Skip to content
2000
Volume 15, Issue 9
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Linn. (), a member of the Fabaceae family within the genus, is an underrated medicinal plant in Malaysia. It features frog-like fruits and is known locally as Namnam. The plant grows in tropical regions and is used in the traditional treatment of various medical conditions. Previous studies have revealed a broad range of its pharmacological benefits, including antioxidant, anti-inflammatory, anti-diabetic, anti-lipase, anti-diarrheal, cytotoxic, anti-microbial, and anti-cholinesterase properties. The active constituents identified in are thought to contribute to its diverse range of biological activities. Research shows that different parts of contain phenolic compounds, tannins, saponins, and flavonoids. The leaves and bark also have cardiac glycosides, while the fruit is rich in flavonoids, triterpenoids, saponins, and tannins. Furthermore, ethanol extracts of its leaves were found to contain vitamin C and its major constituent, vitexin. In this review, the biological activities of are explored and reviewed through various literature sources, aiming to highlight the mechanisms and compounds that underlie its potential as a source for natural therapies.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155337729240926033345
2024-10-07
2025-10-08
Loading full text...

Full text loading...

References

  1. DwyerJ.D. The new world species of Cynometra.Ann. Mo. Bot. Gard.195845431334510.2307/2394543
    [Google Scholar]
  2. WFO. An Online Flora of All Known Plants.2024Available From: http://www.worldfloraonline.org
  3. Kew Science. Welcome to Plants of the World Online.2024Available From: http://powo.science.kew.org
  4. SabihaS. SerranoR. HasanK. Moreira da SilvaI.B. RochaJ. IslamN. SilvaO. The genus Cynometra: A review of ethnomedicine, chemical, and biological data.Plants20221124350410.3390/plants11243504 36559616
    [Google Scholar]
  5. RagavanP. RanaT.S. RavichandranK. JayarajR.S.C. SivakumarK. SaxenaA. MohanP.M. Note on identity and distribution of Cynometra iripa kostel. And C. ramiflora L. (Fabaceae) in the Andaman and Nicobar Islands, India.Check List201713680581210.15560/13.6.805
    [Google Scholar]
  6. SeyedanA. MohamedZ. AlshaggaM.A. KooshaS. AlshawshM.A. Cynometra cauliflora Linn. Attenuates metabolic abnormalities in high-fat diet-induced obese mice.J. Ethnopharmacol.201923617318210.1016/j.jep.2019.03.001 30851371
    [Google Scholar]
  7. RabetaM.S. Nur FaranizaR. Total phenolic content and ferric reducing antioxidant power of the leaves and fruits of Garcinia atrovirdis and Cynometra cauliflora.Int. Food Res. J.20132041691
    [Google Scholar]
  8. AzizA. IqbalM. Antioxidant activity and phytochemical composition of Cynometra cauliflora.J. Exp. Integr. Med.20133433734110.5455/jeim.250813.or.086
    [Google Scholar]
  9. JamaluddinJ. Antioxidant activities and phytochemical analysis of muntingia calabural and Cynometra cauliflora.2013Available From: http://discol.umk.edu.my/id/eprint/5807/
    [Google Scholar]
  10. PereraH.D.S.M. SamarasekeraJ.K.R.R. HandunnettiS.M. WeerasenaO.V.D.S.J. In vitro anti-inflammatory and anti-oxidant activities of Sri Lankan medicinal plants.Ind. Crops Prod.20169461062010.1016/j.indcrop.2016.09.009
    [Google Scholar]
  11. SumarlinL.O. HaderaM. ChalidS.Y. SukandarD. Aktivitas antioksidan kombinasi madu monoflora dengan ekstrak daun namnam (Cynometra cauliflora L.). ALCHEMY,201861101710.18860/al.v6i1.4736
  12. AdoM. AbasF. MohammedA. GhazaliH. Anti- and pro-lipase activity of selected medicinal, herbal and aquatic plants, and structure elucidation of an anti-lipase compound.Molecules20131812146511466910.3390/molecules181214651 24287996
    [Google Scholar]
  13. SumarlinL.O. SuprayogiA. RahminiwatiM. SatyaningtijasA. SukandarD. NugrahaA.T. AmaliaI. Antidiabetic and antidiarrheal activity from extract of namnam (Cynometra cauliflora) leaf.Proceedings of the International Conference on Global Resource ConservationMalang, Indonesia201624
    [Google Scholar]
  14. SumarlinL.O. SukandarD. PratiwiL. Aktivitas Penghambatan α-Glukosidase Campuran Ekstrak Daun Namnam (Cynometra cauliflora L.) dan Madu Kaliandra. al-Kimiya2020628794
  15. SumarlinL.O. SuprayogiA. RahminiwatiM. SatyaningtijasA. NugrahaA.T. SukandarD. PangestikaH. PratiwiL. Identification of compounds flavonoids Namnam leaf extract (Cynometra cauliflora) as inhibiting A-Glucosidase.J. Phys. Conf. Ser.20201594101200510.1088/1742‑6596/1594/1/012005
    [Google Scholar]
  16. TajudinT.J.S.A. MatN. Siti-AishahA.B. YusranA.A.M. AlwiA. AliA.M. Cytotoxicity, antiproliferative effects, and apoptosis induction of methanolic extract of Cynometra cauliflora Linn. whole fruit on human promyelocytic leukemia HL-60 cells. Evidence-based Complement.Evid. Based Complement. Alternat. Med.201220121127373 23227094
    [Google Scholar]
  17. Abd WahabN.Z. BadyaN. IbrahimN. KamarudinM.K.A. JuahirH. TorimanM.E. Antiviral activity of Cynometra cauliflora leaves methanolic extract towards dengue virus type 2. Int. J. Engine.Tech. (UAE)2018714344347
    [Google Scholar]
  18. WahabN.Z.A. BadyaN. IbrahimN. KamarudinM.K.A. Phytochemistry and antibacterial activity of Cynometra cauliflora.Indian J. Public Health Res. Dev.201910476510.5958/0976‑5506.2019.00795.2
    [Google Scholar]
  19. Abd WahabN.Z. AzizulA. BadyaN. IbrahimN. Antiviral activity of an extract from leaves of the tropical plant Cynometra cauliflora.Pharmacogn. J.202113375275710.5530/pj.2021.13.96
    [Google Scholar]
  20. UlpiyahZ. ShitaA.D.P. WahyukundariM.A. Inhibition of namnam (Cynometra cauliflora L.) leaves extract on the growth of Porphyromonas gingivalis.Padjadjaran J. Dentist.201931210611110.24198/pjd.vol31no2.18540
    [Google Scholar]
  21. KhalilR.A. Syed MohamadS.A. Abdul RahmanN.R.H. Kamal IkhsanN.A. Mohamed YunusN. AjibolaO.O. Abd MutalibN. Bin Mohd AminM.C.I. Characterisation of endophytic bacteria from nam-nam plants (Cynometra cauliflora) for antibacterial activity and production of plant growth promoting factors.Malays. Appl. Biol.202251411912610.55230/mabjournal.v51i4.19
    [Google Scholar]
  22. HimanshiC. SureshK. Medicinal plants having anti-cholinesterase activity from different regions of the world.World J. Pharm. Res.2015410638653
    [Google Scholar]
  23. Amir RawaM.S. HassanZ. MurugaiyahV. NogawaT. WahabH.A. Anti-cholinesterase potential of diverse botanical families from Malaysia: Evaluation of crude extracts and fractions from liquid-liquid extraction and acid-base fractionation.J. Ethnopharmacol.201924511216010.1016/j.jep.2019.112160 31419500
    [Google Scholar]
  24. AdoM.A. AbasF. IsmailI.S. GhazaliH.M. ShaariK. Chemical profile and antiacetylcholinesterase, antityrosinase, antioxidant and α‐glucosidase inhibitory activity of Cynometra cauliflora L. leaves.J. Sci. Food Agric.201595363564210.1002/jsfa.6832 25048579
    [Google Scholar]
  25. SukandarD. AmeliaE.R. Karakterisasi senyawa aktif antioksidan dan antibakteri dalam ekstrak etanol buah Namnam (Cynometra cauliflora L.).Jurnal Kimia VALENSI201331354010.15408/jkv.v3i1.327
    [Google Scholar]
  26. AdawiahA. SukandarD. MuawanahA. Aktivitas antioksidan dan kandungan komponen bioaktif sari buah Namnam.Jurnal Kimia VALENSI20151213013610.15408/jkv.v0i0.3155
    [Google Scholar]
  27. RekhaC. PoornimaG. ManasaM. AbhipsaV. DeviJ.P. KumarH.T.V. KekudaT.R.P. Ascorbic acid, total phenol content and antioxidant activity of fresh juices of four ripe and unripe citrus fruits.Chem. Sci. Trans.20121230331010.7598/cst2012.182
    [Google Scholar]
  28. SukandarD. NurbaytiS. RudianaT. HusnaT.W. Isolation and structure determination of antioxidants active compounds from ethyl acetate extract of heartwood Namnam (Cynometra cauliflora L.).Jurnal Kimia Terapan Indonesia2017191111710.14203/jkti.v19i1.325
    [Google Scholar]
  29. IkramE.H.K. EngK.H. JalilA.M.M. IsmailA. IdrisS. AzlanA. NazriH.S.M. DitonN.A.M. MokhtarR.A.M. Antioxidant capacity and total phenolic content of Malaysian underutilized fruits.J. Food Compos. Anal.200922538839310.1016/j.jfca.2009.04.001
    [Google Scholar]
  30. SamlingB.A. AssimZ. TongW.Y. LeongC.R. Ab RashidS. Nik Mohamed KamalN.N.S. MuhamadM. TanW.N. Cynometra cauliflora L.: An indigenous tropical fruit tree in Malaysia bearing essential oils and their biological activities.Arab. J. Chem.202114910330210.1016/j.arabjc.2021.103302
    [Google Scholar]
  31. AnlizaS. RachmawatiN. Activity of ethanol extract namnam (Cynometra cauliflora L.) leaves toward antioxidant. SANITAS: Jurnal Teknologi dan Seni Kesehatan,2023141110
  32. Zeeshan BhattiM. KarimA. Plant natural products: A promising source of hyaluronidase enzyme inhibitors.Extracellular Matrix- Developments and Therapeutics; InTechOpen: London2021135
    [Google Scholar]
  33. ZhouH. ZhangX. LiB. YueR. Fast and efficient identification of hyaluronidase specific inhibitors from Chrysanthemum morifolium Ramat. using UF-LC-MS technique and their anti-inflammation effect in macrophages.Heliyon202392e1370910.1016/j.heliyon.2023.e13709 36852058
    [Google Scholar]
  34. ChajaraA. RaoudiM. DelpechB. LeroyM. BasuyauJ.P. LevesqueH. Increased hyaluronan and hyaluronidase production and hyaluronan degradation in injured aorta of insulin-resistant rats.Arterioscler. Thromb. Vasc. Biol.20002061480148710.1161/01.ATV.20.6.1480 10845861
    [Google Scholar]
  35. LiX. XuR. ChengZ. SongZ. WangZ. DuanH. WuX. NiT. Comparative study on the interaction between flavonoids with different core structures and hyaluronidase.Spectrochim. Acta A Mol. Biomol. Spectrosc.202126212007910.1016/j.saa.2021.120079 34175762
    [Google Scholar]
  36. NapoleoneE. Di SantoA. AmoreC. BaccanteG. Di FebboC. PorrecaE. De GaetanoG. DonatiM.B. LorenzetR. Leptin induces tissue factor expression in human peripheral blood mononuclear cells: A possible link between obesity and cardiovascular risk?J. Thromb. Haemost.2007571462146810.1111/j.1538‑7836.2007.02578.x 17425664
    [Google Scholar]
  37. CondeJ. ScoteceM. GómezR. Gómez-ReinoJ.J. LagoF. GualilloO. At the crossroad between immunity and metabolism: Focus on leptin.Expert Rev. Clin. Immunol.20106580180810.1586/eci.10.48 20828288
    [Google Scholar]
  38. FainJ.N. MadanA.K. HilerM.L. CheemaP. BahouthS.W. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans.Endocrinology200414552273228210.1210/en.2003‑1336 14726444
    [Google Scholar]
  39. Mohamed-AliV. GoodrickS. RaweshA. KatzD.R. MilesJ.M. YudkinJ.S. KleinS. CoppackS.W. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo.J. Clin. Endocrinol. Metab.199782124196420010.1210/jc.82.12.4196 9398739
    [Google Scholar]
  40. LealV.O. MafraD. Adipokines in obesity.Clin. Chim. Acta2013419879410.1016/j.cca.2013.02.003 23422739
    [Google Scholar]
  41. Nieto-VazquezI. Fernández-VeledoS. KrämerD.K. Vila-BedmarR. Garcia-GuerraL. LorenzoM. Insulin resistance associated to obesity: The link TNF-alpha.Arch. Physiol. Biochem.2008114318319410.1080/13813450802181047 18629684
    [Google Scholar]
  42. LagathuC. BastardJ.P. AuclairM. MaachiM. CapeauJ. CaronM. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: Prevention by rosiglitazone.Biochem. Biophys. Res. Commun.2003311237237910.1016/j.bbrc.2003.10.013 14592424
    [Google Scholar]
  43. FasshauerM. BlüherM. Adipokines in health and disease.Trends Pharmacol. Sci.201536746147010.1016/j.tips.2015.04.014 26022934
    [Google Scholar]
  44. MattuH.S. RandevaH.S. Role of adipokines in cardiovascular disease.J. Endocrinol.20132161T17T3610.1530/JOE‑12‑0232 23160967
    [Google Scholar]
  45. LauW.B. OhashiK. WangY. OgawaH. MuroharaT. MaX.L. OuchiN. Role of adipokines in cardiovascular disease.Circ. J.201781792092810.1253/circj.CJ‑17‑0458 28603178
    [Google Scholar]
  46. SenesiP. LuziL. TerruzziI. Adipokines, myokines, and cardiokines: The role of nutritional interventions.Int. J. Mol. Sci.20202121837210.3390/ijms21218372 33171610
    [Google Scholar]
  47. GriffinM.J. Nipping adipocyte inflammation in the bud.Immunometabolism (Cobham)202132e21001210.20900/immunometab20210012 33732506
    [Google Scholar]
  48. SunS.C. LiuZ.G. A special issue on NF-κB signaling and function.Cell Res.20112111210.1038/cr.2011.1 21196938
    [Google Scholar]
  49. VallabhapurapuS. KarinM. Regulation and function of NF-kappaB transcription factors in the immune system.Annu. Rev. Immunol.200927169373310.1146/annurev.immunol.021908.132641 19302050
    [Google Scholar]
  50. ZhangH. SunS.C. NF-κB in inflammation and renal diseases.Cell Biosci.2015516310.1186/s13578‑015‑0056‑4
    [Google Scholar]
  51. SunS.C. The noncanonical NF‐κB pathway.Immunol. Rev.2012246112514010.1111/j.1600‑065X.2011.01088.x 22435551
    [Google Scholar]
  52. SunS.C. Non-canonical NF-κB signaling pathway.Cell Res.2011211718510.1038/cr.2010.177 21173796
    [Google Scholar]
  53. YamazakiH. HiramatsuN. HayakawaK. TagawaY. OkamuraM. OgataR. HuangT. NakajimaS. YaoJ. PatonA.W. PatonJ.C. KitamuraM. Activation of the Akt-NF-kappaB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response.J. Immunol.200918321480148710.4049/jimmunol.0900017 19561103
    [Google Scholar]
  54. PoltorakA. HeX. SmirnovaI. LiuM. Y. Van HuffelC. DuX. BirdwellD. AlejosE. SilvaM. GalanosC. FreudenbergM. Ricciardi-CastagnoliP. LaytonB. BeutlerB. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science (1979)1998282539620852088
  55. QureshiS.T. LarivièreL. LevequeG. ClermontS. MooreK.J. GrosP. MaloD. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4).J. Exp. Med.1999189461562510.1084/jem.189.4.615 9989976
    [Google Scholar]
  56. PalD. DasguptaS. KunduR. MaitraS. DasG. MukhopadhyayS. RayS. MajumdarS.S. BhattacharyaS. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance.Nat. Med.20121881279128510.1038/nm.2851 22842477
    [Google Scholar]
  57. SchaefflerA. GrossP. BuettnerR. BollheimerC. BuechlerC. NeumeierM. KoppA. SchoelmerichJ. FalkW. Fatty acid‐induced induction of Toll‐like receptor‐4/nuclear factor‐κB pathway in adipocytes links nutritional signalling with innate immunity.Immunology2009126223324510.1111/j.1365‑2567.2008.02892.x 18624726
    [Google Scholar]
  58. SuganamiT. Tanimoto-KoyamaK. NishidaJ. ItohM. YuanX. MizuaraiS. KotaniH. YamaokaS. MiyakeK. AoeS. KameiY. OgawaY. Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages.Arterioscler. Thromb. Vasc. Biol.2007271849110.1161/01.ATV.0000251608.09329.9a 17082484
    [Google Scholar]
  59. ShiH. KokoevaM.V. InouyeK. TzameliI. YinH. FlierJ.S. TLR4 links innate immunity and fatty acid–induced insulin resistance.J. Clin. Invest.2006116113015302510.1172/JCI28898 17053832
    [Google Scholar]
  60. SuganamiT. MiedaT. ItohM. ShimodaY. KameiY. OgawaY. Attenuation of obesity-induced adipose tissue inflammation in C3H/HeJ mice carrying a Toll-like receptor 4 mutation.Biochem. Biophys. Res. Commun.20073541454910.1016/j.bbrc.2006.12.190 17210129
    [Google Scholar]
  61. HeQ. YangQ. ZhouQ. ZhuH. NiuW. FengJ. WangY. CaoJ. ChenB. Effects of varying degrees of intermittent hypoxia on proinflammatory cytokines and adipokines in rats and 3T3-L1 adipocytes.PLoS One201491e8632610.1371/journal.pone.0086326 24466027
    [Google Scholar]
  62. TaylorC.T. KentB.D. CrinionS.J. McNicholasW.T. RyanS. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression.Biochem. Biophys. Res. Commun.2014447466066510.1016/j.bbrc.2014.04.062 24755071
    [Google Scholar]
  63. LeeM.Y.K. WangY. MakJ.C.W. IpM.S.M. Intermittent hypoxia induces NF-κB-dependent endothelial activation via adipocyte-derived mediators.Am. J. Physiol. Cell Physiol.20163106C446C45510.1152/ajpcell.00240.2015 26739492
    [Google Scholar]
  64. TangY. WangJ. CaiW. XuJ. RAGE/NF-κB pathway mediates hypoxia-induced insulin resistance in 3T3-L1 adipocytes.Biochem. Biophys. Res. Commun.20205211778310.1016/j.bbrc.2019.10.076 31629469
    [Google Scholar]
  65. WeidemannA. LovasA. RauchA. AndreasN. von MaltzahnJ. RiemannM. WeihF. Classical and alternative NF-κB signaling cooperate in regulating adipocyte differentiation and function.Int. J. Obes.201640345245910.1038/ijo.2015.198 26403432
    [Google Scholar]
  66. JurgaL. VanessaH. ElisabetA.N. AndreaD. LennartB. ErikN. DominiqueL. PeterA. MikaelR. NF-κB is important for TNF-α-induced lipolysis in human adipocytes.J. Lipid Res.20074851069107710.1194/jlr.M600471‑JLR200 17272828
    [Google Scholar]
  67. QiR. HuangJ. WangQ. LiuH. WangR. WangJ. YangF. MicroRNA‐224‐5p regulates adipocyte apoptosis induced by TNFα via controlling NF‐κB activation.J. Cell. Physiol.201823321236124610.1002/jcp.25992 28488777
    [Google Scholar]
  68. RuanH. HacohenN. GolubT.R. Van ParijsL. LodishH.F. Tumor necrosis factor-α suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: Nuclear factor-kappaB activation by TNF-α is obligatory.Diabetes20025151319133610.2337/diabetes.51.5.1319 11978627
    [Google Scholar]
  69. TourniaireF. Romier-CrouzetB. LeeJ.H. MarcotorchinoJ. GourantonE. SallesJ. MalezetC. AstierJ. DarmonP. BlouinE. WalrandS. YeJ. LandrierJ.F. Chemokine expression in inflamed adipose tissue is mainly mediated by NF-κB.PLoS One201386e6651510.1371/journal.pone.0066515 23824685
    [Google Scholar]
  70. SchmitzM.L. ShabanM.S. AlbertB.V. GökçenA. KrachtM. The crosstalk of endoplasmic reticulum (ER) stress pathways with NF-κB: Complex mechanisms relevant for cancer, inflammation and infection.Biomedicines2018625810.3390/biomedicines6020058 29772680
    [Google Scholar]
  71. KawasakiN. AsadaR. SaitoA. KanemotoS. ImaizumiK. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue.Sci. Rep.20122179910.1038/srep00799 23150771
    [Google Scholar]
  72. JiaoP. MaJ. FengB. ZhangH. Alan-DiehlJ. Eugene-ChinY. YanW. XuH. FFA-induced adipocyte inflammation and insulin resistance: Involvement of ER stress and IKKβ pathways.Obesity (Silver Spring)201119348349110.1038/oby.2010.200 20829802
    [Google Scholar]
  73. SharmaN.K. DasS.K. MondalA.K. HackneyO.G. ChuW.S. KernP.A. RasouliN. SpencerH.J. Yao-BorengasserA. ElbeinS.C. Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects.J. Clin. Endocrinol. Metab.200893114532454110.1210/jc.2008‑1001 18728164
    [Google Scholar]
  74. BodenG. DuanX. HomkoC. MolinaE.J. SongW. PerezO. CheungP. MeraliS. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals.Diabetes20085792438244410.2337/db08‑0604 18567819
    [Google Scholar]
  75. GregorM.F. HotamisligilG.S. Thematic review series: Adipocyte Biology. Adipocyte stress: The endoplasmic reticulum and metabolic disease.J. Lipid Res.20074891905191410.1194/jlr.R700007‑JLR200 17699733
    [Google Scholar]
  76. ÖzcanU. CaoQ. YilmazE. LeeA.H. IwakoshiN.N. ÖzdelenE. TuncmanG. GörgünC. GlimcherL.H. HotamisligilG. S. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science (1979)20043065695457461
    [Google Scholar]
  77. GoldsteinB.J. ScaliaR. Adiponectin: A novel adipokine linking adipocytes and vascular function.J. Clin. Endocrinol. Metab.20048962563256810.1210/jc.2004‑0518 15181024
    [Google Scholar]
  78. Fernández-RealJ.M. CastroA. VázquezG. CasamitjanaR. López-BermejoA. PeñarrojaG. RicartW. Adiponectin is associated with vascular function independent of insulin sensitivity.Diabetes Care200427373974510.2337/diacare.27.3.739 14988295
    [Google Scholar]
  79. KubotaN. TerauchiY. YamauchiT. KubotaT. MoroiM. MatsuiJ. EtoK. YamashitaT. KamonJ. SatohH. YanoW. FroguelP. NagaiR. KimuraS. KadowakiT. NodaT. Disruption of adiponectin causes insulin resistance and neointimal formation.J. Biol. Chem.200227729258632586610.1074/jbc.C200251200 12032136
    [Google Scholar]
  80. MatsudaM. ShimomuraI. SataM. AritaY. NishidaM. MaedaN. KumadaM. OkamotoY. NagaretaniH. NishizawaH. KishidaK. KomuroR. OuchiN. KiharaS. NagaiR. FunahashiT. MatsuzawaY. Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis.J. Biol. Chem.200227740374873749110.1074/jbc.M206083200 12138120
    [Google Scholar]
  81. SteppanC.M. WangJ. WhitemanE.L. BirnbaumM.J. LazarM.A. Activation of SOCS-3 by Resistin.Mol. Cell. Biol.20052541569157510.1128/MCB.25.4.1569‑1575.2005 15684405
    [Google Scholar]
  82. JamaluddinM.S. WeakleyS.M. YaoQ. ChenC. Resistin: Functional roles and therapeutic considerations for cardiovascular disease.Br. J. Pharmacol.2012165362263210.1111/j.1476‑5381.2011.01369.x 21545576
    [Google Scholar]
  83. VermaS. LiS.H. WangC.H. FedakP.W.M. LiR.K. WeiselR.D. MickleD.A.G. Resistin promotes endothelial cell activation: Further evidence of adipokine-endothelial interaction.Circulation2003108673674010.1161/01.CIR.0000084503.91330.49 12874180
    [Google Scholar]
  84. SteppanC.M. LazarM.A. Resistin and obesity-associated insulin resistance.Trends Endocrinol. Metab.2002131182310.1016/S1043‑2760(01)00522‑7 11750858
    [Google Scholar]
  85. MuseE.D. FeldmanD.I. BlahaM.J. DardariZ.A. BlumenthalR.S. BudoffM.J. NasirK. CriquiM.H. CushmanM. McClellandR.L. AllisonM.A. The association of resistin with cardiovascular disease in the Multi-Ethnic Study of Atherosclerosis.Atherosclerosis2015239110110810.1016/j.atherosclerosis.2014.12.044 25585029
    [Google Scholar]
  86. AskinL. AbusS. TanriverdiO. Resistin and cardiovascular disease: A Review of the current literature regarding clinical and pathological relationships.Curr. Cardiol. Rev.2022181e29072119511410.2174/1573403X17666210729101120
    [Google Scholar]
  87. PatelL. BuckelsA.C. KinghornI.J. MurdockP.R. HolbrookJ.D. PlumptonC. MacpheeC.H. SmithS.A. Resistin is expressed in human macrophages and directly regulated by PPARγ activators.Biochem. Biophys. Res. Commun.2003300247247610.1016/S0006‑291X(02)02841‑3 12504108
    [Google Scholar]
  88. BokarewaM. NagaevI. DahlbergL. SmithU. TarkowskiA. Resistin, an adipokine with potent proinflammatory properties.J. Immunol.200517495789579510.4049/jimmunol.174.9.5789 15843582
    [Google Scholar]
  89. SuX. PengD. Adipokines as novel biomarkers of cardio-metabolic disorders.Clin. Chim. Acta2020507313810.1016/j.cca.2020.04.009 32283064
    [Google Scholar]
  90. LeeY.H. MottilloE.P. GrannemanJ.G. Adipose tissue plasticity from WAT to BAT and in between.Biochim. Biophys. Acta Mol. Basis Dis.20141842335836910.1016/j.bbadis.2013.05.011 23688783
    [Google Scholar]
  91. SumarlinL.O. SuprayogiA. RahminiwatiM. SatyaningtijasA. HajarH. WulandariM. Studi of in vivo antidiabetic activity of Namnam leaves (Cynometra cauliflora) extract in Sprague Dawley rat. al-Kimiya,20231012030
  92. AzizF.A.A. BhuiyanA. IqbalM. An evaluation of antioxidant and antidiabetic potential of Cynometra cauliflora (Nam-nam, Fabaceae).Transact. Sci. Technol.20174372383
    [Google Scholar]
  93. SiddiquiM.J. Mohd BukhariD.A. ShamsudinS.B. RahmanM.M. So’adS.M. α-Glucosidase inhibitory activity of selected Malaysian plants.J. Pharm. Bioallied Sci.20179316417010.4103/jpbs.JPBS_35_17 28979070
    [Google Scholar]
  94. WongP.L. FauziN.A. Mohamed YunusS.N. Abdul HamidN.A. Abd GhafarS.Z. AzizanA. ZolkefleeN.K.Z. AbasF. Biological activities of selected plants and detection of bioactive compounds from Ardisia elliptica using UHPLC-Q-Exactive orbitrap mass spectrometry.Molecules20202513306710.3390/molecules25133067 32640504
    [Google Scholar]
  95. AdoM.A. MedianiA. Maulidiani; Ismail, I.S.; Ghazali, H.M.; Abas, F. Flavonoids from Cynometra cauliflora and their antioxidant, α-Glucosidase, and cholinesterase inhibitory activities.Chem. Nat. Compd.201955111211410.1007/s10600‑019‑02627‑5
    [Google Scholar]
  96. SitN.W. OngC.W. ChanY.S. KhooK.S. OngH.C. Antifungal and cytotoxic activities of extracts obtained from underutilised edible tropical fruits.Asian Pac. J. Trop. Biomed.20188631331910.4103/2221‑1691.235326
    [Google Scholar]
  97. CosP. VlietinckA.J. BergheD.V. MaesL. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’.J. Ethnopharmacol.2006106329030210.1016/j.jep.2006.04.003 16698208
    [Google Scholar]
  98. Ode SumarlinL. SuprayogiA. RahminiwatiM. TjachjaA. SukandarD. Bioaktivitas ekstrak metanol daun Namnam serta kombinasinya dengan madu Trigona.J. Teknol. Ind. Pangan201526214415410.6066/jtip.2015.26.2.144
    [Google Scholar]
  99. FentyW. The world’s largest collection of open access research papers. 2016. Available From:core.ac.uk
  100. AnlizaS. RachmawatiN. Cytotoxic activity of ethanol Extract in Namnam leaves (Cynometra cauliflora l.) to Hela cell.Walisongo J. Chem.20214210711210.21580/wjc.v4i2.7999
    [Google Scholar]
  101. KomarudinD. FauziahS. Vera Nisa Br Perangin-AnginI. Potensi ekstrak etanol daun Namnam (Cynometra cauliflora L.) sebagai sumber vitamin C. Jurnal Ilmiah Kedokteran dan Ilmu Kesehatan,201962114121
  102. PubChem. Explore Chemistry.2024Available Fromhttps://pubchem.ncbi.nlm.nih.gov/
    [Google Scholar]
  103. FangR. RedfernS.P. KirkupD. PorterE.A. KiteG.C. TerryL.A. BerryM.J. SimmondsM.S.J. Variation of theanine, phenolic, and methylxanthine compounds in 21 cultivars of Camellia sinensis harvested in different seasons.Food Chem.201722051752610.1016/j.foodchem.2016.09.047 27855934
    [Google Scholar]
  104. MacedoS.K.S. AlmeidaT.S. FerrazC.A.A. OliveiraA.P. Hugo AlmeidaA.V. AlmeidaJ.R.G.S. SilvaN.D.S. NunesX.P. Identification of flavonol glycosides and in vitro photoprotective and antioxidant activities of Triplaris gardneriana Wedd.J. Med. Plants Res.20159720721510.5897/JMPR2014.5555
    [Google Scholar]
  105. DiasM.I. BarrosL. MoralesP. CámaraM. AlvesM.J. OliveiraM.B.P.P. Santos-BuelgaC. FerreiraI.C.F.R. Wild Fragaria vesca L. fruits: A rich source of bioactive phytochemicals.Food Funct.20167114523453210.1039/C6FO01042C 27775146
    [Google Scholar]
  106. HanA.R. NamB. KimB.R. LeeK.C. SongB.S. KimS.H. KimJ.B. JinC.H. Phytochemical composition and antioxidant activities of two different color chrysanthemum flower teas.Molecules201924232910.3390/molecules24020329 30658439
    [Google Scholar]
  107. RyuJ. NamB. KimB.R. KimS.H. JoY.D. AhnJ.W. KimJ.B. JinC.H. HanA.R. Comparative analysis of phytochemical composition of gamma-irradiated mutant cultivars of Chrysanthemum morifolium.Molecules20192416300310.3390/molecules24163003 31430944
    [Google Scholar]
/content/journals/npj/10.2174/0122103155337729240926033345
Loading
/content/journals/npj/10.2174/0122103155337729240926033345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test