Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Rheumatoid arthritis (RA) is a chronic condition causing joint pain and inflammation that has now spurred the interest in nanotechnology-based drug delivery for more effective treatment, and in this regard, carbon nanotubes (CNTs) are being explored for their potential to deliver the drugs steadily to manage the RA. Many investigators have been investigating both single-walled carbon nanotubes (SWCNT) as well as multi-walled carbon nanotubes (MWCNT) for managing arthritis targeted drug delivery. Moreover, functionalized CNTs show promise in delivering the drugs precisely and in a controlled manner, thereby minimizing toxicity. However, research on applications of CNTs as drug carriers for RA remains limited, thus necessitating further exploration to address the various challenges. In this present piece of writing, challenges in RA treatment and the advances in applications of CNTs for RA management are reported, consequently reflecting the CNTs as advanced drug delivery vehicles for arthritis treatment.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385293018240312050646
2024-03-18
2025-09-04
Loading full text...

Full text loading...

References

  1. ScottD.L. WolfeF. HuizingaT.W.J. Rheumatoid arthritis.Lancet201037697461094110810.1016/S0140‑6736(10)60826‑4 20870100
    [Google Scholar]
  2. van RielP.L.C.M. FransenJ. Established rheumatoid arthritis: Clinical assessments.Best Pract. Res. Clin. Rheumatol.200721580782510.1016/j.berh.2007.06.001 17870029
    [Google Scholar]
  3. Amaya-AmayaJ. Botello-CorzoD. CalixtoO.J. Usefulness of patients-reported outcomes in rheumatoid arthritis focus group.Arthritis (Egypt)2012201211310.1155/2012/935187 23097701
    [Google Scholar]
  4. Centers for Disease Control and Prevention Arthritis prevalence and activity limitations-United States, 1990.MMWR Morb. Mortal. Wkly. Rep.19944324433438
    [Google Scholar]
  5. Centers for Disease Control and Prevention Impact of arthritis and other rheumatic conditions on the health-care system-United States, 1997.MMWR Morb. Mortal. Wkly. Rep.19994817349353
    [Google Scholar]
  6. LiH. GouR. LiaoJ. Recent advances in nano-targeting drug delivery systems for rheumatoid arthritis treatment.Acta Materia Medica202321234110.15212/AMM‑2022‑0039
    [Google Scholar]
  7. ZhengM. JiaH. WangH. Application of nanomaterials in the treatment of rheumatoid arthritis.RSC Advances202111137129713710.1039/D1RA00328C 35423287
    [Google Scholar]
  8. BatraS. SharmaS. MehraN.K. Carbon nanotubes for drug delivery applications.Handbook of Carbon Nanotubes.ChamSpringer International Publishing202111410.1007/978‑3‑319‑70614‑6_39‑1
    [Google Scholar]
  9. LalwaniG. SitharamanB. WebsterT.J. Carbon nanotubes: An optimistic nanomaterial with superfluity applications in drug delivery and arthritis treatment.Int J Pharm Edu Res2022563S1S10
    [Google Scholar]
  10. AbrahamJ. ThomasS. KalarikkalN. Handbook of Carbon Nanotubes.ChamSpringer International Publishing202010.1007/978‑3‑319‑70614‑6
    [Google Scholar]
  11. SyngleA. VermaI. GargN. ChauhanK. PatyalS. SyngleV. Pos0837 Impact of jaki, tofacitinib, on cv risk in rheumatoid arthritis: Jaki cv risk impact study.Ann. Rheum. Dis.202382Suppl. 171671710.1136/annrheumdis‑2023‑eular.6002
    [Google Scholar]
  12. YaseenK. Rheumatoid Arthritis (RA).2023Available From: https://www.msdmanuals.com/en-gb/professional/musculoskeletal-and-connective-tissue-disorders/joint-disorders/rheumatoid-arthritis-ra
    [Google Scholar]
  13. BottaroA. The pathophysiology of osteoarthritis.2023Available From: https://www.verywellhealth.com/pathophysiology-osteoarthritis-5093836
    [Google Scholar]
  14. SissonsB. Pathophysiology of osteoarthritis: Symptoms, causes, and risk factors.2023Available From: https://www.medicalnewstoday.com/articles/pathophysiology-of-osteoarthritis
    [Google Scholar]
  15. PathanE. InmanR.D. Pathophysiology of reactive arthritis in: Infections and the rheumatic diseases.ChamSpringer International Publishing201934535310.1007/978‑3‑030‑23311‑2_32
    [Google Scholar]
  16. Synovitis.2023Available From: https://en.wikipedia.org/w/index.php?title=Synovitis&oldid=1162406338
  17. GeusensP. van den BerghJ. Bone erosions in rheumatoid arthritis.Rheumatology (Oxford)20145314510.1093/rheumatology/ket358 24196387
    [Google Scholar]
  18. WhitelawC.C. VaracalloM. Transient synovitis.Treasure Island, FLStatPearls Publishing2022
    [Google Scholar]
  19. CluettJ. Synovitis: Causes and treatments of joint inflammation.2023Available From: https://www.verywellhealth.com/definition-of-synovitis-2548497
    [Google Scholar]
  20. SoodV. SharmaM. ChauhanP. DograP.M. KumarA. SubramanianS. Association of hypovitaminosis d with poor bone health in patients of rheumatoid arthritis – a case–control study.APIK Journal of Internal Medicine202311422222710.4103/ajim.ajim_89_22
    [Google Scholar]
  21. YaseenK. Rheumatoid Arthritis.2023Available From: https://www.msdmanuals.com/en-gb/professional/musculoskeletal-and-connective-tissue-disorders/joint-disorders/rheumatoid-arthritis-ra
    [Google Scholar]
  22. SenR HurleyJA Osteoarthritis: From molecular pathways to therapeutic advances. Int J Mol Sci 20222022
    [Google Scholar]
  23. EatemadiA. DaraeeH. KarimkhanlooH. Carbon nanotubes: Properties, synthesis, purification, and medical applications.Nanoscale Res. Lett.20149139310.1186/1556‑276X‑9‑393 25170330
    [Google Scholar]
  24. WendlingD. PratiC. ChoukM. VerhoevenF. Reactive arthritis: Treatment challenges and future perspectives.Curr. Rheumatol. Rep.20202272910.1007/s11926‑020‑00904‑9 32458153
    [Google Scholar]
  25. BabaahmadiM. TayebiB. GholipourN.M. Rheumatoid arthritis: The old issue, the new therapeutic approach.Stem Cell Res. Ther.202314126810.1186/s13287‑023‑03473‑7 37741991
    [Google Scholar]
  26. VardharajulaS. AliS.Z. TiwariP.M. Functionalized carbon nanotubes: Biomedical applications.Int. J. Nanomedicine2012753615374 23091380
    [Google Scholar]
  27. YangF. FuD.L. LongJ. NiQ.X. Magnetic lymphatic targeting drug delivery system using carbon nanotubes.Med. Hypotheses200870476576710.1016/j.mehy.2007.07.045 17910909
    [Google Scholar]
  28. SmartS.K. CassadyA.I. LuG.Q. MartinD.J. The biocompatibility of carbon nanotubes.Carbon20064461034104710.1016/j.carbon.2005.10.011
    [Google Scholar]
  29. Ravi KiranA.V.V.V. Kusuma KumariG. KrishnamurthyP.T. Carbon nanotubes in drug delivery: Focus on anticancer therapies.J. Drug Deliv. Sci. Technol.20205910189210.1016/j.jddst.2020.101892
    [Google Scholar]
  30. KhatriS. HansenJ. SlottS. Rohith Pavan ParvathaneniA.C. IoannisS. ChronakisS-C. Carbon nanotubes-potent carriers for targeted drug delivery in rheumatoid arthritis.Pharmaceutics2021134453
    [Google Scholar]
  31. NasraS. BhatiaD. KumarA. Recent advances in nanoparticle-based drug delivery systems for rheumatoid arthritis treatment.Nanoscale Adv.20224173479349410.1039/D2NA00229A 36134349
    [Google Scholar]
  32. SrinivasanV. PalanisamyP. Carbon nanotubes: An optimistic nanomaterial with superfluity characteristics in drug delivery for the treatment of arthritis. Venkataramanan Srinivasan, Ponnusamy Palanisamy School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu.Indian J Pharmaceut Edu Res2022564ss627s65010.5530/ijper.56.4s.210
    [Google Scholar]
  33. WangH. ZhouY. SunQ. Update on nanoparticle-based drug delivery system for anti-inflammatory treatment.Front. Bioeng. Biotechnol.2021963035210.3389/fbioe.2021.630352 33681167
    [Google Scholar]
  34. ZhangC. WuL. de PerrotM. ZhaoX. carbon nanotubes: A summary of beneficial and dangerous aspects of an increasingly popular group of nanomaterials.Front. Oncol.20211169381410.3389/fonc.2021.693814 34386422
    [Google Scholar]
  35. TangL. XiaoQ. MeiY. Insights on functionalized carbon nanotubes for cancer theranostics.J. Nanobiotechnology202119142310.1186/s12951‑021‑01174‑y 34915901
    [Google Scholar]
  36. AttiaM.F. AntonN. WallynJ. OmranZ. VandammeT.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites.J. Pharm. Pharmacol.20197181185119810.1111/jphp.13098 31049986
    [Google Scholar]
  37. DubeyR. DuttaD. SarkarA. ChattopadhyayP. Functionalized carbon nanotubes: Synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences.Nanoscale Adv.20213205722574410.1039/D1NA00293G 36132675
    [Google Scholar]
  38. SunH. SheP. LuG. XuK. ZhangW. LiuZ. Recent advances in the development of functionalized carbon nanotubes: A versatile vector for drug delivery.J. Mater. Sci.201449206845685410.1007/s10853‑014‑8436‑4
    [Google Scholar]
  39. TanJ.M. ArulselvanP. FakuraziS. IthninH. HusseinM.Z. A review on characterizations and biocompatibility of functionalized carbon nanotubes in drug delivery design.J. Nanomater.2014201412010.1155/2014/917024
    [Google Scholar]
  40. MurjaniB.O. KaduP.S. BansodM. VaidyaS.S. YadavM.D. Carbon nanotubes in biomedical applications: Current status, promises, and challenges.Carbon Letters20223251207122610.1007/s42823‑022‑00364‑4
    [Google Scholar]
  41. ShaoW. ArghyaP. YiyongM. RodesL. PrakashS. Carbon nanotubes for use in medicine: Potentials and limitations.Syntheses and Applications of Carbon Nanotubes and Their Composites.United KingdomIntechOpen Limited2013
    [Google Scholar]
  42. PuZ. WeiY. SunY. WangY. ZhuS. Carbon nanotubes as carriers in drug delivery for non-small cell lung cancer, mechanistic analysis of their carcinogenic potential, safety profiling and identification of biomarkers.Int. J. Nanomedicine2022176157618010.2147/IJN.S384592 36523423
    [Google Scholar]
  43. PardoJ. PengZ. LeblancR. Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes.Molecules201823237810.3390/molecules23020378 29439409
    [Google Scholar]
  44. DebnathS.K. SrivastavaR. Drug delivery with carbon-based nanomaterials as versatile nanocarriers: Progress and prospects.Front. Nanotechnol.2021364456410.3389/fnano.2021.644564
    [Google Scholar]
  45. HeH. Pham-HuyL.A. DramouP. XiaoD. ZuoP. Pham-HuyC. Carbon nanotubes: Applications in pharmacy and medicine.BioMed Res. Int.2013201311210.1155/2013/578290 24195076
    [Google Scholar]
  46. HasnainM.S. NayakA.K. Functionalization of carbon nanotubes.Carbon Nanotubes for Targeted Drug Delivery. AZO2019212810.1007/978‑981‑15‑0910‑0_4
    [Google Scholar]
  47. BuraC. MocanT. GrapaC. MocanL. Carbon nanotubes-based assays for cancer detection and screening.Pharmaceutics202214478110.3390/pharmaceutics14040781 35456615
    [Google Scholar]
  48. MostafaviE. IravaniS. VarmaR.S. KhatamiM. RahbarizadehF. Eco-friendly synthesis of carbon nanotubes and their cancer theranostic applications.Mater. Adv.20223124765478210.1039/D2MA00341D 35812837
    [Google Scholar]
  49. LiuZ. LiangX.J. Nano-Carbons as Theranostics.Theranostics20122323523710.7150/thno.4156 22448193
    [Google Scholar]
  50. SinghJ. NayakP. SinghG. KhandaiM. SarangiR.R. KarM.K. Carbon nanostructures as therapeutic cargoes: Recent developments and challenges.J Carbon Res2022913
    [Google Scholar]
  51. HasnainM.S. NayakA.K. Regulatory considerations of carbon nanotubes.Carbon Nanotubes for Targeted Drug Delivery. AZO201910310610.1007/978‑981‑15‑0910‑0_15
    [Google Scholar]
  52. KaurP. BernelaM. KaushalP. VermaN. ThakurR. AhujaM. Anti-inflammatory therapeutics: Conventional concepts and future with nanotechnology.Recent Adv. Inflamm. Allergy Drug Discov.202317171910.2174/2772270817666221027154402 36305132
    [Google Scholar]
  53. MaJ. WangG. DingX. WangF. ZhuC. RongY. Carbon-based nanomaterials as drug delivery agents for colorectal cancer: Clinical preface to colorectal cancer citing their markers and existing theranostic approaches.ACS Omega2023812106561066810.1021/acsomega.2c06242 37008124
    [Google Scholar]
  54. AletahaD. SmolenJ.S. Diagnosis and management of rheumatoid arthritis: A review.JAMA2018320131360137210.1001/jama.2018.13103 30285183
    [Google Scholar]
  55. AringerM. CostenbaderK. DaikhD. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus.Ann. Rheum. Dis.20197891151115910.1136/annrheumdis‑2018‑214819 31383717
    [Google Scholar]
  56. Acosta FelquerM.L. CoatesL.C. SorianoE.R. Drug therapies for peripheral joint disease in psoriatic arthritis: A systematic review.J. Rheumatol.201441112277228510.3899/jrheum.140876 25362711
    [Google Scholar]
  57. SorianoE.R. MarinJ. Acosta-FelquerM.L. Psoriatic arthritis: New evidence for old concepts.Curr. Opin. Rheumatol.2018301879310.1097/BOR.0000000000000468 29035933
    [Google Scholar]
  58. WilsonN. LiuJ. AdamjeeQ. Exploring the emotional impact of axial Spondyloarthritis: A systematic review and thematic synthesis of qualitative studies and a review of social media.BMC Rheumatol.2023712610.1186/s41927‑023‑00351‑w 37608395
    [Google Scholar]
  59. CoatesL.C. HelliwellP.S. Psoriatic arthritis: State of the art review.Clin. Med. (Lond.)2017171657010.7861/clinmedicine.17‑1‑65 28148584
    [Google Scholar]
  60. CoatesL.C. HelliwellP.S. Treatment outcomes and methotrexate use in psoriatic arthritis patients treated with adalimumab: Results from an observational study (british society for rheumatology biologics register).J. Rheumatol.2015423478484
    [Google Scholar]
  61. GossecL. SmolenJ.S. RamiroS. European League Against Rheumatism (EULAR) recommendations for the management of psoriatic arthritis with pharmacological therapies: 2015 update.Ann. Rheum. Dis.201675349951010.1136/annrheumdis‑2015‑208337 26644232
    [Google Scholar]
  62. MinierT. GuiducciS. Bellando-RandoneS. Preliminary analysis of the Very Early Diagnosis of Systemic Sclerosis (VEDOSS) EUSTAR multicentre study: Evidence for puffy fingers as a pivotal sign for suspicion of systemic sclerosis.Ann. Rheum. Dis.201473122087209310.1136/annrheumdis‑2013‑203716 23940211
    [Google Scholar]
  63. DougadosM. Treat to target in axial spondyloarthritis: From its concept to its implementation.J. Autoimmun.202011010239810.1016/j.jaut.2019.102398 31926832
    [Google Scholar]
  64. DalbethN. MerrimanT.R. StampL.K. Gout. Lancet2016388100552039205210.1016/S0140‑6736(16)00346‑9 27112094
    [Google Scholar]
  65. PortaS. DanzaA. Arias SaavedraM. Glucocorticoids in systemic lupus erythematosus. Ten questions and some issues.J. Clin. Med.202099270910.3390/jcm9092709 32839376
    [Google Scholar]
  66. Salomon-EscotoK. KayJ. The “treat to target” approach to rheumatoid arthritis.Rheum. Dis. Clin. North Am.201945448750410.1016/j.rdc.2019.06.001 31564292
    [Google Scholar]
  67. SebastianiG.D. MoroniL. VaglioA. The role of early diagnosis in improving outcomes in systemic lupus erythematosus.Clin. Exp. Rheumatol.2016344S1S3
    [Google Scholar]
  68. SmolenJ.S. LandewéR.B.M. BijlsmaJ.W.J. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update.Ann. Rheum. Dis.202079668569910.1136/annrheumdis‑2019‑216655 31969328
    [Google Scholar]
  69. TektonidouM.G. AndreoliL. LimperM. TincaniA. WardM.M. Management of thrombotic and obstetric antiphospholipid syndrome: A systematic literature review informing the EULAR recommendations for the management of antiphospholipid syndrome in adults.RMD Open201951e00092410.1136/rmdopen‑2019‑000924 31168416
    [Google Scholar]
  70. TillettW. JadonD. ShaddickG. Smoking and delay to diagnosis are associated with poorer functional outcome in psoriatic arthritis.Ann. Rheum. Dis.20137281358136110.1136/annrheumdis‑2012‑202608 23291384
    [Google Scholar]
  71. WeissG.J. ChaoJ. NeidhartJ.D. First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies.Invest. New Drugs2013314986100010.1007/s10637‑012‑9921‑8 23397498
    [Google Scholar]
  72. Serrano-MartínezA. Victoria-MontesinosD. García-MuñozA.M. Hernández-SánchezP. Lucas-AbellánC. González-LouzaoR. A systematic review of clinical trials on the efficacy and safety of crlx101 cyclodextrin-based nanomedicine for cancer treatment.Pharmaceutics2023157182410.3390/pharmaceutics15071824 37514011
    [Google Scholar]
  73. LiY. QiL. WangY. A multicenter randomized trials to compare the bioequivalence and safety of a generic doxorubicin hydrochloride liposome injection with Caelyx ® in advanced breast cancer.Front. Oncol.202212107000110.3389/fonc.2022.1070001 36605440
    [Google Scholar]
  74. RaduA.F. BungauS.G. Nanomedical approaches in the realm of rheumatoid arthritis.Ageing Res. Rev.20238710192710.1016/j.arr.2023.101927 37031724
    [Google Scholar]
  75. FahmyT.M. PfefferleL.D. HallerG.L. Carbon nanotubes-potent carriers for targeted drug delivery in rheumatoid arthritis. U.S. Patent 9737593B2017
  76. JhaR. SinghA. SharmaP.K. FuloriaN.K. Smart carbon nanotubes for drug delivery system: A comprehensive study.J. Drug Deliv. Sci. Technol.20205810181110.1016/j.jddst.2020.101811
    [Google Scholar]
  77. RapheyV.R. HennaT.K. NivithaK.P. MufeedhaP. SabuC. PramodK. Advanced biomedical applications of carbon nanotube.Mater. Sci. Eng. C201910061663010.1016/j.msec.2019.03.043 30948098
    [Google Scholar]
  78. QasimM. ClarksonA.N. HinkleyS.F.R. Green synthesis of carbon nanoparticles (CNPs) from biomass for biomedical applications.Int. J. Mol. Sci.2023242102310.3390/ijms24021023 36674532
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385293018240312050646
Loading
/content/journals/pnt/10.2174/0122117385293018240312050646
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test