evidence.Int. J. Mol. Sci.20202117644810.3390/ijms21176448 32899435
    [Google Scholar]
  15. SinghP. ArifY. BajguzA. HayatS. The role of quercetin in plants.Plant Physiol. Biochem.2021166101910.1016/j.plaphy.2021.05.023 34087741
    [Google Scholar]
  16. KhanA. AliT. RehmanS.U. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain.Front. Pharmacol.201891138310.3389/fphar.2018.01383 30618732
    [Google Scholar]
  17. Deepika, Maurya PK. Deepika; Maurya, P.K. Health benefits of quercetin in age-related diseases.Molecules2022278249810.3390/molecules27082498 35458696
    [Google Scholar]
  18. AdegokeA.O. NjokuR. BamigbowuO.E. IdungU.I. Effect of quercetin on liver oxidative stress parameters induced by butylparaben in male wistar rats.Int J Med Health Sci Res20218117
    [Google Scholar]
  19. DabeekW.M. MarraM.V. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans.Nutrients20191110228810.3390/nu11102288 31557798
    [Google Scholar]
  20. BerardiniN. FezerR. ConradJ. BeifussU. CarleR. SchieberA. Screening of mango (Mangifera indica L.) cultivars for their contents of flavonol O- and xanthone C-glycosides, anthocyanins, and pectin.J. Agric. Food Chem.20055351563157010.1021/jf0484069 15740041
    [Google Scholar]
  21. ChangQ. WongY.S. Identification of flavonoids in hakmeitau beans (Vigna sinensis) by high-performance liquid chromatography-electrospray mass spectrometry (LC-ESI/MS).J. Agric. Food Chem.200452226694669910.1021/jf049114a 15506802
    [Google Scholar]
  22. NicolleC. CarnatA. FraisseD. Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium).J. Sci. Food Agric.200484152061206910.1002/jsfa.1916
    [Google Scholar]
  23. NemethK. PiskulaM.K. Food content, processing, absorption and metabolism of onion flavonoids.Crit. Rev. Food Sci. Nutr.200747439740910.1080/10408390600846291 17457724
    [Google Scholar]
  24. KimD.O. ChunO.K. KimY.J. MoonH.Y. LeeC.Y. Quantification of polyphenolics and their antioxidant capacity in fresh plums.J. Agric. Food Chem.200351226509651510.1021/jf0343074 14558771
    [Google Scholar]
  25. GonçalvesB. LandboA.K. KnudsenD. Effect of ripeness and postharvest storage on the phenolic profiles of Cherries (Prunus avium L.).J. Agric. Food Chem.200452352353010.1021/jf030595s 14759143
    [Google Scholar]
  26. MaterskaM. Quercetin and its derivatives: Chemical structure and bioactivity-a review.Pol. J. Food Nutr. Sci.2008584407413
    [Google Scholar]
  27. BouktaibM. AtmaniA. RolandoC. Regio- and stereoselective synthesis of the major metabolite of quercetin, quercetin-3-O-β-d-glucuronide.Tetrahedron Lett.200243356263626610.1016/S0040‑4039(02)01264‑9
    [Google Scholar]
  28. WiczkowskiW. PiskułaM.K. Food flavonoids.Pol. J. Food Nutr. Sci.20041354101114
    [Google Scholar]
  29. MarianiC. BracaA. VitaliniS. De TommasiN. VisioliF. FicoG. Flavonoid characterization and in vitro antioxidant activity of Aconitum anthora L. (Ranunculaceae).Phytochemistry20086951220122610.1016/j.phytochem.2007.12.009 18226822
    [Google Scholar]
  30. FerryD.R. SmithA. MalkhandiJ. Phase I clinical trial of the flavonoid quercetin: Pharmacokinetics and evidence for in vivo tyrosine kinase inhibition.Clin. Cancer Res.199624659668 9816216
    [Google Scholar]
  31. GraefeE.U. WittigJ. MuellerS. Pharmacokinetics and bioavailability of quercetin glycosides in humans.J. Clin. Pharmacol.200141549249910.1177/00912700122010366 11361045
    [Google Scholar]
  32. GraefeE.U. DerendorfH. VeitM. Pharmacokinetics and bioavailability of the flavonol quercetin in humans.Int. J. Clin. Pharmacol. Ther.1999375219233 10363620
    [Google Scholar]
  33. DiasM.C. PintoD.C.G.A. SilvaA.M.S. Plant flavonoids: Chemical characteristics and biological activity.Molecules20212617537710.3390/molecules26175377 34500810
    [Google Scholar]
  34. KandemirK. TomasM. McClementsD.J. CapanogluE. Recent advances on the improvement of quercetin bioavailability.Trends Food Sci. Technol.202211919220010.1016/j.tifs.2021.11.032
    [Google Scholar]
  35. Winkel-ShirleyB. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology.Plant Physiol.2001126248549310.1104/pp.126.2.485 11402179
    [Google Scholar]
  36. CaoJ.N. WangW.H. QuY.J. Biosynthesis and evaluation of a novel highly water-soluble quercetin glycoside derivative.J. Asian Nat. Prod. Res.202224875476010.1080/10286020.2021.1981875 34647847
    [Google Scholar]
  37. AzeemM. HanifM. MahmoodK. AmeerN. ChughtaiF.R.S. AbidU. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: a review.Polym. Bull.202380124126210.1007/s00289‑022‑04091‑8 35125574
    [Google Scholar]
  38. NguyenT.L.A. BhattacharyaD. Antimicrobial activity of quercetin: an approach to its mechanistic principle.Molecules2022278249410.3390/molecules27082494 35458691
    [Google Scholar]
  39. ZouH. YeH. KamarajR. ZhangT. ZhangJ. PavekP. A review on pharmacological activities and synergistic effect of quercetin with small molecule agents.Phytomedicine20219215373610.1016/j.phymed.2021.153736 34560520
    [Google Scholar]
  40. LesjakM. BearaI. SiminN. Antioxidant and anti-inflammatory activities of quercetin and its derivatives.J. Funct. Foods201840687510.1016/j.jff.2017.10.047
    [Google Scholar]
  41. MagarR.T. SohngJ.K. A review on structure, modifications and structure-activity relation of quercetin and its derivatives.J. Microbiol. Biotechnol.2020301112010.4014/jmb.1907.07003 31752056
    [Google Scholar]
  42. SharmilaG. AthiraiT. KiruthigaB. Chemopreventive effect of quercetin in MNU and testosterone induced prostate cancer of Sprague-Dawley rats.Nutr. Cancer2014661384610.1080/01635581.2014.847967 24320139
    [Google Scholar]
  43. HanasakiY. OgawaS. FukuiS. The correlation between active oxygens scavenging and antioxidative effects of flavonoids.Free Radic. Biol. Med.199416684585010.1016/0891‑5849(94)90202‑X 8070690
    [Google Scholar]
  44. QinX.R. ZhangM.J. GaoX.N. LinY. LiM.A. Si-YiH.E. Study on the antibacterial activity of quercetin.Chem Bioeng20092645557
    [Google Scholar]
  45. YangD. WangT. LongM. LiP. Quercetin: Its main pharmacological activity and potential application in clinical medicine.Oxid. Med. Cell. Longev.2020202011310.1155/2020/8825387 33488935
    [Google Scholar]
  46. OliveiraV.M. CarraroE. AulerM.E. KhalilN.M. Quercetin and rutin as potential agents antifungal against Cryptococcus spp.Braz. J. Biol.20167641029103410.1590/1519‑6984.07415 27166572
    [Google Scholar]
  47. SalehiB. MachinL. MonzoteL. Therapeutic potential of quercetin: new insights and perspectives for human health.ACS Omega2020520118491187210.1021/acsomega.0c01818 32478277
    [Google Scholar]
  48. SuhD.K. LeeE.J. KimH.C. KimJ.H. Induction of G1/S phase arrest and apoptosis by quercetin in human osteosarcoma cells.Arch. Pharm. Res.201033578178510.1007/s12272‑010‑0519‑4 20512478
    [Google Scholar]
  49. ZhangH. ZhangM. YuL. ZhaoY. HeN. YangX. Antitumor activities of quercetin and quercetin-5′,8-disulfonate in human colon and breast cancer cell lines.Food Chem. Toxicol.20125051589159910.1016/j.fct.2012.01.025 22310237
    [Google Scholar]
  50. RaoK.V.K. IndapM.A. RadhikaS. MotiwaleL. Quercetin: Antitumor activity and pharmacological manipulations for increased therapeutic gains.Indian J. Pharm. Sci.200668446546910.4103/0250‑474X.27819
    [Google Scholar]
  51. SudanS. RupasingheH.P. Quercetin-3-O-glucoside induces human DNA topoisomerase II inhibition, cell cycle arrest and apoptosis in hepatocellular carcinoma cells.Anticancer Res.201434416911699 24692698
    [Google Scholar]
  52. OršolićN. KneževićA.H. ŠverL. TerzićS. BašićI. Immunomodulatory and antimetastatic action of propolis and related polyphenolic compounds.J. Ethnopharmacol.2004942-330731510.1016/j.jep.2004.06.006 15325736
    [Google Scholar]
  53. GeraetsL. MoonenH.J.J. BrauersK. WoutersE.F.M. BastA. HagemanG.J. Dietary flavones and flavonoles are inhibitors of poly(ADP-ribose)polymerase-1 in pulmonary epithelial cells.J. Nutr.2007137102190219510.1093/jn/137.10.2190 17884996
    [Google Scholar]
  54. MlcekJ. JurikovaT. SkrovankovaS. SochorJ. Quercetin and its anti-allergic immune response.Molecules201621562310.3390/molecules21050623 27187333
    [Google Scholar]
  55. Boesch-SaadatmandiC. WagnerA.E. WolfframS. RimbachG. Effect of quercetin on inflammatory gene expression in mice liver in vivo – role of redox factor 1, miRNA-122 and miRNA-125b.Pharmacol. Res.201265552353010.1016/j.phrs.2012.02.007 22402395
    [Google Scholar]
  56. NiemanD.C. HensonD.A. MaxwellK.R. Effects of quercetin and EGCG on mitochondrial biogenesis and immunity.Med. Sci. Sports Exerc.20094171467147510.1249/MSS.0b013e318199491f 19516153
    [Google Scholar]
  57. EdwardsR.L. LyonT. LitwinS.E. RabovskyA. SymonsJ.D. JaliliT. Quercetin reduces blood pressure in hypertensive subjects.J. Nutr.2007137112405241110.1093/jn/137.11.2405 17951477
    [Google Scholar]
  58. TeraoJ. Factors modulating bioavailability of quercetin-related flavonoids and the consequences of their vascular function.Biochem. Pharmacol.2017139152310.1016/j.bcp.2017.03.021 28377278
    [Google Scholar]
  59. WeiX. MengX. YuanY. ShenF. LiC. YangJ. Quercetin exerts cardiovascular protective effects in LPS-induced dysfunction in vivo by regulating inflammatory cytokine expression, NF-κB phosphorylation, and caspase activity.Mol. Cell. Biochem.20184461-2435210.1007/s11010‑018‑3271‑6 29322353
    [Google Scholar]
  60. CostaL.G. GarrickJ.M. RoquèP.J. PellacaniC. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxidative.Oxid. Med. Cell. Longev.2016201611010.1155/2016/2986796 26904161
    [Google Scholar]
  61. CaruanaM. CauchiR. VassalloN. Putative role of red wine polyphenols against brain pathology in Alzheimer’s and Parkinson’s disease.Front. Nutr.201633110.3389/fnut.2016.00031 27570766
    [Google Scholar]
  62. AyM. LuoJ. LangleyM. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s Disease.J. Neurochem.2017141576678210.1111/jnc.14033 28376279
    [Google Scholar]
  63. KhanH. UllahH. AschnerM. CheangW.S. AkkolE.K. Neuroprotective effects of quercetin in Alzheimer’s disease.Biomolecules20191015910.3390/biom10010059 31905923
    [Google Scholar]
  64. MolaeiA. HatamiH. DehghanG. SadeghianR. KhajehnasiriN. Synergistic effects of quercetin and regular exercise on the recovery of spatial memory and reduction of parameters of oxidative stress in animal model of Alzheimer’s disease.EXCLI J.202019596612 32483406
    [Google Scholar]
  65. LvC. HongT. YangZ. Effect of quercetin in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced mouse model of Parkinson’s disease.Evid. Based Complement. Alternat. Med.201220121610.1155/2012/928643 22454690
    [Google Scholar]
  66. WangD.M. LiS.Q. WuW.L. ZhuX.Y. WangY. YuanH.Y. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease.Neurochem. Res.20143981533154310.1007/s11064‑014‑1343‑x 24893798
    [Google Scholar]
  67. SunS.W. YuH.Q. ZhangH. ZhengY.L. WangJ.J. LuoL. Quercetin attenuates spontaneous behavior and spatial memory impairment in d-galactose–treated mice by increasing brain antioxidant capacity.Nutr. Res.200727316917510.1016/j.nutres.2007.01.010
    [Google Scholar]
  68. IshisakaA. IchikawaS. SakakibaraH. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats.Free Radic. Biol. Med.20115171329133610.1016/j.freeradbiomed.2011.06.017 21741473
    [Google Scholar]
  69. JuŸwiaks Wójcickij MokrzyckiK et al. Effect of quercetin on experimental hyperlipidemia and atherosclerosis in rabbits.Pharmacol. Rep.20055757604609
    [Google Scholar]
  70. García-SauraM.F. GalisteoM. VillarI.C. Effects of chronic quercetin treatment in experimental renovascular hypertension.Mol. Cell. Biochem.20052701-214715510.1007/s11010‑005‑4503‑0 15792364
    [Google Scholar]
  71. El-HoranyH.E. El-latifR.N.A. ElBatshM.M. EmamM.N. Ameliorative effect of quercetin on neurochemical and behavioral deficits in rotenone rat model of Parkinson’s disease: modulating autophagy (quercetin on experimental Parkinson’s disease).J. Biochem. Mol. Toxicol.201630736036910.1002/jbt.21821 27252111
    [Google Scholar]
  72. AbdelmoatyM.A. IbrahimM.A. AhmedN.S. AbdelazizM.A. Confirmatory studies on the antioxidant and antidiabetic effect of quercetin in rats.Indian J. Clin. Biochem.201025218819210.1007/s12291‑010‑0034‑x 23105908
    [Google Scholar]
  73. GardiC. BauerovaK. StringaB. Quercetin reduced inflammation and increased antioxidant defense in rat adjuvant arthritis.Arch. Biochem. Biophys.201558315015710.1016/j.abb.2015.08.008 26297952
    [Google Scholar]
  74. SriraksaN. WattanathornJ. MuchimapuraS. TiamkaoS. BrownK. ChaisiwamongkolK. Cognitive-enhancing effect of quercetin in a rat model of Parkinson’s disease induced by 6-hydroxydopamine.Evid. Based Complement. Alternat. Med.201220121910.1155/2012/823206 21792372
    [Google Scholar]
  75. TeleanuD.M. NiculescuA.G. LunguI.I. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases.Int. J. Mol. Sci.20222311593810.3390/ijms23115938 35682615
    [Google Scholar]
  76. YangH. SongY. LiangY. LiR. Quercetin treatment improves renal function and protects the kidney in a rat model of adenine-induced chronic kidney disease.Med. Sci. Monit.2018244760476610.12659/MSM.909259 29987270
    [Google Scholar]
  77. LeeH.N. ShinS.A. ChooG.S. Anti inflammatory effect of quercetin and galangin in LPS stimulated RAW264.7 macrophages and DNCB induced atopic dermatitis animal models.Int. J. Mol. Med.2018412888898 29207037
    [Google Scholar]
  78. SchültkeE. GriebelR.W. JuurlinkB.H.J. Quercetin attenuates inflammatory processes after spinal cord injury in an animal model.Spinal Cord2010481285786110.1038/sc.2010.45 20440299
    [Google Scholar]
  79. SeoM.J. LeeY.J. HwangJ.H. KimK.J. LeeB.Y. The inhibitory effects of quercetin on obesity and obesity-induced inflammation by regulation of MAPK signaling.J. Nutr. Biochem.201526111308131610.1016/j.jnutbio.2015.06.005 26277481
    [Google Scholar]
  80. RiveraL. MorónR. SánchezM. ZarzueloA. GalisteoM. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats.Obesity (Silver Spring)20081692081208710.1038/oby.2008.315 18551111
    [Google Scholar]
  81. YangH YangT HengC Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. phytpatent Res2019331231405210.1002/ptr.6486 31452288
  82. MahmoudM.F. HassanN.A. El BassossyH.M. FahmyA. Quercetin protects against diabetes-induced exaggerated vasoconstriction in rats: Effect on low grade inflammation.PLoS One201385e6378410.1371/journal.pone.0063784 23717483
    [Google Scholar]
  83. PanyS.U. PalA.B. SahuP.K. Neuroprotective effect of quercetin in neurotoxicity induced rats: Role of neuroinflammation in neurodegeneration.Asian J. Pharm. Clin. Res.201474152156
    [Google Scholar]
  84. HuangR. ZhongT. WuH. Experimental research quercetin protects against lipopolysaccharide-induced acute lung injury in rats through suppression of inflammation and oxidative stress.Arch. Med. Sci.20152242743210.5114/aoms.2015.50975 25995762
    [Google Scholar]
  85. WangL. WangB. LiH. Quercetin, a flavonoid with anti-inflammatory activity, suppresses the development of abdominal aortic aneurysms in mice.Eur. J. Pharmacol.20126901-313314110.1016/j.ejphar.2012.06.018 22728078
    [Google Scholar]
  86. ZhangY. YiB. MaJ. Quercetin promotes neuronal and behavioral recovery by suppressing inflammatory response and apoptosis in a rat model of intracerebral hemorrhage.Neurochem. Res.201540119520310.1007/s11064‑014‑1457‑1 25543848
    [Google Scholar]
  87. MarcolinE. San-MiguelB. VallejoD. Quercetin treatment ameliorates inflammation and fibrosis in mice with nonalcoholic steatohepatitis.J. Nutr.2012142101821182810.3945/jn.112.165274 22915297
    [Google Scholar]
  88. ZhangQ.Y. PanY. WangR. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats.J. Nutr. Biochem.201425442042810.1016/j.jnutbio.2013.11.014 24491314
    [Google Scholar]
  89. JeonS.J. KimM.O. Ali-ShahF. KohP.O. Quercetin attenuates the injury-induced reduction of γ-enolase expression in a middle cerebral artery occlusion animal model.Lab. Anim. Res.201733430831410.5625/lar.2017.33.4.308 29399028
    [Google Scholar]
  90. SchültkeE. KamencicH. SkiharV.M. GriebelR. JuurlinkB. Quercetin in an animal model of spinal cord compression injury: correlation of treatment duration with recovery of motor function.Spinal Cord201048211211710.1038/sc.2009.111 19736558
    [Google Scholar]
  91. HashemzaeiM. FarA.D. YariA. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo.Oncol. Rep.201738281982810.3892/or.2017.5766 28677813
    [Google Scholar]
  92. ZhouJ. FangL. LiaoJ. Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo.PLoS One2017123e017283810.1371/journal.pone.0172838 28264020
    [Google Scholar]
  93. SilvaG.A. Introduction to nanotechnology and its applications to medicine.Surg. Neurol.200461321622010.1016/j.surneu.2003.09.036 14984987
    [Google Scholar]
  94. SahuT. RatreY.K. ChauhanS. BhaskarL.V.K.S. NairM.P. VermaH.K. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science.J. Drug Deliv. Sci. Technol.20216310248710.1016/j.jddst.2021.102487
    [Google Scholar]
  95. SakaR. ChellaN. Nanotechnology for delivery of natural therapeutic substances: a review.Environ. Chem. Lett.20211921097110610.1007/s10311‑020‑01103‑9
    [Google Scholar]
  96. LombardoR. MusumeciT. CarboneC. PignatelloR. Nanotechnologies for intranasal drug delivery: An update of literature.Pharm. Dev. Technol.202126882484510.1080/10837450.2021.1950186 34218736
    [Google Scholar]
  97. AnsariS.H. SameemM. IslamF. Influence of nanotechnology on herbal drugs: A Review.J. Adv. Pharm. Technol. Res.20123314214610.4103/2231‑4040.101006 23057000
    [Google Scholar]
  98. RangasamyM. Nano technology: A review.J. Appl. Pharm. Sci.201112816
    [Google Scholar]
  99. Da SilvaT.A. GomesJ.H. de BulhõesL.C. Therapeutic potential of quercetin based on nanotechnology: A review.Rev Virtual Quim20191141210.21577/1984‑6835.20190096
    [Google Scholar]
  100. PinheiroR.G.R. PinheiroM. NevesA.R. Nanotechnology innovations to enhance the therapeutic efficacy of quercetin.Nanomaterials20211110265810.3390/nano11102658 34685098
    [Google Scholar]
  101. KumariA. YadavS.K. PakadeY.B. SinghB. YadavS.C. Development of biodegradable nanoparticles for delivery of quercetin.Colloids Surf. B Biointerfaces201080218419210.1016/j.colsurfb.2010.06.002 20598513
    [Google Scholar]
  102. KakranM. SahooN.G. LiL. JudehZ. Fabrication of quercetin nanoparticles by anti-solvent precipitation method for enhanced dissolution.Powder Technol.2012223596410.1016/j.powtec.2011.08.021
    [Google Scholar]
  103. SunD. LiN. ZhangW. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease.Colloids Surf. B Biointerfaces201614811612910.1016/j.colsurfb.2016.08.052 27591943
    [Google Scholar]
  104. ZhangY. YangY. TangK. HuX. ZouG. Physicochemical characterization and antioxidant activity of quercetin-loaded chitosan nanoparticles.J. Appl. Polym. Sci.2008107289189710.1002/app.26402
    [Google Scholar]
  105. AnwerM.K. Al-MansoorM.A. JamilS. Al-ShdefatR. AnsariM.N. ShakeelF. Development and evaluation of PLGA polymer based nanoparticles of quercetin.Int. J. Biol. Macromol.20169221321910.1016/j.ijbiomac.2016.07.002 27381585
    [Google Scholar]
  106. FarragY. IdeW. MonteroB. Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique.Int. J. Biol. Macromol.201811442643310.1016/j.ijbiomac.2018.03.134 29580996
    [Google Scholar]
  107. PoolH. QuintanarD. FigueroaJ.D. Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles.J. Nanomater.2012201211210.1155/2012/145380
    [Google Scholar]
  108. BaksiR SinghDP BorseSP RanaR SharmaV NivsarkarM In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed pharmacpatent201810615132610.1016/j.biopha.2018.07.10630119227
    [Google Scholar]
  109. LiH. ZhaoX. MaY. ZhaiG. LiL. LouH. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles.J. Control. Release2009133323824410.1016/j.jconrel.2008.10.002 18951932
    [Google Scholar]
  110. HanS.B. KwonS.S. JeongY.M. YuE.R. ParkS.N. Physical characterization and in vitro skin permeation of solid lipid nanoparticles for transdermal delivery of quercetin.Int. J. Cosmet. Sci.201436658859710.1111/ics.12160 25220288
    [Google Scholar]
  111. BoseS. DuY. TakhistovP. Michniak-KohnB. Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems.Int. J. Pharm.20134411-2566610.1016/j.ijpharm.2012.12.013 23262430
    [Google Scholar]
  112. TalaricoL. ConsumiM. LeoneG. TamasiG. MagnaniA. Solid lipid nanoparticles produced via a coacervation method as promising carriers for controlled release of quercetin.Molecules2021269269410.3390/molecules26092694 34064488
    [Google Scholar]
  113. BoseS. Michniak-KohnB. Preparation and characterization of lipid based nanosystems for topical delivery of quercetin.Eur. J. Pharm. Sci.201348344245210.1016/j.ejps.2012.12.005 23246734
    [Google Scholar]
  114. NiS. SunR. ZhaoG. XiaQ. Quercetin loaded nanostructured lipid carrier for food fortification: Preparation, characterization and in vitro study.J. Food Process Eng.20153819310610.1111/jfpe.12130
    [Google Scholar]
  115. HuangJ. WangQ. LiT. XiaN. XiaQ. Nanostructured lipid carrier (NLC) as a strategy for encapsulation of quercetin and linseed oil: Preparation and in vitro characterization studies.J. Food Eng.201721511210.1016/j.jfoodeng.2017.07.002
    [Google Scholar]
  116. SunM. NieS. PanX. ZhangR. FanZ. WangS. Quercetin-nanostructured lipid carriers: Characteristics and anti-breast cancer activities in vitro.Colloids Surf. B Biointerfaces2014113152410.1016/j.colsurfb.2013.08.032 24060926
    [Google Scholar]
  117. JangdeR. SinghD. Preparation and optimization of quercetin-loaded liposomes for wound healing, using response surface methodology.Artif. Cells Nanomed. Biotechnol.201644263564110.3109/21691401.2014.975238 25375215
    [Google Scholar]
  118. GokhaleJP MahajanHS SuranaSJ Quercetin loaded nanoemulsion- based gel for rheumatoid arthritis: In vivo and in vitro studies. Biomed pharmacpatent201911210862210.1016/j.biopha.2019.108622 30797146
  119. GalhoA.R. CordeiroM.F. RibeiroS.A. Protective role of free and quercetin-loaded nanoemulsion against damage induced by intracerebral haemorrhage in rats.Nanotechnology2016271717510110.1088/0957‑4484/27/17/175101 26965041
    [Google Scholar]
  120. TranT.H. GuoY. SongD. BrunoR.S. LuX. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability.J. Pharm. Sci.2014103384085210.1002/jps.23858 24464737
    [Google Scholar]
  121. Ben-ShabatS. YarmolinskyL. PoratD. DahanA. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies.Drug Deliv. Transl. Res.202010235436710.1007/s13346‑019‑00691‑6 31788762
    [Google Scholar]
  122. JainA.K. ThankiK. JainS. Solidified self-nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen: Part I. Formulation development, statistical optimization, and in vitro characterization.Pharm. Res.201431492394510.1007/s11095‑013‑1213‑2 24297067
    [Google Scholar]
  123. SahooN.G. KakranM. ShaalL.A. Preparation and characterization of quercetin nanocrystals.J. Pharm. Sci.201110062379239010.1002/jps.22446 21491450
    [Google Scholar]
  124. KakranM. ShegokarR. SahooN.G. Al ShaalL. LiL. MüllerR.H. Fabrication of quercetin nanocrystals: Comparison of different methods.Eur. J. Pharm. Biopharm.201280111312110.1016/j.ejpb.2011.08.006 21896330
    [Google Scholar]
  125. Sadeghi-GhadiZ. EbrahimnejadP. Talebpour AmiriF. NokhodchiA. Improved oral delivery of quercetin with hyaluronic acid containing niosomes as a promising formulation.J. Drug Target.202129222523410.1080/1061186X.2020.1830408 32997536
    [Google Scholar]
  126. ElmowafyE. El-DeranyM.O. BiondoF. TiboniM. CasettariL. SolimanM.E. Quercetin loaded monolaurate sugar esters-based niosomes: Sustained release and mutual antioxidant—hepatoprotective interplay.Pharmaceutics202012214310.3390/pharmaceutics12020143 32050489
    [Google Scholar]
  127. NagavarmaB.V. YadavH.K. AyazA.V. VasudhaL.S. ShivakumarH.G. Different techniques for preparation of polymeric nanoparticles-a review.Asian J. Pharm. Clin. Res.2012531623
    [Google Scholar]
  128. El-SayK.M. El-SawyH.S. Polymeric nanoparticles: Promising platform for drug delivery.Int. J. Pharm.20175281-267569110.1016/j.ijpharm.2017.06.052 28629982
    [Google Scholar]
  129. MasoodF. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.Mater. Sci. Eng. C20166056957810.1016/j.msec.2015.11.067 26706565
    [Google Scholar]
  130. ZielińskaA. CarreiróF. OliveiraA.M. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules25163731 32824172
    [Google Scholar]
  131. GagliardiA. GiulianoE. VenkateswararaoE. Biodegradable polymeric nanoparticles for drug delivery to solid tumors.Front. Pharmacol.20211260162610.3389/fphar.2021.601626 33613290
    [Google Scholar]
  132. AnjuS. PrajithaN. SukanyaV.S. MohananP.V. Complicity of degradable polymers in health-care applications.Mater. Today Chem.20201610023610.1016/j.mtchem.2019.100236
    [Google Scholar]
  133. SuS. KangP.M. Systemic review of biodegradable nanomaterials in nanomedicine.Nanomaterials202010465610.3390/nano10040656 32244653
    [Google Scholar]
  134. ManjunathK. ReddyJ.S. VenkateswarluV. Solid lipid nanoparticles as drug delivery systems.Methods Find. Exp. Clin. Pharmacol.200527212714410.1358/mf.2005.27.2.876286 15834465
    [Google Scholar]
  135. GarudA. SinghD. GarudN. Solid lipid nanoparticles (SLN): Method, characterization and applications.Int. Curr. Pharm. J.201211138439310.3329/icpj.v1i11.12065
    [Google Scholar]
  136. MishraV. BansalK. VermaA. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems.Pharmaceutics201810419110.3390/pharmaceutics10040191 30340327
    [Google Scholar]
  137. ChauhanI. YasirM. VermaM. SinghA.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery.Adv. Pharm. Bull.202010215016510.34172/apb.2020.021 32373485
    [Google Scholar]
  138. DoktorovovaS. SoutoE.B. Nanostructured lipid carrier-based hydrogel formulations for drug delivery: A comprehensive review.Expert Opin. Drug Deliv.20096216517610.1517/17425240802712590 19239388
    [Google Scholar]
  139. GabaB. FazilM. AliA. BabootaS. SahniJ.K. AliJ. Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration.Drug Deliv.201522669170010.3109/10717544.2014.898110 24670099
    [Google Scholar]
  140. JaiswalP. GidwaniB. VyasA. Nanostructured lipid carriers and their current application in targeted drug delivery.Artif. Cells Nanomed. Biotechnol.2016441274010.3109/21691401.2014.909822 24813223
    [Google Scholar]
  141. LaouiniA. Jaafar-MaalejC. Limayem-BlouzaI. SfarS. CharcossetC. FessiH. Preparation, characterization and applications of liposomes: State of the art.Journal of Colloid Science and Biotechnology20121214716810.1166/jcsb.2012.1020
    [Google Scholar]
  142. PatilY.P. JadhavS. Novel methods for liposome preparation.Chem. Phys. Lipids201417781810.1016/j.chemphyslip.2013.10.011 24220497
    [Google Scholar]
  143. TsujiT. MoritaS. IkedaY. TeradaT. Enzymatic fluorometric assays for quantifying all major phospholipid classes in cells and intracellular organelles.Sci. Rep.201991860710.1038/s41598‑019‑45185‑0 31197208
    [Google Scholar]
  144. HuangZ. LiX. ZhangT. Progress involving new techniques for liposome preparation.Asian J. Pharm. Sci.20149417618210.1016/j.ajps.2014.06.001
    [Google Scholar]
  145. GajananG.V. MilindG.M. AdhikraoY. Different techniques for preparation of nanoemulsion with characterisation and various application of it—A review.World J. Pharm. Res.20176112128
    [Google Scholar]
  146. KorolevaM.Y. YurtovE.V. Nanoemulsions: The properties, methods of preparation and promising applications.Russ. Chem. Rev.2012811214310.1070/RC2012v081n01ABEH004219
    [Google Scholar]
  147. DhahirR.K. Al-NimaA.M. Al-BazzazF. Nanoemulsions as ophthalmic drug delivery systems.Turkish Journal of Pharmaceutical Sciences202118565266410.4274/tjps.galenos.2020.59319 34708428
    [Google Scholar]
  148. SoutoE.B. CanoA. Martins-GomesC. CoutinhoT.E. ZielińskaA. SilvaA.M. Microemulsions and nanoemulsions in skin drug delivery.Bioengineering20229415810.3390/bioengineering9040158 35447718
    [Google Scholar]
  149. KumarN. VermaA. MandalA. Formation, characteristics and oil industry applications of nanoemulsions: A review.J. Petrol. Sci. Eng.202120610904210.1016/j.petrol.2021.109042
    [Google Scholar]
  150. AdilM. OnaiziS.A. Pickering nanoemulsions and their mechanisms in enhancing oil recovery: A comprehensive review.Fuel202231912366710.1016/j.fuel.2022.123667
    [Google Scholar]
  151. SolansC. IzquierdoP. NollaJ. AzemarN. Garcia-CelmaM.J. Nano-emulsions.Curr. Opin. Colloid Interface Sci.2005103-410211010.1016/j.cocis.2005.06.004
    [Google Scholar]
  152. DateA.A. DesaiN. DixitR. NagarsenkerM. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances.Nanomedicine20105101595161610.2217/nnm.10.126 21143036
    [Google Scholar]
  153. BuyaA.B. BeloquiA. MemvangaP.B. PréatV. Self-nano-emulsifying drug-delivery systems: From the development to the current applications and challenges in oral drug delivery.Pharmaceutics20201212119410.3390/pharmaceutics12121194 33317067
    [Google Scholar]
  154. CherniakovI. DombA.J. HoffmanA. Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects.Expert Opin. Drug Deliv.20151271121113310.1517/17425247.2015.999038 25556987
    [Google Scholar]
  155. KhanA.W. KottaS. AnsariS.H. SharmaR.K. AliJ. Potentials and challenges in self-nanoemulsifying drug delivery systems.Expert Opin. Drug Deliv.20129101305131710.1517/17425247.2012.719870 22954323
    [Google Scholar]
  156. KrishnaK.B. PrabhakarC. A review on nanosuspensions in drug delivery.Int J Pharm Bio Sci201121549558
    [Google Scholar]
  157. GeethaG. PoojithaU. KhanK.A. Various techniques for preparation of nanosuspension-A Review.Int. J. Pharma Res. Rev.2014393037
    [Google Scholar]
  158. NayakS. PandaD. SahooJ. Nanosuspension: A novel drug delivery system.J. Pharm. Res.201032241246
    [Google Scholar]
  159. Ag SeleciD. SeleciM. WalterJ.G. StahlF. ScheperT. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications.J. Nanomater.2016201611310.1155/2016/7372306
    [Google Scholar]
  160. RajeraR. NagpalK. SinghS.K. MishraD.N. Niosomes: A controlled and novel drug delivery system.Biol. Pharm. Bull.201134794595310.1248/bpb.34.945 21719996
    [Google Scholar]
  161. YeoP.L. LimC.L. ChyeS.M. Kiong LingA.P. KohR.Y. Niosomes: A review of their structure, properties, methods of preparation, and medical applications.Asian Biomed.201811430131410.1515/abm‑2018‑0002
    [Google Scholar]
  162. OtsukaY EgawaE KanzakiN Muscle atrophy inhibitor containing quercetin glycosides. JP6942165B22019
    [Google Scholar]
  163. KimC-S HáH-K SongK-Y Therapeutic agent or osteoporosis comprising an active ingredient of quercetin derivatives. US20040162247A12004
    [Google Scholar]
  164. LijuanC YuquanW Quercetin hydroxypropyl beta-cyclodextrin clathrate liposome, and preparation method thereof and application thereof CP102580111B2014
    [Google Scholar]
  165. ChuanbinW LilingM JindianC Polymer micelle solution containing quercetin and its preparation method and application CP106727309A2017
    [Google Scholar]
  166. XiangtaoW JingD JingyiH YingyingL. A kind of quercetin nano grain and preparation method thereof CP105106117B2018
    [Google Scholar]
  167. QianC GangY ZongwanM HuazhenH NianJL A kind of quercetin metal nano drug and its preparation method and application CP109847062A2019
    [Google Scholar]
  168. GuangxiZ XinP XiaoyeY Hyaluronic acid-quercetin conjugate self-assembly micelle preparation and preparation method thereof CP104324384A2015
    [Google Scholar]
  169. JinmeiW CuilanW YingO Water-soluble quercetin nanoparticle and preparation method thereof CP107467662B2021
    [Google Scholar]
  170. LongguangJ YangZ DanC GuangpuX CaiY MingdongH. A kind of preparation method of quercetin nano particle and its preparing the application on anti-breast cancer medicines CP109999002A2019
    [Google Scholar]
  171. XiaojunS DanL YongyuanZ Quercetin skin lipidosome, lyophilized powder thereof and preparation method and application thereof CP103070826B2015
    [Google Scholar]
  172. TaoL HaiyunT Quercetin nanoparticles and preparation method thereof CP111686078A2020
    [Google Scholar]
  173. JingjingY JieH WenwenS Safe and effective quercetin nanometer sustained-release preparation for resisting silicon-dust pulmonary fibrosis and preparation method thereof CP113876738A2022
    [Google Scholar]
  174. JingjingY ShihuaC ConghuiD Quercetin oral sustained-release preparation modified by ionic emulsifier chitosan nanoparticles and preparation method thereof CP113797177A2023
    [Google Scholar]
  175. HaileM XiaofengR QiufangL Ultrasonic preparation method for protein peptide-polysaccharide nanoparticle loaded with bioactive component WIPO2022227700A12022
    [Google Scholar]
  176. ShikuiW YanfangZ RinaD Compound quercetin antibacterial nanoemulsion and preparation method thereof CP111544387B2020
    [Google Scholar]
  177. LingminJ LeiG Quercetin nanosuspension freeze-drying composition and preparation method and application thereof CP101904820A2010
    [Google Scholar]
  178. ZhaiG LiH LouH MaY Quercetin solid liposome nano particle preparation and its preparing method CP100367953C2008
    [Google Scholar]
  179. CaiY ShaoC ZhangR Psoralen-quercetin composite solid lipid nanoparticle preparation and preparation thereof CP104224752A2014
    [Google Scholar]
  180. XiaQ NiS Quercetin nanostructured lipid carrier and preparation method thereof CP104172184A2014
    [Google Scholar]
  181. ZhaiG LiH LouH MaY Quercetin solid liposome nano particle preparation and its preparing method CPCN1850070A2008
    [Google Scholar]
  182. KalliH LeafH. Quercetin nanoparticles US2018172942A12018
    [Google Scholar]
  183. ShahMR JabriT IqbalKM RoomeT UllahS KhanMQ Polyacrylonitrile based electrospun nanofibers loaded with zinc oxidequercetin nanoparticles for wound healing US20230181371A12023
  184. KhanS KharabeK YeolePG GanjiwaleRO MohamedJM Nanoemulgel formulation of oregano oil and quercetin and the method of preparation thereof IP2022210274852022
    [Google Scholar]
  185. ShajiY BrucelyY PaulrajG KannanCR KarthikeyanM A formulation of 2D layered doublehydroxide composition system for drug delivery and process thereof IP2022410733652022
  186. KiAC KyuPJ SanAY Formulation for controlling Varroa jacobsoni using quercetin KP10201900428352019
    [Google Scholar]
  187. SaadWA ParkDH Zinc- and quercetin-based pharmaceutical formulation for the production of antiviral medication effective for dengue and zika WIPO20180397552018
  188. GowthamarajanK ShanmugamR DwarampudiLP KadiyalaM Satish KumarMN Method of preparing novel poly herbal formulations containing curcumin, quercetin and piperine in the form of solid lipid nano particles and nano crystals IP4590/CHE/20132015
  189. GuptaJK MujwarS VarshneyM Phytoconstituent formulation for treatment of open-angle glaucoma (OAG) IP2022110637902022
  190. HuangL ZhangJ ShenL Nano co-delivery of quercetin and alantolactone promotes anti-tumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer US202202116632022
    [Google Scholar]
  191. DangT HongN Quy trình điều chế hệ vi nhũ tương nano quercetin VP12019023072019
    [Google Scholar]
  192. KimTG LeeYH ShinHD Method for specifically separating natural antioxidant, quercetin, using nano/micro encapsulation of cyclodextrin KP10200300197602003
  193. ZhangB LiuW TaoH LiX ChenP WangR Starch-based double-loaded functional nano particle as well as preparation method and application US202300426882023
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385271262231114075737
Loading
/content/journals/pnt/10.2174/0122117385271262231114075737
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test