Skip to content
2000
Volume 15, Issue 9
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Carbohydrates, the most prevalent class of organic substances in living systems, play a variety of important roles, such as in the creation of energy, the construction of biological structures, and the synthesis of paper and food. More advanced uses of modified starch have been introduced over the past millennium, demonstrating that modified starches are promising excipients in drug delivery, an area in which their role and range of utility continuously increase. Technological advancements in the pharmaceutical field have led to the development of new and highly stable molecules with enhanced properties for novel drug delivery systems. Innovative starches from various sources present exclusive support in the development of novel dosage forms.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155319243240927062730
2024-10-07
2025-09-14
Loading full text...

Full text loading...

References

  1. CunD. ZhangC. BeraH. YangM. Particle engineering principles and technologies for pharmaceutical biologics.Adv. Drug Deliv. Rev.202117414016710.1016/j.addr.2021.04.006 33845039
    [Google Scholar]
  2. SivamaruthiB.S. NallasamyP. SuganthyN. KesikaP. ChaiyasutC. Pharmaceutical and biomedical applications of starch-based drug delivery system: A review.J. Drug Deliv. Sci. Technol.20227710389010.1016/j.jddst.2022.103890
    [Google Scholar]
  3. ThanyapanichN. JimtaisongA. RawdkuenS. Functional properties of banana starch (Musa spp.) and its utilization in cosmetics.Molecules20212612363710.3390/molecules26123637 34198695
    [Google Scholar]
  4. WangS. ZhangP. LiY. LiJ. LiX. YangJ. JiM. LiF. ZhangC. Recent advances and future challenges of the starch-based bio-composites for engineering applications.Carbohydr. Polym.202330712062710.1016/j.carbpol.2023.120627 36781278
    [Google Scholar]
  5. SunC. WeiZ. XueC. YangL. Development, application and future trends of starch-based delivery systems for nutraceuticals: A review.Carbohydr. Polym.202330812067510.1016/j.carbpol.2023.120675 36813348
    [Google Scholar]
  6. WuH. SangS. WengP. PanD. WuZ. YangJ. LiuL. FaragM.A. XiaoJ. LiuL. Structural, rheological, and gelling characteristics of starch‐based materials in context to 3D food printing applications in precision nutrition.Compr. Rev. Food Sci. Food Saf.20232264217424110.1111/1541‑4337.13217 37583298
    [Google Scholar]
  7. UddinI. AbzalS.M. KalyanK. JangaS. PatelR. DashJ.K. Starch-assisted stable synthesis of CdS nanoparticles for enhanced electrical and optical properties.J. Electron. Mater.20235231710171610.1007/s11664‑022‑10198‑5
    [Google Scholar]
  8. CheethamN.W.H. TaoL. Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study.Carbohydr. Polym.199836427728410.1016/S0144‑8617(98)00007‑1
    [Google Scholar]
  9. SinghV. AliS.Z. SomashekarR. MukherjeeP.S. Nature of crystallinity in native and acid modified starches.Int. J. Food Prop.20069484585410.1080/10942910600698922
    [Google Scholar]
  10. TangH. MitsunagaT. KawamuraY. Molecular arrangement in blocklets and starch granule architecture.Carbohydr. Polym.200663455556010.1016/j.carbpol.2005.10.016
    [Google Scholar]
  11. WangS. GuoP. Botanical sources of starch.Starch Structure, Functionality and Application in Foods.SingaporeSpringer2020927
    [Google Scholar]
  12. PrabhuM. ChemodanovA. GottliebR. KazirM. NahorO. GozinM. IsraelA. LivneyY.D. GolbergA. Starch from the sea: The green macroalga Ulva ohnoi as a potential source for sustainable starch production in the marine biorefinery.Algal Res.20193721522710.1016/j.algal.2018.11.007
    [Google Scholar]
  13. AliN.A. DashK.K. RoutrayW. Physicochemical characterization of modified lotus seed starch obtained through acid and heat moisture treatment.Food Chem.202031912651310.1016/j.foodchem.2020.126513 32151897
    [Google Scholar]
  14. LightJ.M. Modified food starches: Why, what, where, and how.Cereal Foods World1990351110811092
    [Google Scholar]
  15. LuuT.D. PhanN.H. TranT.T. Van VoT. TranP.H. Use of microwave method for controlling drug release of modified sprouted rice starch. 5th International Conference on Biomedical Engineering in Vietnam. IFMBE Proceedings, , Springer, Cham2015314316
    [Google Scholar]
  16. LewickaK. SiemionP. KurcokP. Chemical modifications of starch: Microwave effect.Int. J. Polym. Sci.201520151867697
    [Google Scholar]
  17. KonwarhR. KarakN. SawianC.E. BaruahS. MandalM. Effect of sonication and aging on the templating attribute of starch for “green” silver nanoparticles and their interactions at bio-interface.Carbohydr. Polym.20118331245125210.1016/j.carbpol.2010.09.031
    [Google Scholar]
  18. PejinD.J. MojovićL.V. PejinJ.D. GrujićO.S. MarkovS.L. NikolićS.B. MarkovićM.N. Increase in bioethanol production yield from triticale by simultaneous saccharification and fermentation with application of ultrasound.J. Chem. Technol. Biotechnol.201287217017610.1002/jctb.2675
    [Google Scholar]
  19. HernouxA. LévêqueJ.M. LassiU. Molina-BoisseauS. MaraisM.F. Conversion of a non-water soluble potato starch waste into reducing sugars under non-conventional technologies.Carbohydr. Polym.20139222065207410.1016/j.carbpol.2012.11.048 23399259
    [Google Scholar]
  20. BłaszczakW. FornalJ. KiselevaV.I. YuryevV.P. SergeevA.I. SadowskaJ. Effect of high pressure on thermal, structural and osmotic properties of waxy maize and Hylon VII starch blends.Carbohydr. Polym.200768338739610.1016/j.carbpol.2006.12.023
    [Google Scholar]
  21. ZhangL. JiH. YangM. MaH. Effects of high hydrostatic pressure treated mung bean starch on characteristics of batters and crusts from deep-fried pork nuggets.Int. J. Food Eng.201410226126810.1515/ijfe‑2012‑0105
    [Google Scholar]
  22. YeJ. HuX. LuoS. LiuW. ChenJ. ZengZ. LiuC. Properties of starch after extrusion: A review.Stärke20187011-12170011010.1002/star.201700110
    [Google Scholar]
  23. CompartJ. SinghA. FettkeJ. ApriyantoA. Customizing starch properties: A review of starch modifications and their applications.Polymers20231516349110.3390/polym15163491 37631548
    [Google Scholar]
  24. RoushdiM. HarrasA. El-MeligiA. BassimM. Effect of high doses of gamma rays on corn grains. Part II. Influence on some physical and chemical properties of starch and its fractions.Stärke1983351151810.1002/star.19830350106
    [Google Scholar]
  25. PolesiL.F. JuniorM.D.M. SarmentoS.B.S. Canniatti-BrazacaS.G. Starch digestibility and physicochemical and cooking properties of irradiated rice grains.Rice Sci.2017241485510.1016/j.rsci.2016.07.005
    [Google Scholar]
  26. GulK. SinghA.K. SonkawadeR.G. Physicochemical, thermal and pasting characteristics of gamma irradiated rice starches.Int. J. Biol. Macromol.20168546046610.1016/j.ijbiomac.2016.01.024 26778155
    [Google Scholar]
  27. TomasikP. ZaranyikaM.F. Nonconventional methods of modification of starch.Adv. Carbohydr. Chem. Biochem.19955124331810.1016/S0065‑2318(08)60195‑X 7484364
    [Google Scholar]
  28. ThirumdasR. TrimukheA. DeshmukhR.R. AnnapureU.S. Functional and rheological properties of cold plasma treated rice starch.Carbohydr. Polym.20171571723173110.1016/j.carbpol.2016.11.050 27987888
    [Google Scholar]
  29. ZhuF. Plasma modification of starch.Food Chem.201723247648610.1016/j.foodchem.2017.04.024 28490100
    [Google Scholar]
  30. TungN.T. ThuyL.T.H. LuongN.T. Van KhoiN. HaP.T.T. ThangN.H. The molecular structural transformation of jackfruit seed starch in hydrogen peroxide oxidation condition.J. Indian Chem. Soc.2021981110019210.1016/j.jics.2021.100192
    [Google Scholar]
  31. TrinhK.S. DangT.B. Structural, physicochemical, and functional properties of electrolyzed cassava starch.Int. J. Food Sci.2019201911710.1155/2019/9290627 31192252
    [Google Scholar]
  32. CastanhaN. SantosD.N. CunhaR.L. AugustoP.E.D. Properties and possible applications of ozone-modified potato starch.Food Res. Int.20191161192120110.1016/j.foodres.2018.09.064 30716905
    [Google Scholar]
  33. WangW. ShiY.C. Gelatinization, pasting and retrogradation properties of hydroxypropylated normal wheat, waxy wheat, and waxy maize starches.Food Hydrocoll.202010610591010.1016/j.foodhyd.2020.105910
    [Google Scholar]
  34. Mendez-MontealvoG. VelazquezG. Fonseca-FloridoH.A. Morales-SanchezE. SolerA. Insights on the acid hydrolysis of achira (Canna edulis) starch: Crystalline and double-helical structure changes impacting functionality.Lebensm. Wiss. Technol.202215311250910.1016/j.lwt.2021.112509
    [Google Scholar]
  35. AyoubA.S. RizviS.S.H. An overview on the technology of cross-linking of starch for non-food applications.J. Plast. Film Sheeting2009251254510.1177/8756087909336493
    [Google Scholar]
  36. Lopez-OchoaJ.D. Cadena-ChamorroE. Ciro-VelasquezH. Rodríguez-SandovalE. Enzymatically modified cassava starch as a stabilizer for fermented dairy beverages.Stärke2022747-8210024210.1002/star.202100242
    [Google Scholar]
  37. CornejoF. Maldonado-AlvaradoP. Palacios-PonceS. HugoD. RosellC.M. Impact of cassava starch varieties on the physiochemical change during enzymatic hydrolysis.Molecules20222718609810.3390/molecules27186098 36144827
    [Google Scholar]
  38. JohnsonL.A. HardyC.L. BaumelC.P. WhiteP.J. Identifying valuable corn quality traits for starch production.Cereal Foods World20014611707
    [Google Scholar]
  39. GonzálezK. LarrazaI. BerraG. EceizaA. GabilondoN. 3D printing of customized all-starch tablets with combined release kinetics.Int. J. Pharm.202262212187210.1016/j.ijpharm.2022.121872 35636631
    [Google Scholar]
  40. DaminaboS.C. GoelS. GrammatikosS.A. NezhadH.Y. ThakurV.K. Fused deposition modeling-based additive manufacturing (3D printing): Techniques for polymer material systems.Mater. Today Chem.20201610024810.1016/j.mtchem.2020.100248
    [Google Scholar]
  41. SalimI. KehindeO.A. AbdulsamadA. MohammedK.G. GwarzoM.S. Physicomechanical behaviour of novel directly compressible Starch-MCC-Povidone composites and their application in ascorbic acid tablet formulation.Br. J. Pharm.20183113
    [Google Scholar]
  42. DziemidowiczK. LopezF.L. BowlesB.J. EdwardsA.J. ErnestT.B. OrluM. TuleuC. Co-processed excipients for dispersible tablets—part 2: Patient acceptability.AAPS PharmSciTech20181962646265710.1208/s12249‑018‑1104‑2 29943280
    [Google Scholar]
  43. PatelS.S. ShahS.V. Overview on functionality added co-processed excipients for orodispersible tablets.Asian J. Pharm. Res.202212432333410.52711/2231‑5691.2022.00052
    [Google Scholar]
  44. KokottM. LuraA. BreitkreutzJ. WiedeyR. Evaluation of two novel co-processed excipients for direct compression of orodispersible tablets and mini-tablets.Eur. J. Pharm. Biopharm.202116812213010.1016/j.ejpb.2021.08.016 34474110
    [Google Scholar]
  45. GeertsM.E.J. StrijbosM. van der PadtA. van der GootA.J. Understanding functional properties of mildly refined starch fractions of yellow pea.J. Cereal Sci.20177511612310.1016/j.jcs.2017.03.025
    [Google Scholar]
  46. KarroutY. NeutC. WilsD. SiepmannF. DeremauxL. FlamentM.P. DubreuilL. DesreumauxP. SiepmannJ. Peas starch‐based film coatings for site‐specific drug delivery to the colon.J. Appl. Polym. Sci.201111921176118410.1002/app.32802
    [Google Scholar]
  47. SahaS. ShahiwalaA.F. Multifunctional coprocessed excipients for improved tabletting performance.Expert Opin. Drug Deliv.20096219720810.1517/17425240802708978 19239391
    [Google Scholar]
  48. Al-ZoubiN. GharaibehS. AljaberiA. NikolakakisI. Spray drying for direct compression of pharmaceuticals.Processes (Basel)20219226710.3390/pr9020267
    [Google Scholar]
  49. YapS. AdamsM. SevilleJ. ZhangZ. Understanding the mechanical properties of single micro-particles and their compaction behaviour.China Particuology200641354010.1016/S1672‑2515(07)60231‑0
    [Google Scholar]
  50. KittipongpatanaO.S. TrisoponK. WattanaarsakitP. KittipongpatanaN. Fabrication and characterization of orodispersible composite film from hydroxypropyl methyl cellulose-crosslinked carboxymethyl rice starch.Membranes202212659410.3390/membranes12060594 35736301
    [Google Scholar]
  51. Starch softgel capsules market forecast and growth 2031. Available from: https://www.theinsightpartners.com/reports/starch-soft-gel-capsules-market
  52. ZafarN. NaeemN. KhanT. UllahH. WahidF. Green composites for drugs capsule coatings.In: Green Sustainable Process for Chemical and Environmental Engineering and Science.Elsevier 20232023120
    [Google Scholar]
  53. MironescuM. Lazea-StoyanovaA. Barbinta-PatrascuM.E. VircheaL.I. RexhepiD. MatheE. GeorgescuC. Green design of novel starch-based packaging materials sustaining human and environmental health.Polymers2021138119010.3390/polym13081190 33917150
    [Google Scholar]
  54. SinghR.S. KaurN. SinghD. PurewalS.S. KennedyJ.F. Pullulan in pharmaceutical and cosmeceutical formulations: A review.Int. J. Biol. Macromol.202323112335310.1016/j.ijbiomac.2023.123353 36681225
    [Google Scholar]
  55. BurnsS. CornessD. HayG. HigginbottomS. WhelanI. AttwoodD. BarnwellS.G. An in vitro assessment of liquid-filled capill® potato starch capsules with biphasic release characteristics.Int. J. Pharm.19961341-222323010.1016/0378‑5173(95)04462‑0
    [Google Scholar]
  56. PoeloengasihC.D. PranotoY. AnggraheniF.D. MarsenoD.W. Potential of sago starch/carrageenan mixture as gelatin alternative for hard capsule material.AIP Conference Proceedings201718231
    [Google Scholar]
  57. NyamweyaN.N. Applications of polymer blends in drug delivery.Future J. Pharm. Sci.2021715
    [Google Scholar]
  58. SarmahD. KarakN. Physically cross-linked starch/hydrophobically-associated poly(acrylamide) self-healing mechanically strong hydrogel.Carbohydr. Polym.202228911942810.1016/j.carbpol.2022.119428 35483842
    [Google Scholar]
  59. WangY. HuangH. WuJ. HanL. YangZ. JiangZ. WangR. HuangZ. XuM. Ultrafast self-healing, reusable, and conductive polysaccharide-based hydrogels for sensitive ionic sensors.ACS Sustain. Chem.& Eng.2020850185061851810.1021/acssuschemeng.0c06258
    [Google Scholar]
  60. BaiC. ZhangS. HuangL. WangH. WangW. YeQ. Starch-based hydrogel loading with carbendazim for controlled-release and water absorption.Carbohydr. Polym.201512537638310.1016/j.carbpol.2015.03.004 25857995
    [Google Scholar]
  61. Otálora GonzálezC.M. Alvarez CastilloE. FloresS. GerschensonL.N. BengoecheaC. Effect of plasticizer composition on the properties of injection molded cassava starch-based bioplastics.Food Packag. Shelf Life20234010121810.1016/j.fpsl.2023.101218
    [Google Scholar]
  62. AbdullahA.H. FikriyyahA.K. PutriO.D. AsriP.P. Fabrication and characterization of poly lactic acid (PLA)-starch based bioplastic composites.IOP Conf Ser: Mater Sci Eng20195531012052
    [Google Scholar]
  63. CatañoF.A. Moreno-SernaV. CamentA. LoyoC. Yáñez-SM. OrtizJ.A. ZapataP.A. Green composites based on thermoplastic starch reinforced with micro- and nano-cellulose by melt blending - A review.Int. J. Biol. Macromol.202324812593910.1016/j.ijbiomac.2023.125939 37482162
    [Google Scholar]
  64. XieF. LuckmanP. MilneJ. McDonaldL. YoungC. TuC.Y. PasqualeT.D. FaveereR. HalleyP.J. Thermoplastic Starch.J. Renew. Mater.2014229510610.7569/JRM.2014.634104
    [Google Scholar]
  65. CarvalhoA.J.F. JobA.E. AlvesN. CurveloA.A.S. GandiniA. Thermoplastic starch/natural rubber blends.Carbohydr. Polym.2003531959910.1016/S0144‑8617(03)00005‑5
    [Google Scholar]
  66. García-CruzHI Jaime-FonsecaMR Von Borries-MedranoE VieyraH Extrusion parameters to produce a PLA-starch derived thermoplastic polymer. Rev Mex Ing Quím,202019Sup. 139541210.24275/rmiq/Poly1529
  67. TrebuňováM. PetrouškováP. BalogováA.F. IžaríkováG. HorňakP. BačenkováD. DemeterováJ. ŽivčákJ. Evaluation of biocompatibility of PLA/PHB/TPS polymer scaffolds with different additives of ATBC and OLA plasticizers.J. Funct. Biomater.202314841210.3390/jfb14080412 37623657
    [Google Scholar]
  68. WangR. Poly (Lactic Acid) (PLA), Poly (ε-Caprolactone) (PCL) and Thermoplastic Starch (TPS) Blends for Compostable Packaging Applications.Rochester Institute of Technology2018
    [Google Scholar]
  69. JózóM. Functional biopolymers for medical applications.Doctoral dissertation, Budapest University of Technology and Economics (Hungary),2022
    [Google Scholar]
  70. HuangL. ZhaoH. YiT. QiM. XuH. MoQ. HuangC. WangS. LiuY. Preparation and properties of cassava residue cellulose nanofibril/cassava starch composite films.Nanomaterials202010475510.3390/nano10040755 32326505
    [Google Scholar]
  71. SánchezM.D. DuqueJ.F. GalindoA.S. HerreraR.R. Biodegradable Polymers.CRC Press2023
    [Google Scholar]
  72. LipatovaI.M. LosevN.V. The influence of the combined impact of shear stress and cavitation on the structure and properties of starch-natural rubber composite.Carbohydr. Polym.202433012185210.1016/j.carbpol.2024.121852 38368078
    [Google Scholar]
  73. LeroyL. StocletG. LefebvreJ.M. GaucherV. Mechanical behaviour of thermoplastic starch: Rationale for the temperature-relative humidity equivalence.Polymers20221413253110.3390/polym14132531 35808576
    [Google Scholar]
  74. JaymandM. Sulfur functionality-modified starches: Review of synthesis strategies, properties, and applications.Int. J. Biol. Macromol.202219711112010.1016/j.ijbiomac.2021.12.090 34952096
    [Google Scholar]
  75. LemosP.V.F. MarcelinoH.R. CardosoL.G. SouzaC.O. DruzianJ.I. Starch chemical modifications applied to drug delivery systems: From fundamentals to FDA-approved raw materials.Int. J. Biol. Macromol.202118421823410.1016/j.ijbiomac.2021.06.077 34144062
    [Google Scholar]
  76. AlyA.A. El-BisiM.K. Grafting of polysaccharides: Recent advances.Biopolymer Grafting.Elsevier2018469519
    [Google Scholar]
  77. KumarD. PandeyJ. RajV. KumarP. A review on the modification of polysaccharide through graft copolymerization for various potential applications.Open Med. Chem. J.201711110912610.2174/1874104501711010109 29151987
    [Google Scholar]
  78. Mohd RoslanM.R. Mohd KamalN.L. Abdul KhalidM.F. Mohd NasirN.F. ChengE.M. BehC.Y. TanJ.S. MohamedM.S. The state of starch/hydroxyapatite composite scaffold in bone tissue engineering with consideration for dielectric measurement as an alternative characterization technique.Materials2021148196010.3390/ma14081960 33919814
    [Google Scholar]
  79. AslM.A. KarbasiS. Beigi-BoroujeniS. Zamanlui BenisiS. SaeedM. Evaluation of the effects of starch on polyhydroxybutyrate electrospun scaffolds for bone tissue engineering applications.Int. J. Biol. Macromol.202119150051310.1016/j.ijbiomac.2021.09.078 34555400
    [Google Scholar]
  80. RoslanM.R. NasirN.M. ChengE.M. AminN.A. Tissue engineering scaffold based on starch: A review. In: 2016 international conference on electrical, electronics, and optimization techniques (ICEEOT), ; Chennai, India, 03-05 March20161857186010.1109/ICEEOT.2016.7755010
    [Google Scholar]
  81. Gutiérrez-SánchezM. Escobar-BarriosV.A. Pozos-GuillénA. Escobar-GarcíaD.M. RGD-functionalization of PLA/starch scaffolds obtained by electrospinning and evaluated in vitro for potential bone regeneration.Mater. Sci. Eng. C20199679880610.1016/j.msec.2018.12.003 30606593
    [Google Scholar]
  82. PunyanityaS. KoonawootR. RaksantiA. ThiansemS. ChankachangP. The processing and characterization of the new semi-absorbable bone wax made from rice starch blended with beeswax.GMS Med. J.2024427177
    [Google Scholar]
  83. SuwanprateebJ. SuvannaprukW. ThammarakcharoenF. ChokevivatW. RukskulP. Preparation and characterization of PEG–PPG–PEG copolymer/pregelatinized starch blends for use as resorbable bone hemostatic wax.J. Mater. Sci. Mater. Med.201324122881288810.1007/s10856‑013‑5027‑x 23955721
    [Google Scholar]
  84. LiuC. LiuZ. WangK. SunY. LiuQ. SunX. YanT. YangQ. MaX. ZhouH. YangL. Novel bone wax based on DCPA granules and modified starch for hemostasis and bone regeneration.Appl. Mater. Today20233210181510.1016/j.apmt.2023.101815
    [Google Scholar]
  85. BrücknerT. SchamelM. KüblerA.C. GrollJ. GbureckU. Novel bone wax based on poly(ethylene glycol)–calcium phosphate cement mixtures.Acta Biomater.20163325226310.1016/j.actbio.2016.01.021 26805427
    [Google Scholar]
  86. XuR. ZhangJ. ZhouP. YangR. FengX. XuL. A novel artificial red blood cell substitute: Grafted starch-encapsulated hemoglobin.RSC Advances2015554438454385310.1039/C5RA00772K
    [Google Scholar]
  87. CernyL.C. BarnesB. FisherL. AnibarroM. HoN. CernyE.R. A starch-hemoglobin resuscitative compound.Artif. Cells Blood Substit. Immobil. Biotechnol.199624215316010.3109/10731199609118881 8907693
    [Google Scholar]
  88. Zaki AhmadM. BhattacharyaA. Isolation and physicochemical characterization of Assam Bora rice starch for use as a plasma volume expander.Curr. Drug Deliv.20107216216710.2174/156720110791011800 20158491
    [Google Scholar]
  89. HedlundB.E. WeberT.P. DragstenP.R. HansonG.J. HallawayP.E. Patent and Trademark Office. U.S. Patent No. 6,780,852,2004
  90. MontgomeryE.M. SentiF.R. Separation of amylose from amylopectin of starch by an extraction‐sedimentation procedure.J. Polym. Sci.1958281161910.1002/pol.1958.1202811601
    [Google Scholar]
  91. ThombreN. VishwakarmaA. JadhavT. KshirsagarS. Formulation and development of plasma volume expander using natural and modified starch from Solanum tuberosum.Int. J. Pharm. Investig.20166420721710.4103/2230‑973X.195930 28123990
    [Google Scholar]
  92. DahiyaD. NigamP.S. Dextran of diverse molecular-configurations used as a blood-plasma substitute, drug-delivery vehicle and food additive biosynthesized by leuconostoc, lactobacillus and weissella.Appl. Sci.202313221252610.3390/app132212526
    [Google Scholar]
  93. HoffmanC.R. HuynhA. LiuH. Plasma Substitutes.Blood Substitutes and Oxygen Biotherapeutics.ChamSpringer International Publishing202218519510.1007/978‑3‑030‑95975‑3_18
    [Google Scholar]
  94. Gallandat HuetR.C.G. SiemonsA.W. BausD. van Rooyen-ButijnW.T. HaagenaarsJ.A.M. van OeverenW. BepperlingF. A novel hydroxyethyl starch (Voluven®) for effective perioperative plasma volume substitution in cardiac surgery.Can. J. Anaesth.200047121207121510.1007/BF03019870 11132743
    [Google Scholar]
  95. SunB. ChenY. ZhouG. ZhouY. GuoT. ZhuS. MaoS. ZhaoY. ShaoJ. LiY. A flexible corn starch‐based biomaterial device integrated with capacitive‐coupled memristive memory, mechanical stress sensing, synapse, and logic operation functions.Adv. Electron. Mater.202393220101710.1002/aelm.202201017
    [Google Scholar]
  96. JonesG.E. ChaleckeW.E. DecJ. SchillingJ.A. RamseyG.H. RobertsonH.D. StrainW.H. Iodinated organic compounds as contrast media for radiographic diagnoses; Studies on tetraiodophthalimidoethanol as a medium for gastro-intestinal visualization.Radiology194749214315110.1148/49.2.143 20256671
    [Google Scholar]
  97. LiX. AntonN. ZuberG. VandammeT. Contrast agents for preclinical targeted X-ray imaging.Adv. Drug Deliv. Rev.20147611613310.1016/j.addr.2014.07.013 25086373
    [Google Scholar]
  98. LönnemarkM. MagnussonA. AhlströmH. Oral contrast media in CT of the abdomen. A double-blind randomized study comparing an aqueous solution of amidotrizoate, an aqueous solution of iohexol and a viscous solution of iohexol.Acta Radiol.199334551751910.1177/028418519303400519 8369192
    [Google Scholar]
  99. KumarV.A. MadhavanunniA.N. NivethaS. PanickerM.R. On the echogenicity of natural starch-based blood mimicking fluids for contrast enhanced ultrasound imaging: Preliminary in-vitro experiments.Preprint arXiv: 2403.06237.202410.1109/SAUS61785.2024.10563527
  100. Flores-SilvaP.C. Roldan-CruzC.A. Chavez-EsquivelG. Vernon-CarterE.J. Bello-PerezL.A. Alvarez-RamirezJ. In vitro digestibility of ultrasound-treated corn starch.Stärke2017699-10170004010.1002/star.201700040
    [Google Scholar]
  101. WiggermannP. HeiblM. NiessenC. Müller-WilleR. GössmannH. UllerW. PoschenriederF. SchreyerA.G. WohlgemuthW.A. StroszczynskiC. JungE.M. Degradable starch microspheres transarterial chemoembolisation (DSM-TACE) of HCC: Dynamic contrast-enhanced ultrasonography (DCE-US) based evaluation of therapeutic efficacy using a novel perfusion software.Clin. Hemorheol. Microcirc.2012522-412312910.3233/CH‑2012‑1590 22960293
    [Google Scholar]
  102. TianW. McLaughlinR. oral vaccine fast-dissolving dosage form using starch. U.S. Patent No WO2012/048333.
  103. RieseP. SakthivelP. TrittelS. GuzmánC.A. Intranasal formulations: Promising strategy to deliver vaccines.Expert Opin. Drug Deliv.201411101619163410.1517/17425247.2014.931936 24962722
    [Google Scholar]
  104. FasquelleF. DubuquoyL. BetbederD. Starch-based NP act as antigen delivery systems without immunomodulating effect.PLoS One2022177e027223410.1371/journal.pone.0272234 35905121
    [Google Scholar]
  105. LeeC.S. HwangH.S. Starch-based hydrogels as a drug delivery system in biomedical applications.Gels202391295110.3390/gels9120951 38131937
    [Google Scholar]
  106. AljiboriH.S. ShakerL.M. AlamieryA.A. Al-AzzawiW.K. Revolutionizing lens technology: Chitosan and starch in next‐gen ophthalmic lenses.Stärke2024765-6230020710.1002/star.202300207
    [Google Scholar]
  107. ZhaoL. WangH. FengC. SongF. DuX. Preparation and evaluation of starch hydrogel/contact Lens composites as epigallocatechin gallate delivery systems for inhibition of bacterial adhesion.Front. Bioeng. Biotechnol.2021975930310.3389/fbioe.2021.759303 34869268
    [Google Scholar]
  108. MusgraveC.S.A. FangF. Contact lens materials: A materials science perspective.Materials201912226110.3390/ma12020261 30646633
    [Google Scholar]
  109. ZhengP. MaT. MaX. Fabrication and properties of starch-grafted graphene nanosheet/plasticized-starch composites.Ind. Eng. Chem. Res.20135239142011420710.1021/ie402220d
    [Google Scholar]
  110. FonsecaD.F.S. VilelaC. SilvestreA.J.D. FreireC.S.R. A compendium of current developments on polysaccharide and protein-based microneedles.Int. J. Biol. Macromol.201913670472810.1016/j.ijbiomac.2019.04.163 31028807
    [Google Scholar]
  111. RajputA. KulkarniM. DeshmukhP. PingaleP. GarkalA. GandhiS. ButaniS. A key role by polymers in microneedle technology: A new era.Drug Dev. Ind. Pharm.202147111713173210.1080/03639045.2022.2058531 35332822
    [Google Scholar]
  112. Martínez-NavarreteM. Pérez-LópezA. GuillotA.J. CordeiroA.S. MeleroA. Aparicio-BlancoJ. Latest advances in glucose-responsive microneedle-based systems for transdermal insulin delivery.Int. J. Biol. Macromol.2024263Pt 213030110.1016/j.ijbiomac.2024.130301 38382776
    [Google Scholar]
  113. HanJ.H. Edible films and coatings: A review.Innovations in Food Packaging.2nd edAcademic Press2014213255
    [Google Scholar]
  114. CuiY. LiC. GuoY. LiuX. ZhuF. LiuZ. LiuX. YangF. Rheological & 3D printing properties of potato starch composite gels.J. Food Eng.202231311075610.1016/j.jfoodeng.2021.110756
    [Google Scholar]
  115. FangF. Shear-induced synergistic effects of konjac glucomannan and waxy potato starch on viscosity and gel strength.Food Hydrocoll.202111410654010.1016/j.foodhyd.2020.106540
    [Google Scholar]
  116. HuW.X. ChenJ. XuF. ChenL. ZhaoJ.W. Study on crystalline, gelatinization and rheological properties of japonica rice flour as affected by starch fine structure.Int. J. Biol. Macromol.20201481232124110.1016/j.ijbiomac.2019.11.020 31759021
    [Google Scholar]
  117. CastanhaN. MianoA.C. JonesO.G. ReuhsB.L. CampanellaO.H. AugustoP.E.D. Starch modification by ozone: Correlating molecular structure and gel properties in different starch sources.Food Hydrocoll.202010810602710.1016/j.foodhyd.2020.106027
    [Google Scholar]
  118. ChenY. ZhangM. SunY. PhuhongsungP. Improving 3D/4D printing characteristics of natural food gels by novel additives: A review.Food Hydrocoll.202212310716010.1016/j.foodhyd.2021.107160
    [Google Scholar]
  119. Seoane-ViañoI. TrenfieldS.J. BasitA.W. GoyanesA. Translating 3D printed pharmaceuticals: From hype to real-world clinical applications.Adv. Drug Deliv. Rev.202117455357510.1016/j.addr.2021.05.003 33965461
    [Google Scholar]
  120. DharmamoorthyG SabareeshM BalajiA ReddyYK MonikaB HemaAN ReddyPS KartheekU A overview on 3D printing– current pharmaceutical applications and future directions. YMER,20222111
  121. GioumouxouzisC.I. KaravasiliC. FatourosD.G. Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies.Drug Discov. Today201924263664310.1016/j.drudis.2018.11.019 30503803
    [Google Scholar]
  122. ScoutarisN. RossS.A. DouroumisD. 3D printed “Starmix” drug loaded dosage forms for paediatric applications.Pharm. Res.20183523410.1007/s11095‑017‑2284‑2 29368113
    [Google Scholar]
  123. LiuZ. HuangJ. FangD. FengB. LuoJ. LeiP. ChenX. XieQ. ChenM. ChenP. Material extrusion 3D-printing technology: A new strategy for constructing water-soluble, high-dose, sustained-release drug formulations.Mater. Today Bio20242710115310.1016/j.mtbio.2024.101153 39081462
    [Google Scholar]
  124. Kozakiewicz-LatałaM. NartowskiK.P. DominikA. MalecK. GołkowskaA.M. ZłocińskaA. RusińskaM. Szymczyk-ZiółkowskaP. ZiółkowskiG. GórniakA. KarolewiczB. Binder jetting 3D printing of challenging medicines: From low dose tablets to hydrophobic molecules.Eur. J. Pharm. Biopharm.202217014415910.1016/j.ejpb.2021.11.001 34785345
    [Google Scholar]
  125. YangY. XuY. WeiS. ShanW. Oral preparations with tunable dissolution behavior based on selective laser sintering technique.Int. J. Pharm.202159312012710.1016/j.ijpharm.2020.120127 33253801
    [Google Scholar]
  126. KarakurtI. AydoğduA. ÇıkrıkcıS. OrozcoJ. LinL. Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: A controlled release study.Int. J. Pharm.202058411942810.1016/j.ijpharm.2020.119428 32445906
    [Google Scholar]
  127. RostamabadiH. Sadeghi MahoonakA. AllafchianA. GhorbaniM. Fabrication of β-carotene loaded glucuronoxylan-based nanostructures through electrohydrodynamic processing.Int. J. Biol. Macromol.201913977378410.1016/j.ijbiomac.2019.07.182 31362026
    [Google Scholar]
  128. UllahM. WahabA. KhanS.U. NaeemM. ur Rehman, K.; Ali, H.; Ullah, A.; Khan, A.; Khan, N.R.; Rizg, W.Y.; Hosny, K.M.; Alissa, M.; Badr, M.Y.; Alkhalidi, H.M. 3D printing technology: A new approach for the fabrication of personalized and customized pharmaceuticals.Eur. Polym. J.202319511224010.1016/j.eurpolymj.2023.112240
    [Google Scholar]
  129. LamC.X.F. MoX.M. TeohS.H. HutmacherD.W. Scaffold development using 3D printing with a starch-based polymer.Mater. Sci. Eng. C2002201-2495610.1016/S0928‑4931(02)00012‑7
    [Google Scholar]
/content/journals/npj/10.2174/0122103155319243240927062730
Loading
/content/journals/npj/10.2174/0122103155319243240927062730
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test