Skip to content
2000
Volume 16, Issue 3
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Breast cancer, a pervasive global malignancy, is anticipated to undergo a significant increase by 2040. Despite the conventional armamentarium of treatments including chemotherapy, radiation therapy, and surgery, the intricate landscape of breast cancer, characterized by its multifaceted surface receptors and signalling pathways, presents formidable challenges to treatment efficacy. Epigallocatechin-3-gallate (EGCG), extracted from , has emerged as a subject of interest due to its robust antioxidative properties stemming from its chemical structure. EGCG exerts its effects on pivotal stages of tumour growth and proliferation by modulating key signalling pathways such as MAPK, PI3K, NFkB, and ERK1/2 influencing apoptosis and cell cycle regulation. Clinical trials have provided insights into EGCG's potential impact on breast cancer such as mammographic density and pharmacokinetics, indicating its potential as a potent therapeutic agent. Moreover, when administered with conventional chemotherapy, EGCG demonstrates synergistic effects, enhancing therapeutic outcomes. Nevertheless, further research is warranted to validate the safety and efficacy of EGCG in breast cancer prevention and treatment.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155349614241215045420
2025-01-21
2026-01-03
Loading full text...

Full text loading...

References

  1. LazzeroniM. Guerrieri-GonzagaA. GandiniS. JohanssonH. SerranoD. CazzanigaM. AristarcoV. MacisD. MoraS. CaldarellaP. PaganiG. PruneriG. RivaA. PetrangoliniG. MorazzoniP. DeCensiA. BonanniB. A presurgical study of lecithin formulation of green tea extract in women with early breast cancer.Cancer Prev. Res.201710636337010.1158/1940‑6207.CAPR‑16‑0298 28400479
    [Google Scholar]
  2. CabreraC. ArtachoR. GiménezR. Beneficial effects of green tea-A review.J. Am. Coll. Nutr.2006252799910.1080/07315724.2006.10719518 16582024
    [Google Scholar]
  3. YangC.S. WangH. Mechanistic issues concerning cancer prevention by tea catechins.Mol. Nutr. Food Res.201155681983110.1002/mnfr.201100036 21538856
    [Google Scholar]
  4. RahmaniA.H. Al shabrmiF.M. AllemailemK.S. AlyS.M. KhanM.A. Implications of green tea and its constituents in the prevention of cancer via the modulation of cell signalling pathway.BioMed Res. Int.2015201511210.1155/2015/925640 25977926
    [Google Scholar]
  5. GrahamH.N. Green tea composition, consumption, and polyphenol chemistry.Prev. Med.199221333435010.1016/0091‑7435(92)90041‑F 1614995
    [Google Scholar]
  6. ChenB.H. HsiehC.H. TsaiS.Y. WangC.Y. WangC.C. Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway.Sci. Rep.2020101516310.1038/s41598‑020‑62136‑2 32198390
    [Google Scholar]
  7. MocanuM.M. GaneaC. GeorgescuL. VáradiT. ShresthaD. BaranI. KatonaE. NagyP. SzöllősiJ. Epigallocatechin 3-O-gallate induces 67 kDa laminin receptor-mediated cell death accompanied by downregulation of ErbB proteins and altered lipid raft clustering in mammary and epidermoid carcinoma cells.J. Nat. Prod.201477225025710.1021/np4007712 24456004
    [Google Scholar]
  8. YangC.S. WangH. LiG.X. YangZ. GuanF. JinH. Cancer prevention by tea: Evidence from laboratory studies.Pharmacol. Res.201164211312210.1016/j.phrs.2011.03.001 21397027
    [Google Scholar]
  9. FanF.Y. SangL.X. JiangM. Catechins and their therapeutic benefits to inflammatory bowel disease.Molecules201722348410.3390/molecules22030484 28335502
    [Google Scholar]
  10. YuanJ.M. SunC. ButlerL.M. Tea and cancer prevention: Epidemiological studies.Pharmacol. Res.201164212313510.1016/j.phrs.2011.03.002 21419224
    [Google Scholar]
  11. AnandP. KunnumakaraA.B. SundaramC. HarikumarK.B. TharakanS.T. LaiO.S. SungB. AggarwalB.B. Cancer is a preventable disease that requires major lifestyle changes.Pharm. Res.20082592097211610.1007/s11095‑008‑9661‑9 18626751
    [Google Scholar]
  12. BrodyH. Prostate cancer.Nature20155287582S11710.1038/528S117a 26672779
    [Google Scholar]
  13. ArnoldM. MorganE. RumgayH. MafraA. SinghD. LaversanneM. VignatJ. GralowJ.R. CardosoF. SieslingS. SoerjomataramI. Current and future burden of breast cancer: Global statistics for 2020 and 2040.Breast202266152310.1016/j.breast.2022.08.010 36084384
    [Google Scholar]
  14. BaselgaJ. NortonL. Focus on breast cancer.Cancer Cell20021431932210.1016/S1535‑6108(02)00066‑1 12086846
    [Google Scholar]
  15. BursteinH.J. TeminS. AndersonH. BuchholzT.A. DavidsonN.E. GelmonK.E. GiordanoS.H. HudisC.A. RowdenD. SolkyA.J. StearnsV. WinerE.P. GriggsJ.J. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American society of clinical oncology clinical practice guideline focused update.J. Clin. Oncol.201432212255226910.1200/JCO.2013.54.2258 24868023
    [Google Scholar]
  16. ChenD. DouQ.P. Tea polyphenols and their roles in cancer prevention and chemotherapy.Int. J. Mol. Sci.2008971196120610.3390/ijms9071196 19325799
    [Google Scholar]
  17. AlmatroodiS.A. AlmatroudiA. KhanA.A. AlhumaydhiF.A. AlsahliM.A. RahmaniA.H. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer.Molecules20202514314610.3390/molecules25143146 32660101
    [Google Scholar]
  18. Kedhari SundaramM. HaqueS. SomvanshiP. BhardwajT. HussainA. Epigallocatechin gallate inhibits HeLa cells by modulation of epigenetics and signaling pathways.3 Biotech.20201011484
    [Google Scholar]
  19. KimH.S. QuonM.J. KimJ. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate.Redox Biol.2014218719510.1016/j.redox.2013.12.022 24494192
    [Google Scholar]
  20. JohnsonJ.J. BaileyH.H. MukhtarH. Green tea polyphenols for prostate cancer chemoprevention: A translational perspective.Phytomedicine201017131310.1016/j.phymed.2009.09.011 19959000
    [Google Scholar]
  21. ZhangL. WenJ.X. HaiL. WangY.F. YanL. GaoW.H. HuZ.D. WangY.J. Preventive and therapeutic effects of green tea on lung cancer: A narrative review of evidence from clinical and basic research.J. Thorac. Dis.202214125029503810.21037/jtd‑22‑1791 36647481
    [Google Scholar]
  22. ThangapazhamR.L. SinghA.K. SharmaA. WarrenJ. GaddipatiJ.P. MaheshwariR.K. Cancer preventive activities of tea catechins.Molecules20162112167910.3390/molecules21121679 27941682
    [Google Scholar]
  23. KanlayaR. ThongboonkerdV. Protective effects of epigallocatechin-3-gallate from green tea in various kidney diseases.Adv. Nutr.201910111212110.1093/advances/nmy077 30615092
    [Google Scholar]
  24. KassouriC. Rodriguez TorresS. Gonzalez SuarezN. DuhamelS. AnnabiB. EGCG prevents the transcriptional reprogramming of an inflammatory and immune-suppressive molecular signature in macrophage-like differentiated human HL60 promyelocytic leukemia cells.Cancers20221420506510.3390/cancers14205065 36291849
    [Google Scholar]
  25. RomanoA. MartelF. The role of EGCG in breast cancer prevention and therapy.Mini Rev. Med. Chem.202121788389810.2174/18755607MTEyrMzcq0 33319659
    [Google Scholar]
  26. SunW. YangY. WangC. LiuM. WangJ. QiaoS. JiangP. SunC. JiangS. Epigallocatechin-3-gallate at the nanoscale: A new strategy for cancer treatment.Pharm. Biol.202462167669010.1080/13880209.2024.2406779 39345207
    [Google Scholar]
  27. ChavvaS.R. DeshmukhS.K. KanchanapallyR. TyagiN. CoymJ.W. SinghA.P. SinghS. Epigallocatechin gallate-gold nanoparticles exhibit superior antitumor activity compared to conventional gold nanoparticles: potential synergistic interactions.Nanomaterials20199339610.3390/nano9030396 30857226
    [Google Scholar]
  28. CoughlinS.S. EkwuemeD.U. Breast cancer as a global health concern.Cancer Epidemiol.200933531531810.1016/j.canep.2009.10.003 19896917
    [Google Scholar]
  29. SaeedM. NaveedM. ArifM. KakarM.U. ManzoorR. Abd El-HackM.E. AlagawanyM. TiwariR. KhandiaR. MunjalA. KarthikK. DhamaK. IqbalH.M.N. DadarM. SunC. Green tea (Camellia sinensis) and l-theanine: Medicinal values and beneficial applications in humans—A comprehensive review.Biomed. Pharmacother.2017951260127510.1016/j.biopha.2017.09.024 28938517
    [Google Scholar]
  30. WongM. SirisenaS. NgK. Phytochemical profile of differently processed tea: A review.J. Food Sci.20228751925194210.1111/1750‑3841.16137 35368105
    [Google Scholar]
  31. RashidiB. MalekzadehM. GoodarziM. MasoudifarA. MirzaeiH. Green tea and its anti-angiogenesis effects.Biomed. Pharmacother.20178994995610.1016/j.biopha.2017.01.161 28292023
    [Google Scholar]
  32. LeeJ.E. LeeB.J. ChungJ.O. HwangJ.A. LeeS.J. LeeC.H. HongY.S. Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites: A (1)H NMR-based metabolomics study.J. Agric. Food Chem.20105819105821058910.1021/jf102415m 20828156
    [Google Scholar]
  33. WeisburgerJ.H. ChungF.L. Mechanisms of chronic disease causation by nutritional factors and tobacco products and their prevention by tea polyphenols.Food Chem. Toxicol.20024081145115410.1016/S0278‑6915(02)00044‑3 12067577
    [Google Scholar]
  34. DufresneC.J. FarnworthE.R. A review of latest research findings on the health promotion properties of tea.J. Nutr. Biochem.200112740442110.1016/S0955‑2863(01)00155‑3 11448616
    [Google Scholar]
  35. SumpioB.E. CordovaA.C. Berke-SchlesselD.W. QinF. ChenQ.H. Green tea, the “Asian paradox,” and cardiovascular disease.J. Am. Coll. Surg.2006202581382510.1016/j.jamcollsurg.2006.01.018 16648021
    [Google Scholar]
  36. Fon SingM. YangW.S. GaoS. GaoJ. XiangY.B. Epidemiological studies of the association between tea drinking and primary liver cancer.Eur. J. Cancer Prev.201120315716510.1097/CEJ.0b013e3283447497 21403523
    [Google Scholar]
  37. FujikiH. WatanabeT. SueokaE. RawangkanA. SuganumaM. Cancer prevention with green tea and its principal constituent, EGCG: From early investigations to current focus on human cancer stem cells.Mol. Cells20184127382 29429153
    [Google Scholar]
  38. JacobS.A. KhanT.M. LeeL.H. The effect of green tea consumption on prostate cancer risk and progression: A systematic review.Nutr. Cancer201769335336410.1080/01635581.2017.1285037 28287319
    [Google Scholar]
  39. MannC.D. NealC.P. GarceaG. MansonM.M. DennisonA.R. BerryD.P. Phytochemicals as potential chemopreventive and chemotherapeutic agents in hepatocarcinogenesis.Eur. J. Cancer Prev.2009181132510.1097/CEJ.0b013e3282f0c090 19077560
    [Google Scholar]
  40. YiannakopoulouE.C. Interaction of green tea catechins with breast cancer endocrine treatment: A systematic review.Pharmacology2014945-624524810.1159/000369170 25471334
    [Google Scholar]
  41. ChikaraS. NagaprashanthaL.D. SinghalJ. HorneD. AwasthiS. SinghalS.S. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment.Cancer Lett.201841312213410.1016/j.canlet.2017.11.002 29113871
    [Google Scholar]
  42. GianfrediV. NucciD. VanniniS. VillariniM. MorettiM. in vitro biological effects of sulforaphane (SFN), epigallocatechin-3-gallate (EGCG), and curcumin on breast cancer cells: A systematic review of the literature.Nutr. Cancer201769796997810.1080/01635581.2017.1359322 28872903
    [Google Scholar]
  43. SurS. PandaC.K. Molecular aspects of cancer chemopreventive and therapeutic efficacies of tea and tea polyphenols.Nutrition201743-4481510.1016/j.nut.2017.06.006 28935149
    [Google Scholar]
  44. GianfrediV. VanniniS. MorettiM. VillariniM. BragazziN.L. IzzottiA. NucciD. Sulforaphane and epigallocatechin gallate restore estrogen receptor expression by modulating epigenetic events in the breast cancer cell line MDA-MB-231: A systematic review and meta-analysis.J. Nutrigenet. Nutrigenomics2017103-4126135 29040973
    [Google Scholar]
  45. FarhanM. Green tea catechins: Nature’s way of preventing and treating cancer.Int. J. Mol. Sci.202223181071310.3390/ijms231810713 36142616
    [Google Scholar]
  46. ChongS.Y. ChiangH.Y. ChenT.H. LiangY.J. LoY.C. Green tea extract promotes DNA repair in a yeast model.Sci. Rep.201991384210.1038/s41598‑019‑39082‑9 30846712
    [Google Scholar]
  47. FrolingerT. HermanF. SharmaA. SimsS. WangJ. PasinettiG.M. Epigenetic modifications by polyphenolic compounds alter gene expression in the hippocampus.Biol. Open2018710bio.035196.10.1242/bio.03519629970476
    [Google Scholar]
  48. YaskolkaMA. KellerM. HoffmannA. RinottE. TsabanG. The effect of polyphenols on DNA methylation-assessed biological age attenuation: The DIRECT PLUS randomized controlled trial.BMC Med.202321136410.1186/s12916‑023‑03067‑3
    [Google Scholar]
  49. RajendranP. AbdelsalamS.A. RenuK. VeeraraghavanV. Ben AmmarR. AhmedE.A. Polyphenols as potent epigenetics agents for cancer.Int. J. Mol. Sci.202223191171210.3390/ijms231911712 36233012
    [Google Scholar]
  50. BottenD. FugalloG. FraternaliF. MolteniC. Structural properties of green tea catechins.J. Phys. Chem. B201511940128601286710.1021/acs.jpcb.5b08737 26369298
    [Google Scholar]
  51. CaiY.Z. Mei Sun Jie Xing LuoQ. CorkeH. Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants.Life Sci.200678252872288810.1016/j.lfs.2005.11.004 16325868
    [Google Scholar]
  52. PotenzaM.A. IacobazziD. SgarraL. MontagnaniM. The intrinsic virtues of EGCG, an extremely good cell guardian, on prevention and treatment of diabesity complications.Molecules20202513306110.3390/molecules25133061 32635492
    [Google Scholar]
  53. MarínV. BurgosV. PérezR. MariaD.A. PardiP. PazC. The potential role of epigallocatechin-3-gallate (EGCG) in breast cancer treatment.Int. J. Mol. Sci.202324131073710.3390/ijms241310737 37445915
    [Google Scholar]
  54. YangC.S. WangX. LuG. PicinichS.C. Cancer prevention by tea: Animal studies, molecular mechanisms and human relevance.Nat. Rev. Cancer20099642943910.1038/nrc2641 19472429
    [Google Scholar]
  55. WangR. ZhouW. JiangX. Reaction kinetics of degradation and epimerization of epigallocatechin gallate (EGCG) in aqueous system over a wide temperature range.J. Agric. Food Chem.20085682694270110.1021/jf0730338 18361498
    [Google Scholar]
  56. ZhuQ.Y. HackmanR.M. EnsunsaJ.L. HoltR.R. KeenC.L. Antioxidative activities of oolong tea.J. Agric. Food Chem.200250236929693410.1021/jf0206163 12405799
    [Google Scholar]
  57. HaraK. OharaM. HayashiI. HinoT. NishimuraR. IwasakiY. OgawaT. OhyamaY. SugiyamaM. AmanoH. The green tea polyphenol (−)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase: Biochemical implications for oral health.Eur. J. Oral Sci.2012120213213910.1111/j.1600‑0722.2012.00947.x 22409219
    [Google Scholar]
  58. ZengL. YanJ. LuoL. MaM. ZhuH. Preparation and characterization of (−)-Epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on Human breast cancer MCF-7 cells.Sci. Rep.2017714552110.1038/srep45521 28349962
    [Google Scholar]
  59. GanR.Y. LiH.B. SuiZ.Q. CorkeH. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review.Crit. Rev. Food Sci. Nutr.201858692494110.1080/10408398.2016.1231168 27645804
    [Google Scholar]
  60. NakagawaK. MiyazawaT. Chemiluminescence-high-performance liquid chromatographic determination of tea catechin, (-)-epigallocatechin 3-gallate, at picomole levels in rat and human plasma.Anal. Biochem.19972481414910.1006/abio.1997.2098 9177723
    [Google Scholar]
  61. SchröderL. MarahrensP. KochJ.G. HeideggerH. VilsmeierT. Phan-BrehmT. HofmannS. MahnerS. JeschkeU. RichterD.U. Effects of green tea, matcha tea and their components epigallocatechin gallate and quercetin on MCF 7 and MDA-MB-231 breast carcinoma cells.Oncol. Rep.2019411387396 30320348
    [Google Scholar]
  62. TakagakiA. NanjoF. Metabolism of (-)-epigallocatechin gallate by rat intestinal flora.J. Agric. Food Chem.20105821313132110.1021/jf903375s 20043675
    [Google Scholar]
  63. SangS. LambertJ.D. HoC.T. YangC.S. The chemistry and biotransformation of tea constituents.Pharmacol. Res.2011642879910.1016/j.phrs.2011.02.007 21371557
    [Google Scholar]
  64. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  65. NarodS.A. FoulkesW.D. BRCA1 and BRCA2: 1994 and beyond.Nat. Rev. Cancer20044966567610.1038/nrc1431 15343273
    [Google Scholar]
  66. TuttA. AshworthA. The relationship between the roles of BRCA genes in DNA repair and cancer predisposition.Trends Mol. Med.200281257157610.1016/S1471‑4914(02)02434‑6 12470990
    [Google Scholar]
  67. VivancoI. SawyersC.L. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer.Nat. Rev. Cancer20022748950110.1038/nrc839 12094235
    [Google Scholar]
  68. KessenbrockK. PlaksV. WerbZ. Matrix metalloproteinases: Regulators of the tumor microenvironment.Cell20101411526710.1016/j.cell.2010.03.015 20371345
    [Google Scholar]
  69. ThieryJ.P. AcloqueH. HuangR.Y.J. NietoM.A. Epithelial-mesenchymal transitions in development and disease.Cell2009139587189010.1016/j.cell.2009.11.007 19945376
    [Google Scholar]
  70. JoyceJ.A. PollardJ.W. Microenvironmental regulation of metastasis.Nat. Rev. Cancer20099423925210.1038/nrc2618 19279573
    [Google Scholar]
  71. MukherjeeS. GhoshS. DasD.K. ChakrabortyP. ChoudhuryS. GuptaP. AdhikaryA. DeyS. ChattopadhyayS. Gold-conjugated green tea nanoparticles for enhanced anti-tumor activities and hepatoprotection — Synthesis, characterization and in vitro evaluation.J. Nutr. Biochem.201526111283129710.1016/j.jnutbio.2015.06.003 26310506
    [Google Scholar]
  72. KavanaghK.T. HaferL.J. KimD.W. MannK.K. SherrD.H. RogersA.E. SonensheinG.E. Green tea extracts decrease carcinogen-induced mammary tumor burden in rats and rate of breast cancer cell proliferation in culture.J. Cell. Biochem.200182338739810.1002/jcb.1164 11500915
    [Google Scholar]
  73. Ávila-GálvezM.Á. Giménez-BastidaJ.A. EspínJ.C. González-SarríasA. Dietary phenolics against breast cancer. A critical evidence-based review and future perspectives.Int. J. Mol. Sci.20202116571810.3390/ijms21165718 32784973
    [Google Scholar]
  74. HongO.Y. NohE.M. JangH.Y. LeeY.R. LeeB.K. JungS.H. KimJ.S. YounH.J. Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway.Oncol. Lett.201714144144610.3892/ol.2017.6108 28693189
    [Google Scholar]
  75. LuoH.Q. XuM. ZhongW.T. CuiZ.Y. LiuF.M. ZhouK.Y. LiX.Y. EGCG decreases the expression of HIF-1α and VEGF and cell growth in MCF-7 breast cancer cells.J. Balkan Union Oncol.2014192435439 24965403
    [Google Scholar]
  76. ZhaoH. ZhuW. ZhaoX. LiX. ZhouZ. ZhengM. MengX. KongL. ZhangS. HeD. XingL. YuJ. Efficacy of epigallocatechin-3-gallate in preventing dermatitis in patients with breast cancer receiving postoperative radiotherapy.JAMA Dermatol.2022158777978610.1001/jamadermatol.2022.1736 35648426
    [Google Scholar]
  77. BimonteS. CascellaM. BarbieriA. ArraC. CuomoA. Shining a light on the effects of the combination of (–)-epigallocatechin-3-gallate and tapentadol on the growth of human triple-negative breast cancer cells.In Vivo20193351463146810.21873/invivo.11625 31471393
    [Google Scholar]
  78. SteedK.L. JordanH.R. TollefsbolT.O. SAHA and EGCG promote apoptosis in triple-negative breast cancer cells, possibly through the modulation of cIAP2.Anticancer Res.202040192610.21873/anticanres.13922 31892549
    [Google Scholar]
  79. BakerK.M. BauerA.C. Green tea catechin, EGCG, suppresses PCB 102-induced proliferation in estrogen-sensitive breast cancer cells.Int. J. Breast Cancer201520151710.1155/2015/163591 26783468
    [Google Scholar]
  80. BraicuC. GhermanC.D. IrimieA. Berindan-NeagoeI. Epigallocatechin-3-Gallate (EGCG) inhibits cell proliferation and migratory behaviour of triple negative breast cancer cells.J. Nanosci. Nanotechnol.201313163263710.1166/jnn.2013.6882 23646788
    [Google Scholar]
  81. ZhangT. LiN. WangR. SunY. HeX. LuX. ChuL. SunK. Enhanced therapeutic efficacy of doxorubicin against multidrug-resistant breast cancer with reduced cardiotoxicity.Drug Deliv.2023301218911810.1080/10717544.2023.2189118 36919676
    [Google Scholar]
  82. WangZ. ErbB. Receptors and cancer.Methods Mol. Biol.2017165233510.1007/978‑1‑4939‑7219‑7_1 28791631
    [Google Scholar]
  83. GoodinM.G. FertuckK.C. ZacharewskiT.R. RosengrenR.J. Estrogen receptor-mediated actions of polyphenolic catechins in vivo and in vitro.Toxicol. Sci.200269235436110.1093/toxsci/69.2.354 12377984
    [Google Scholar]
  84. HsuY.C. LiouY.M. The anti-cancer effects of (−)-Epigalocathine-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells.J. Cell. Physiol.2011226102721273010.1002/jcp.22623 21792929
    [Google Scholar]
  85. KhanN. AfaqF. SaleemM. AhmadN. MukhtarH. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate.Cancer Res.20066652500250510.1158/0008‑5472.CAN‑05‑3636 16510563
    [Google Scholar]
  86. SinghT. VaidM. KatiyarS.K. EGCG, a polyphenol from green tea, inhibits cytokine-induced MMP-2 expression and activity in human prostate carcinoma cells.J. Nutr.20111412190196
    [Google Scholar]
  87. FangM.Z. WangY. AiN. HouZ. Tea polyphenol EGCG inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines.Cancer Res.2003632275637570 14633667
    [Google Scholar]
  88. PanX. ZhaoB. SongZ. HanS. WangM. Estrogen receptor-α36 is involved in epigallocatechin-3-gallate induced growth inhibition of ER-negative breast cancer stem/progenitor cells.J. Pharmacol. Sci.20161302859310.1016/j.jphs.2015.12.003 26810571
    [Google Scholar]
  89. WangP. WangB. ChungS. WuY. HenningS.M. VadgamaJ.V. Increased chemopreventive effect by combining arctigenin, green tea polyphenol and curcumin in prostate and breast cancer cells.RSC Advances2014466352423525010.1039/C4RA06616B 25243063
    [Google Scholar]
  90. Landis-PiwowarK. ChenD. ChanT.H. DouQ.P. Inhibition of catechol-Omicron-methyltransferase activity in human breast cancer cells enhances the biological effect of the green tea polyphenol (-)-EGCG.Oncol. Rep.2010242563569 20596647
    [Google Scholar]
  91. FilippiA. PicotT. AaneiC.M. NagyP. SzöllősiJ. CamposL. GaneaC. MocanuM.M. Epigallocatechin-3- O -gallate alleviates the malignant phenotype in A-431 epidermoid and SK-BR-3 breast cancer cell lines.Int. J. Food Sci. Nutr.201869558459710.1080/09637486.2017.1401980 29157036
    [Google Scholar]
  92. DasA. HaqueI. RayP. GhoshA. DuttaD. QuadirM. DeA. GunewardenaS. ChatterjeeI. BanerjeeS. WeirS. BanerjeeS.K. CCN5 activation by free or encapsulated EGCG is required to render triple-negative breast cancer cell viability and tumor progression.Pharmacol. Res. Perspect.202192e0075310.1002/prp2.753 33745223
    [Google Scholar]
  93. HuangC.Y. HanZ. LiX. XieH.H. ZhuS.S. Mechanism of EGCG promoting apoptosis of MCF-7 cell line in human breast cancer.Oncol. Lett.20171433623362710.3892/ol.2017.6641 28927122
    [Google Scholar]
  94. HallmanK. AleckK. QuigleyM. DwyerB. LloydV. SzmydM. DindaS. The regulation of steroid receptors by epigallocatechin-3-gallate in breast cancer cells.Breast Cancer (Dove Med. Press)2017936537310.2147/BCTT.S131334 28579831
    [Google Scholar]
  95. BalasubramanianS. AdhikaryA. Green tea polyphenol epigallocatechin gallate mediated apoptosis: Role of transcription factors.Mol. Nutr. Food Res.2008526649661
    [Google Scholar]
  96. HastakK. GuptaS. AhmadN. AgarwalM.K. AgarwalM.L. MukhtarH. Role of p53 and NF-κB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells.Oncogene200322314851485910.1038/sj.onc.1206708 12894226
    [Google Scholar]
  97. MoradzadehM. HosseiniA. ErfanianS. RezaeiH. Epigallocatechin-3-gallate promotes apoptosis in human breast cancer T47D cells through down-regulation of PI3K/AKT and Telomerase.Pharmacol. Rep.201769592492810.1016/j.pharep.2017.04.008 28646740
    [Google Scholar]
  98. ZanL. ChenQ. ZhangL. LiX. Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25.Bioengineered201910137438210.1080/21655979.2019.1657327 31431131
    [Google Scholar]
  99. WangK. WangR.L. LiuJ.J. ZhouJ. LiX. HuW.W. JiangW.J. HaoN.B. The prognostic significance of hTERT overexpression in cancers.Medicine20189735e1179410.1097/MD.0000000000011794 30170373
    [Google Scholar]
  100. ChungS.S. VadgamaJ.V. Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling.Anticancer Res.20153513946 25550533
    [Google Scholar]
  101. FukadaT. OhtaniT. YoshidaY. ShiroganeT. NishidaK. NakajimaK. HibiM. HiranoT. STAT3 orchestrates contradictory signals in cytokine-induced G1 to S cell-cycle transition.EMBO J.199817226670667710.1093/emboj/17.22.6670 9822610
    [Google Scholar]
  102. KhanN. MukhtarH. Epigallocatechin-3-gallate and cancer: Introduction to the special issue.Mol. Nutr. Food Res.201357112
    [Google Scholar]
  103. AmadoN.G. FonsecaB.F. CerqueiraD.M. NetoV.M. AbreuJ.G. Flavonoids: Potential Wnt/beta-catenin signaling modulators in cancer.Life Sci.20118915-1654555410.1016/j.lfs.2011.05.003 21635906
    [Google Scholar]
  104. Boras-GranicK. WysolmerskiJ.J. Wnt signaling in breast organogenesis.Organogenesis20084211612210.4161/org.4.2.5858 19279723
    [Google Scholar]
  105. SenT. MoulikS. DuttaA. ChoudhuryP.R. BanerjiA. DasS. RoyM. ChatterjeeA. Multifunctional effect of epigallocatechin-3-gallate (EGCG) in downregulation of gelatinase-A (MMP-2) in human breast cancer cell line MCF-7.Life Sci.2009847-819420410.1016/j.lfs.2008.11.018 19105967
    [Google Scholar]
  106. CrewK.D. BrownP. GreenleeH. BeversT.B. ArunB. HudisC. McArthurH.L. ChangJ. RimawiM. VornikL. CornelisonT.L. WangA. HibshooshH. AhmedA. TerryM.B. SantellaR.M. LippmanS.M. HershmanD.L. Phase IB randomized, double-blinded, placebo-controlled, dose escalation study of polyphenon E in women with hormone receptor-negative breast cancer.Cancer Prev. Res.2012591144115410.1158/1940‑6207.CAPR‑12‑0117 22827973
    [Google Scholar]
  107. BraalC.L. HussaartsK.G.A.M. SeurenL. Oomen-de HoopE. de BruijnP. BuckS.A.J. BosM.E.M.M. Thijs-VisserM.F. ZuetenhorstH.J.M. Mathijssen-van SteinD. VastbinderM.B. van LeeuwenR.W.F. van GelderT. KoolenS.L.W. JagerA. MathijssenR.H.J. Influence of green tea consumption on endoxifen steady-state concentration in breast cancer patients treated with tamoxifen.Breast Cancer Res. Treat.2020184110711310.1007/s10549‑020‑05829‑6 32803636
    [Google Scholar]
  108. SamavatH. UrsinG. EmoryT.H. LeeE. WangR. TorkelsonC.J. DostalA.M. SwensonK. LeC.T. YangC.S. YuM.C. YeeD. WuA.H. YuanJ.M. KurzerM.S. A randomized controlled trial of green tea extract supplementation and mammographic density in postmenopausal women at increased risk of breast cancer.Cancer Prev. Res.2017101271071810.1158/1940‑6207.CAPR‑17‑0187 28904061
    [Google Scholar]
  109. ZhaoH. XieP. LiX. ZhuW. SunX. SunX. ChenX. XingL. YuJ. A prospective phase II trial of EGCG in treatment of acute radiation-induced esophagitis for stage III lung cancer.Radiother. Oncol.2015114335135610.1016/j.radonc.2015.02.014 25769379
    [Google Scholar]
  110. ZhaoH. ZhuW. JiaL. SunX. ChenG. ZhaoX. LiX. MengX. KongL. XingL. YuJ. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy.Br. J. Radiol.20168910582015066510.1259/bjr.20150665 26607642
    [Google Scholar]
  111. DostalA.M. SamavatH. BedellS. TorkelsonC. WangR. SwensonK. LeC. WuA.H. UrsinG. YuanJ.M. KurzerM.S. The safety of green tea extract supplementation in postmenopausal women at risk for breast cancer: Results of the minnesota green tea trial.Food Chem. Toxicol.201583263510.1016/j.fct.2015.05.019 26051348
    [Google Scholar]
/content/journals/npj/10.2174/0122103155349614241215045420
Loading
/content/journals/npj/10.2174/0122103155349614241215045420
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test